Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Organoboron Compounds in Visible Light-driven Photoredox Catalysis

Author(s): Tomasz Kliś* and Marcin Kublicki

Volume 25, Issue 9, 2021

Published on: 25 February, 2021

Page: [994 - 1027] Pages: 34

DOI: 10.2174/1385272825666210225103418

Price: $65

Abstract

The increasing importance of visible light photoredox catalysis as a powerful strategy for the activation of small molecules require the development of new effective radical sources and photocatalysts. The unique properties of organoboron compounds have contributed significantly to the rapid progress of photocatalysis. Since the first work on the topic in 2005, many researchers have appreciated the role of boron-containing compounds in photocatalysis, and this is reflected in several publications. In this review, we highlight the utility of organoboron compounds in various photocatalytic reactions enabling the construction of carbon- carbon and carbon-heteroatom bonds. The dual role of organoboron compounds in photocatalysis is highlighted by their applications as reactants and as well as organic photocatalysts.

Keywords: Photocatalysis, radicals, alkyltrifluoroborates, alkoxyorganoboranes, boronic acids, borohydrides, BODPIY.

Graphical Abstract

[1]
(a)Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev., 2013, 113(7), 5322-5363.
[http://dx.doi.org/10.1021/cr300503r] [PMID: 23509883]
(b)Xuan, J.; Xiao, W-J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed. Engl., 2012, 51(28), 6828-6838.
[http://dx.doi.org/10.1002/anie.201200223] [PMID: 22711502]
(c)Tóth, B.L.; Tischler, O.; Novák, Z. Recent advances in dual transition metal-visible light photoredox catalysis. Tetrahedron Lett., 2016, 57, 4505-4513.
[http://dx.doi.org/10.1016/j.tetlet.2016.08.081]
(d)Shaw, M.H.; Twilton, J.; MacMillan, D.W.C. Photoredox catalysis in organic chemistry. J. Org. Chem., 2016, 81(16), 6898-6926.
[http://dx.doi.org/10.1021/acs.joc.6b01449] [PMID: 27477076]
(e)Busch, J.; Knoll, D.M.; Zippel, C.H.; Bräse, S.; Bizzarri, C. Metal-supported and -assisted stereoselective cooperative photoredox catalysis. Dalton Trans., 2019, 48, 15338-15357.
[http://dx.doi.org/10.1039/C9DT02094B] [PMID: 31573576]
(f)Staveness, D.; Bosque, I.; Stephenson, C.R.J. Free radical chemistry enabled by visible light-induced electron transfer. Acc. Chem. Res., 2016, 49(10), 2295-2306.
[http://dx.doi.org/10.1021/acs.accounts.6b00270] [PMID: 27529484]
(g)Lantano, B.; Torvisoa, M.R.; Bonesi, S.M.; Barata-Vallejoa, S.; Postigo, A. Late-stage electron-catalyzed perfluoroalkