Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

On the Use of Topological Features of Metabolic Networks for the Classification of Cancer Samples

Author(s): Jeaneth Machicao*, Francesco Craighero, Davide Maspero, Fabrizio Angaroni, Chiara Damiani , Alex Graudenzi *, Marco Antoniotti and Odemir M. Bruno*

Volume 22, Issue 2, 2021

Published on: 01 March, 2021

Page: [88 - 97] Pages: 10

DOI: 10.2174/1389202922666210301084151

Price: $65

Abstract

Background: The increasing availability of omics data collected from patients affected by severe pathologies, such as cancer, is fostering the development of data science methods for their analysis.

Introduction: The combination of data integration and machine learning approaches can provide new powerful instruments to tackle the complexity of cancer development and deliver effective diagnostic and prognostic strategies.

Methods: We explore the possibility of exploiting the topological properties of sample-specific metabolic networks as features in a supervised classification task. Such networks are obtained by projecting transcriptomic data from RNA-seq experiments on genome-wide metabolic models to define weighted networks modeling the overall metabolic activity of a given sample.

Results: We show the classification results on a labeled breast cancer dataset from the TCGA database, including 210 samples (cancer vs. normal). In particular, we investigate how the performance is affected by a threshold-based pruning of the networks by comparing Artificial Neural Networks, Support Vector Machines and Random Forests. Interestingly, the best classification performance is achieved within a small threshold range for all methods, suggesting that it might represent an effective choice to recover useful information while filtering out noise from data. Overall, the best accuracy is achieved with SVMs, which exhibit performances similar to those obtained when gene expression profiles are used as features.

Conclusion: These findings demonstrate that the topological properties of sample-specific metabolic networks are effective in classifying cancer and normal samples, suggesting that useful information can be extracted from a relatively limited number of features.

Keywords: Metabolic networks, cancer sample classification, machine learning, RNA-seq data, topological properties, network pruning.

« Previous
Graphical Abstract

[1]
Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J., 2014, 13, 8-17.
[http://dx.doi.org/10.1016/j.csbj.2014.11.005 ] [PMID: 25750696]
[2]
Furey, T.S.; Cristianini, N.; Duffy, N.; Bednarski, D.W.; Schummer, M.; Haussler, D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 2000, 16(10), 906-914.
[http://dx.doi.org/10.1093/bioinformatics/16.10.906 ] [PMID: 11120680]
[3]
Sotiriou, C.; Neo, S-Y.; McShane, L.M.; Korn, E.L.; Long, P.M.; Jazaeri, A.; Martiat, P.; Fox, S.B.; Harris, A.L.; Liu, E.T. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl. Acad. Sci. USA, 2003, 100(18), 10393-10398.
[http://dx.doi.org/10.1073/pnas.1732912100 ] [PMID: 12917485]
[4]
Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; Downing, J.R.; Jacks, T.; Horvitz, H.R.; Golub, T.R. MicroRNA expression profiles classify human cancers. Nature, 2005, 435(7043), 834-838.
[http://dx.doi.org/10.1038/nature03702 ] [PMID: 15944708]
[5]
C.P., de Souto M.; G Costa, I.; SA de Araujo, D.; B Ludermir, T.; Schliep, A. Clustering cancer gene expression data: a comparative study. BMC Bioinformatics, 2008, 9(1), 497.
[http://dx.doi.org/10.1186/1471-2105-9-497]
[6]
Vanneschi, L.; Farinaccio, A.; Mauri, G.; Antoniotti, M.; Provero, P.; Giacobini, M. A comparison of machine learning techniques for survival prediction in breast cancer. BioData Min., 2011, 4(1), 12.
[http://dx.doi.org/10.1186/1756-0381-4-12 ] [PMID: 21569330]
[7]
Curtis, C.; Shah, S.P.; Chin, S.F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.; Gräf, S.; Ha, G.; Haffari, G.; Bashashati, A.; Russell, R.; McKinney, S.; Langerød, A.; Green, A.; Provenzano, E.; Wishart, G.; Pinder, S.; Watson, P.; Markowetz, F.; Murphy, L.; Ellis, I.; Purushotham, A.; Børresen-Dale, A.L.; Brenton, J.D.; Tavaré, S.; Caldas, C.; Aparicio, S. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 2012, 486(7403), 346-352.
[http://dx.doi.org/10.1038/nature10983 ] [PMID: 22522925]
[8]
Caravagna, G.; Graudenzi, A.; Ramazzotti, D.; Sanz-Pamplona, R.; De Sano, L.; Mauri, G.; Moreno, V.; Antoniotti, M.; Mishra, B. Algorithmic methods to infer the evolutionary trajectories in cancer progression. Proc. Natl. Acad. Sci. USA, 2016, 113(28), E4025-E4034.
[http://dx.doi.org/10.1073/pnas.1520213113 ] [PMID: 27357673]
[9]
Caravagna, G.; Giarratano, Y.; Ramazzotti, D.; Tomlinson, I.; Graham, T.A.; Sanguinetti, G.; Sottoriva, A. Detecting repeated cancer evolution from multi-region tumor sequencing data. Nat. Methods, 2018, 15(9), 707-714.
[http://dx.doi.org/10.1038/s41592-018-0108-x ] [PMID: 30171232]
[10]
Hofree, M.; Shen, J.P.; Carter, H.; Gross, A.; Ideker, T. Network-based stratification of tumor mutations. Nat. Methods, 2013, 10(11), 1108-1115.
[http://dx.doi.org/10.1038/nmeth.2651 ] [PMID: 24037242]
[11]
Michael, L.G.; Joseph, E.L.; William, T.B.; Jong, W.K.; Quanli, W.; Matthew, D.C.; Michael, B.D.; Michael, K.; Bernard Mathey, P.; Anil, P. A pathway-based classification of human breast cancer. Proc. Natl. Acad. Sci. USA, 2010, 107(15), 6994-6999.
[12]
Graudenzi, A.; Cava, C.; Bertoli, G.; Fromm, B.; Flatmark, K.; Mauri, G.; Castiglioni, I. Pathway-based classification of breast cancer subtypes. Front. Biosci., 2017, 22, 1697-1712.
[http://dx.doi.org/10.2741/4566 ] [PMID: 28410140]
[13]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013 ] [PMID: 21376230]
[14]
Cantor, J.R.; Sabatini, D.M. Cancer cell metabolism: one hallmark, many faces. Cancer Discov., 2012, 2(10), 881-898.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0345 ] [PMID: 23009760]
[15]
Ward, P.S.; Thompson, C.B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell, 2012, 21(3), 297-308.
[http://dx.doi.org/10.1016/j.ccr.2012.02.014 ] [PMID: 22439925]
[16]
Tomita, M.; Kami, K. Cancer. Systems biology, metabolomics, and cancer metabolism. Science, 2012, 336(6084), 990-991.
[http://dx.doi.org/10.1126/science.1223066 ] [PMID: 22628644]
[17]
Teicher, B.A.; Linehan, W.M.; Helman, L.J. Targeting cancer metabolism., 2012, 18(20), 5537-5545.
[18]
Hyduke, D.R.; Lewis, N.E.; Palsson, B.Ø. Analysis of omics data with genome-scale models of metabolism. Mol. Biosyst., 2013, 9(2), 167-174.
[http://dx.doi.org/10.1039/C2MB25453K ] [PMID: 23247105]
[19]
Lewis, N.E.; Abdel-Haleem, A.M. The evolution of genome-scale models of cancer metabolism. Front. Physiol., 2013, 4, 237.
[http://dx.doi.org/10.3389/fphys.2013.00237 ] [PMID: 24027532]
[20]
Orth, J.D.; Thiele, I.; Palsson, B.Ø. What is flux balance analysis? Nat. Biotechnol., 2010, 28(3), 245-248.
[http://dx.doi.org/10.1038/nbt.1614 ] [PMID: 20212490]
[21]
Machado, D.; Herrgård, M. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLOS Comput. Biol., 2014, 10(4)e1003580
[http://dx.doi.org/10.1371/journal.pcbi.1003580 ] [PMID: 24762745]
[22]
Jamialahmadi, O.; Hashemi-Najafabadi, S.; Motamedian, E.; Romeo, S.; Bagheri, F. A benchmark-driven approach to reconstruct metabolic networks for studying cancer metabolism. PLOS Comput. Biol., 2019, 15(4)e1006936
[http://dx.doi.org/10.1371/journal.pcbi.1006936 ] [PMID: 31009458]
[23]
Damiani, C.; Di Filippo, M.; Pescini, D.; Maspero, D.; Colombo, R.; Mauri, G. popFBA: tackling intratumour heterogeneity with Flux Balance Analysis. Bioinformatics, 2017, 33(14), i311-i318.
[http://dx.doi.org/10.1093/bioinformatics/btx251 ] [PMID: 28881985]
[24]
Damiani, C.; Maspero, D.; Di Filippo, M.; Colombo, R.; Pescini, D.; Graudenzi, A.; Westerhoff, H.V.; Alberghina, L.; Vanoni, M.; Mauri, G. Integration of single-cell RNA-seq data into population models to characterize cancer metabolism. PLOS Comput. Biol., 2019, 15(2)e1006733
[http://dx.doi.org/10.1371/journal.pcbi.1006733 ] [PMID: 30818329]
[25]
Damiani, C.; Gaglio, D.; Sacco, E.; Alberghina, L.; Vanoni, M. Systems metabolomics: from metabolomic snapshots to design principles. Curr. Opin. Biotechnol., 2020, 63, 190-199.
[http://dx.doi.org/10.1016/j.copbio.2020.02.013 ] [PMID: 32278263]
[26]
Graudenzi, A.; Maspero, D.; Di Filippo, M.; Gnugnoli, M.; Isella, C.; Mauri, G.; Medico, E.; Antoniotti, M.; Damiani, C. Integration of transcriptomic data and metabolic networks in cancer samples reveals highly significant prognostic power. J. Biomed. Inform., 2018, 87, 37-49.
[http://dx.doi.org/10.1016/j.jbi.2018.09.010 ] [PMID: 30244122]
[27]
Damiani, C.; Rovida, L.; Maspero, D.; Sala, I.; Rosato, L.; Di Filippo, M.; Pescini, D.; Graudenzi, A.; Antoniotti, M.; Mauri, G. MaREA4Galaxy: Metabolic reaction enrichment analysis and visualization of RNA-seq data within Galaxy. Comput. Struct. Biotechnol. J., 2020, 18, 993-999.
[http://dx.doi.org/10.1016/j.csbj.2020.04.008 ] [PMID: 32373287]
[28]
Ciriello, G.; Gatza, M.L.; Beck, A.H.; Wilkerson, M.D.; Rhie, S.K.; Pastore, A.; Zhang, H.; McLellan, M.; Yau, C.; Kandoth, C.; Bowlby, R.; Shen, H.; Hayat, S.; Fieldhouse, R.; Lester, S.C.; Tse, G.M.; Factor, R.E.; Collins, L.C.; Allison, K.H.; Chen, Y.Y.; Jensen, K.; Johnson, N.B.; Oesterreich, S.; Mills, G.B.; Cherniack, A.D.; Robertson, G.; Benz, C.; Sander, C.; Laird, P.W.; Hoadley, K.A.; King, T.A.; Perou, C.M. Comprehensive molecular portraits of invasive lobular breast cancer. Cell, 2015, 163(2), 506-519.
[http://dx.doi.org/10.1016/j.cell.2015.09.033 ] [PMID: 26451490]
[29]
Swainston, N.; Smallbone, K.; Hefzi, H.; Dobson, P.D.; Brewer, J.; Hanscho, M.; Zielinski, D.C.; Ang, K.S.; Gardiner, N.J.; Gutierrez, J.M.; Kyriakopoulos, S.; Lakshmanan, M.; Li, S.; Liu, J.K.; Martínez, V.S.; Orellana, C.A.; Quek, L.E.; Thomas, A.; Zanghellini, J.; Borth, N.; Lee, D.Y.; Nielsen, L.K.; Kell, D.B.; Lewis, N.E.; Mendes, P. Recon 2.2: from reconstruction to model of human metabolism. Metabolomics, 2016, 12(7), 109.
[http://dx.doi.org/10.1007/s11306-016-1051-4 ] [PMID: 27358602]
[30]
Cazzaniga, P.; Damiani, C.; Besozzi, D.; Colombo, R.; Nobile, M.S.; Gaglio, D.; Pescini, D.; Molinari, S.; Mauri, G.; Alberghina, L.; Vanoni, M. Computational strategies for a system-level understanding of metabolism. Metabolites, 2014, 4(4), 1034-1087.
[http://dx.doi.org/10.3390/metabo4041034 ] [PMID: 25427076]
[31]
Mardinoglu, A.; Agren, R.; Kampf, C.; Asplund, A.; Uhlen, M.; Nielsen, J. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat. Commun., 2014, 5, 3083.
[http://dx.doi.org/10.1038/ncomms4083 ] [PMID: 24419221]
[32]
Thiele, I.; Swainston, N.; Fleming, R.M.; Hoppe, A.; Sahoo, S.; Aurich, M.K.; Haraldsdottir, H.; Mo, M.L.; Rolfsson, O.; Stobbe, M.D.; Thorleifsson, S.G.; Agren, R.; Bölling, C.; Bordel, S.; Chavali, A.K.; Dobson, P.; Dunn, W.B.; Endler, L.; Hala, D.; Hucka, M.; Hull, D.; Jameson, D.; Jamshidi, N.; Jonsson, J.J.; Juty, N.; Keating, S.; Nookaew, I.; Le Novère, N.; Malys, N.; Mazein, A.; Papin, J.A.; Price, N.D.; Selkov, E., Sr; Sigurdsson, M.I.; Simeonidis, E.; Sonnenschein, N.; Smallbone, K.; Sorokin, A.; van Beek, J.H.; Weichart, D.; Goryanin, I.; Nielsen, J.; Westerhoff, H.V.; Kell, D.B.; Mendes, P.; Palsson, B.Ø. A community-driven global reconstruction of human metabolism. Nat. Biotechnol., 2013, 31(5), 419-425.
[http://dx.doi.org/10.1038/nbt.2488 ] [PMID: 23455439]
[33]
Ma, H-W.; Zeng, A-P. The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics, 2003, 19(11), 1423-1430.
[http://dx.doi.org/10.1093/bioinformatics/btg177 ] [PMID: 12874056]
[34]
Backes, A.R.; Casanova, D.; Bruno, O.M. A complex network-based approach for boundary shape analysis. Pattern Recognit., 2009, 42(1), 54-67.
[http://dx.doi.org/10.1016/j.patcog.2008.07.006]
[35]
Miranda, G.H.B.; Machicao, J.; Bruno, O.M. An optimized shape descriptor based on structural properties of networks. Digit. Signal Process., 2018, 82, 216-229.
[http://dx.doi.org/10.1016/j.dsp.2018.06.010]
[36]
Machicao, J.; Filho, H.A.; Lahr, D.J.G.; Buckeridge, M.; Bruno, O.M. Topological assessment of metabolic networks reveals evolutionary information. Sci. Rep., 2018, 8(1), 15918.
[http://dx.doi.org/10.1038/s41598-018-34163-7 ] [PMID: 30374088]
[37]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303 ] [PMID: 14597658]
[38]
Costa, L.D.F.; Boas, P.R.V.; Silva, F.N.; Rodrigues, F.A. A pattern recognition approach to complex networks. J. Stat. Mech., 2010, 2010(11)P11015
[http://dx.doi.org/10.1088/1742-5468/2010/11/P11015]
[39]
Banerjee, A.; Jost, J. Spectral plot properties: Towards a qualitative classification of networks. NHM, 2008, 3(2), 395-411.
[http://dx.doi.org/10.3934/nhm.2008.3.395]
[40]
Costa, L da F.; Francisco, A.; Rodrigues, G.T. Villas Boas, P.R. Characterization of complex networks: A survey of measurements. Adv. Phys., 2007, 56(1), 167-242.
[http://dx.doi.org/10.1080/00018730601170527]
[41]
Newman, M.E. Assortative mixing in networks. Phys. Rev. Lett., 2002, 89(20)208701
[http://dx.doi.org/10.1103/PhysRevLett.89.208701 ] [PMID: 12443515]
[42]
Filisetti, A.; Graudenzi, A.; Serra, R.; Villani, M.; De Lucrezia, D.; Rudolf, M. Füchslin, Stuart A Kauffman, Norman Packard, and Irene Poli. A stochastic model of the emergence of autocatalytic cycles. J. Syst. Chem., 2011, 2(1), 2.
[http://dx.doi.org/10.1186/1759-2208-2-2]
[43]
Filisetti, A.; Graudenzi, A.; Serra, R.; Villani, M.; Füchslin, R.M.; Packard, N.; Kauffman, S.A.; Poli, I. A stochastic model of autocatalytic reaction networks. Theory Biosci., 2012, 131(2), 85-93.
[http://dx.doi.org/10.1007/s12064-011-0136-x ] [PMID: 21979857]
[44]
Serra, R.; Filisetti, A.; Villani, M.; Graudenzi, A.; Damiani, C.; Panini, T. A stochastic model of catalytic reaction networks in protocells. Nat. Comput., 2014, 13(3), 367-377.
[http://dx.doi.org/10.1007/s11047-014-9445-6]
[45]
Cawley, G.C.; Talbot, N.L.C. On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res., 2010, 11, 2079-2107.
[46]
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 2011, 12, 2825-2830.
[47]
Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; Antipin, Y.; Reva, B.; Goldberg, A.P.; Sander, C.; Schultz, N. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov., 2012, 2(5), 401-404.
[48]
Hodges, J.L. The significance probability of the smirnov two-sample test. Ark. Mat., 1958, 3, 469-486.
[http://dx.doi.org/10.1007/BF02589501]
[49]
Pacheco, M.P.; Bintener, T.; Sauter, T. Towards the network-based prediction of repurposed drugs using patient-specific metabolic models. EBioMedicine, 2019, 43, 26-27.
[http://dx.doi.org/10.1016/j.ebiom.2019.04.017 ] [PMID: 30979684]
[50]
Zampieri, G.; Vijayakumar, S.; Yaneske, E.; Angione, C. Machine and deep learning meet genome-scale metabolic modeling. PLOS Comput. Biol., 2019, 15(7)e1007084
[http://dx.doi.org/10.1371/journal.pcbi.1007084 ] [PMID: 31295267]
[51]
Cai, H.Y.; Zheng, V.W.; Chang, K.C-C. A comprehensive survey of graph embedding: Problems, techniques, and applications. IEEE Trans. Knowl. Data Eng., 2018, 30(9), 1616-1637.
[http://dx.doi.org/10.1109/TKDE.2018.2807452]
[52]
Hamilton, W.L.; Ying, R.; Leskovec, J. Representation learning on graphs: Methods and applications. IEEE Data Eng. Bull., 2017, 40(3), 52-74.
[53]
Kriege, N.M.; Johansson, F.D.; Morris, C. A survey on graph kernels. Appl. Network Sci., 2020, 5(1), 6.
[http://dx.doi.org/10.1007/s41109-019-0195-3]
[54]
Niepert, M.; Ahmed, M.; Kutzkov, K. Learning convolutional neural networks for graphs Proceedings of the 33rd International Conference on Machine Learning, ICML 2016, New York City, NY, USA. June 19-24, 2016, Volume 48, pp. 2014-2023.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy