Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Fe3O4@SiO2-Propyl Covalent Dapsone-Copper Complex: Synthesis, Characterization and Application for the Synthesis of New Derivatives of Azo-Linked Thiazolidinones and their Solvatochromism Evaluation

Author(s): Leila Zare Fekri*

Volume 18, Issue 1, 2022

Published on: 26 February, 2021

Page: [128 - 138] Pages: 11

DOI: 10.2174/1573413717666210226120252

Price: $65

Abstract

Background: Thiazolidinone-4-ones belong to important heterocyclic compounds because of their broad spectrum of biological activities. Several methods for the synthesis of 4- thiazolidinones are reported in the literature. The main synthetic route to synthesize 1,3-thiazolidin- 4-ones is the three-component reaction between amine, a carbonyl compound and a mercapto-acid.

Objective: Dapsone-Cu supported on silica coated Fe3O4 (Fe3O4@SiO2-pr@dapsone-Cu) as a new heterogeneous nanoparticle catalyst was synthesized and the structure and morphology of this catalyst were characterized by Fourier transform infrared spectroscopy (FT-IR), Xray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), zeta potential, vibrating sample magnetometry (VSM) and thermal gravimetric analysis (TGA). The new synthesized catalyst was applied as an effective nanocatalyst for the synthesis of new derivatives of azo-linked thiazolidinones through one-pot multi-component reaction of various aromatic aldehydes, thioglycolic acid and 4- aminoazobenzene under solvent-free condition.

Methods:A mixture of aldehyde, thioglycolic acid, 4-aminoazobenzene (1 mmol) and 0.05 g Fe3O4@SiO2@dapsone-Cu MNPs was stirred at room temperature under solvent-free condition.

Results: A facile, green, new and efficient method for the synthesis of thiazolidine-4-ones through three component reaction of various aldehydes, thioglycolic acid and 4-aminoazobenzene in the presence of Fe3O4@SiO2-propyl@dapsone-Cu complex under solvent-free reaction was reported.

Conclusion: This new procedure has notable advantages such as excellent yields, short reaction time, operational simplicity, easy work-up, eco-friendly and using a non-toxic catalyst. Also, the catalyst is easily recoverable in the presence of an enormous magnet and reused for six consecutive reaction cycles without significant loss of activity.

Keywords: Fe3O4@SiO2-pr@dapsone-Cu, solvent-free, azo dispersive dyes, thiazolidine-4-ones, solvatochromism, heterocyclic compounds

Graphical Abstract

[1]
El-Gaby, M.S.A.; Ismail, Z.H.; Abdel-Gawad, S.M.; Aly, H.M.; Ghorab, M.M. Synthesis of thiazolidine and thiophene derivatives for evaluation as anticancer agents. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184, 2645-2654.
[http://dx.doi.org/10.1080/10426500802561096]
[2]
Beharry, Z.; Zemskova, M.; Mahajan, S.; Zhang, F.; Ma, J.; Xia, Z.; Lilly, M.; Smith, C.D.; Kraft, A.S. Novel benzylidene-thiazolidine-2,4-diones inhibit Pim protein kinase activity and induce cell cycle arrest in leukemia and prostate cancer cells. Mol. Cancer Ther., 2009, 8(6), 1473-1483.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-1037] [PMID: 19509254]
[3]
Desai, N.C.; Rajpara, K.M.; Joshi, V.V. Microwave induced synthesis of fluorobenzamides containing thiazole and thiazolidine as promising antimicrobial analogs. J. Fluor. Chem., 2013, 145, 102-111.
[http://dx.doi.org/10.1016/j.jfluchem.2012.10.012]
[4]
Barros, F.W.A.; Silva, T.G.; da Rocha Pitta, M.G.; Bezerra, D.P.; Costa-Lotufo, L.V.; de Moraes, M.O.; Pessoa, C.; de Moura, M.A.F.B.; de Abreu, F.C. de Lima, Mdo.C.; Galdino, S.L.; Pitta, Ida.R.; Goulart, M.O. Synthesis and cytotoxic activity of new acridine-thiazolidine derivatives. Bioorg. Med. Chem., 2012, 20(11), 3533-3539.
[http://dx.doi.org/10.1016/j.bmc.2012.04.007] [PMID: 22546208]
[5]
Onen-Bayram, F.E.; Durmaz, I.; Scherman, D.; Herscovici, J.; Cetin-Atalay, R. A novel thiazolidine compound induces caspase-9 dependent apoptosis in cancer cells. Bioorg. Med. Chem., 2012, 20(17), 5094-5102.
[http://dx.doi.org/10.1016/j.bmc.2012.07.016] [PMID: 22867707]
[6]
Barros, C.D.; Amato, A.A.; de Oliveira, T.B.; Iannini, K.B.R.; Silva, A.L.; Silva, T.G.; Leite, E.S.; Hernandes, M.Z. Alves de Lima, Mdo.C.; Galdino, S.L.; Neves, Fde.A.; Pitta, Ida.R. Synthesis and anti-inflammatory activity of new arylidene-thiazolidine-2,4-diones as PPARgamma ligands. Bioorg. Med. Chem., 2010, 18(11), 3805-3811.
[http://dx.doi.org/10.1016/j.bmc.2010.04.045] [PMID: 20471839]
[7]
Orrling, K.M.; Marzahn, M.R.; Gutiérrez-de-Terán, H.; Aqvist, J.; Dunn, B.M.; Larhed, M. α-Substituted norstatines as the transition-state mimic in inhibitors of multiple digestive vacuole malaria aspartic proteases. Bioorg. Med. Chem., 2009, 17(16), 5933-5949.
[http://dx.doi.org/10.1016/j.bmc.2009.06.065] [PMID: 19635672]
[8]
Ami, E.; Nakahara, K.; Sato, A.; Nguyen, J-T.; Hidaka, K.; Hamada, Y.; Nakatani, S.; Kimura, T.; Hayashi, Y.; Kiso, Y. Synthesis and antiviral property of allophenylnorstatine-based HIV protease inhibitors incorporating D-cysteine derivatives as P2/P3 moieties. Bioorg. Med. Chem. Lett., 2007, 17(15), 4213-4217.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.039] [PMID: 17537628]
[9]
Fekri, L.Z.; Hamidian, H.; Chekosarani, M.A. Urazolium diacetate as a new, efficient and reusable Brønsted acid ionic liquid for the synthesis of novel derivatives of thiazolidine-4-ones. RSC Advances, 2020, 10, 556-564.
[http://dx.doi.org/10.1039/C9RA08649H]
[10]
Li, G.; Qian, X.; Cui, J.; Huang, Q.; Cui, D.; Zhang, R.; Liu, F. Synthesis and herbicidal activities of fluorine-containing 3-pyridylmethyl-2-phenyliminothiazolidine derivatives. J. Fluor. Chem., 2006, 127, 182-186.
[http://dx.doi.org/10.1016/j.jfluchem.2005.10.016]
[11]
Li, W.; Lu, Y.; Wang, Z.; Dalton, J.T.; Miller, D.D.; Miller, D. Synthesis and antiproliferative activity of thiazolidine analogs for melanoma. Bioorg. Med. Chem. Lett., 2007, 17(15), 4113-4117.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.059] [PMID: 17561392]
[12]
D’ Ascenzio, M.; Bizzarri, B.; De Monte, C.; Carradori, S.; Bolasco, A.; Secci, D.; Rivanera, D.; Faulhaber, N.; Bordón, C.; Jones-Brando, L. Design, synthesis and biological characterization of thiazolidin-4-one derivatives as promising inhibitors of Toxoplasma gondii. Eur. J. Med. Chem., 2014, 86, 17-30.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.046]
[13]
Rawal, R.K.; Tripathi, R.; Katti, S.B.; Pannecouque, C.; De Clercq, E. Design, synthesis, and evaluation of 2-aryl-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Bioorg. Med. Chem., 2007, 15(4), 1725-1731.
[http://dx.doi.org/10.1016/j.bmc.2006.12.003] [PMID: 17178227]
[14]
Mishchenko, M.; Shtrygol, S.; Kaminskyy, D.; Lesyk, R. Thiazole-bearing 4-thiazolidinones as new anticonvulsant agents. Sci. Pharm., 2020, 88, 16-30.
[http://dx.doi.org/10.3390/scipharm88010016]
[15]
Omar, Y.M.; Abdu-Allah, H.H.M.; Abdel-Moty, S.G. Synthesis, biological evaluation and docking study of 1,3,4-thiadiazole-thiazolidinone hybrids as anti-inflammatory agents with dual inhibition of COX-2 and 15-LOX. Bioorg. Chem., 2018, 80, 461-471.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.036] [PMID: 29986191]
[16]
Shiradkar, M.R.; Ghodake, M.; Bothara, K.G.; Bhandari, S.V.; Nikalje, A.; Chakravarthy Akula, K.; Desai, N.C.; Burange, P.J. Synthesis and anticonvulsant activity of clubbed thiazolidinone–barbituric acid and thiazolidinone–triazole derivatives. ARKIVOC, 2007, xiv, 58-74.
[http://dx.doi.org/10.3998/ark.5550190.0008.e08]
[17]
Liaras, K.; Fesatidou, M.; Geronikaki, A. Thiazoles and Thiazolidinones as COX/LOX Inhibitors. Molecules, 2018, 23(3), 685-691.
[http://dx.doi.org/10.3390/molecules23030685] [PMID: 29562646]
[18]
Marc, G.; Stana, A.; Oniga, S.D.; Pîrnau, A.; Vlase, L.; Oniga, O. Molecules, 2019, 24, 2060-2079.
[http://dx.doi.org/10.3390/molecules24112060]
[19]
Silva, T.L.; Miolo, L.M.F.; Sousa, F.S.S.; Brod, L.M.P.; Savegnago, L.; Schneider, P.H. New thioureas based on thiazolidines with antioxidant potential. Tetrahedron Lett., 2015, 56, 6674-6680.
[http://dx.doi.org/10.1016/j.tetlet.2015.10.037]
[20]
Navin, B.P.; Hemant, R.P.; Faiyazalam, M.S.; Dhanji, R. New 4-thiazolidinones from 5-ethyl pyridine-2-ethanol: their antibacterial, antifungal, and antitubercular activity. Med. Chem. Res., 2014, 23, 1360-1370.
[http://dx.doi.org/10.1007/s00044-013-0736-8]
[21]
Kato, T.; Ozaki, T.; Tamura, K.; Suzuki, Y.; Akima, M.; Ohi, N. Novel calcium antagonists with both calcium overload inhibition and antioxidant activity. 2. Structure-activity relationships of thiazolidinone derivatives. J. Med. Chem., 1999, 42(16), 3134-3146.
[http://dx.doi.org/10.1021/jm9900927] [PMID: 10447958]
[22]
Deep, A.; Jain, S.; Sharma, P.C.; Phogat, P.; Malhotra, M. Synthesis of 2-(aryl)-5-(arylidene)-4-thiazolidinone derivatives with potential analgesic and anti-inflammatory activity. Med. Chem. Res., 2012, 21, 1652-1659.
[http://dx.doi.org/10.1007/s00044-011-9679-0]
[23]
Markovic, R.; Stodanovic, M. Stereo controlled synthesis of new tetrahydrofuro[2,3-d]thiazole derivatives via activated vinylogous iminium ions. Heterocycles, 2005, 65, 2635-2647.
[http://dx.doi.org/10.3987/COM-05-10494]
[24]
Pawar, R.B.; Mulwad, V.V. Synthesis of some biologically active pyrazole, thiazolidinone, and azetidinone derivatives. Chem. Heterocycl. Compd., 2004, 40, 219-226.
[http://dx.doi.org/10.1023/B:COHC.0000027896.38910.d1]
[25]
Ocal, N.; Aydogan, F.; Yolacan, C.; Turgut, Z. Synthesis of some furo‐thiazolidine derivatives starting from aldimines. J. Heterocycl. Chem., 2003, 40, 721-724.
[26]
Nikpassand, M.; Pirdelzendeh, D. Green synthesis of novel azo-linked 2-phenyl benzimidazoles using ionic liquid. [BDBDMIm] Br. Dyes Pigments, 2016, 130, 314-318.
[http://dx.doi.org/10.1016/j.dyepig.2016.03.038]
[27]
Fekri, L.Z.; Nikpassand, M.; Pour, K.H. Green aqueous synthesis of mono, bis and trisdihydropyridines using nano Fe3O4 under ultrasound irradiation. Curr. Org. Synth., 2015, 12, 76-79.
[http://dx.doi.org/10.2174/1570179411666140806005614]
[28]
Nikpassand, M.; Zare, L.; Mousavi, M.R. Comparative study for the aqeous synthesis of new generation of diindolylmethanes using L-Proline, K10 and Nano-Fe3O4 under ultrasound irradiation. Lett. Org. Chem., 2012, 9, 375-381.
[http://dx.doi.org/10.2174/157017812801264719]
[29]
Fekri, L.Z.; Maleki, R. KIT‐6 mesoporous silica‐coated magnetite nanoparticles: a highly efficient and easily reusable catalyst for the synthesis of benzo[d]imidazole derivatives. J. Heterocycl. Chem., 2017, 54, 1167-1171.
[http://dx.doi.org/10.1002/jhet.2686]
[29]
Fekri, L.Z.; Maleki, R. KIT‐6 mesoporous silica‐coated magnetite nanoparticles: a highly efficient and easily reusable catalyst for the synthesis of benzo[d]imidazole derivatives. J. Heterocycl. Chem., 2017, 54, 1167-1171.
[http://dx.doi.org/10.1002/jhet.2686]
[31]
Zare, L.; Mahmoodi, N.O.; Yahyazadeh, A.; Mamaghani, M.; Tabatabaeian, K. An efficient chemo-and regioselective three-component synthesis of pyridazinones and phthalazinones using activated KSF. Chin. Chem. Lett., 2010, 21, 538-541.
[http://dx.doi.org/10.1016/j.cclet.2009.11.032]
[32]
L.; Nikpassand, M.; Pourmirzajani, S.; Aghazadeh, B. Synthesis and characterization of amino glucose-functionalized silica-coated NiFe2O4 nanoparticles: A heterogeneous, new and magnetically separable catalyst for the solvent-free synthesis of pyrano [3, 2-c] chromen-5 (4H)-ones. RSC Advances, 2018, 8, 22313-22320.
[http://dx.doi.org/10.1039/C8RA02572J]
[33]
L.; Nikpassand, M.; Pourmirzajani, S.; Aghazadeh, B. Synthesis and characterization of amino glucose-functionalized silica-coated NiFe2O4 nanoparticles: A heterogeneous, new and magnetically separable catalyst for the solvent-free synthesis of pyrano [3, 2-c] chromen-5 (4H)-ones. RSC Advances, 2018, 8, 22313-22320.
[http://dx.doi.org/10.1039/C8RA02572J]
[34]
Fekri, L.Z.; Nikpassand, M.; Khakshoor, S.N. Green, effective and chromatography free synthesis of benzoimidazo [1, 2-a] pyrimidine and tetrahydrobenzo [4, 5] imidazo [1, 2-d] quinazolin-1 (2H)-one and their pyrazolyl moiety using Fe3O4@ SiO2@ L-proline reusable catalyst in aqueous media. J. Org. Chem., 2019, 894, 18-27.
[http://dx.doi.org/10.1016/j.jorganchem.2019.05.004]
[35]
Zare Fekri, L.; Nikpassand, M. Ultrasound-promoted Friedel-Crafts acylation of arenes and cyclic anhydrides catalyzed by ionic liquid of [bmim]Br/AlCl3. Russ. J. Gen. Chem., 2014, 84, 1825-1829.
[http://dx.doi.org/10.1134/S107036321409031X]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy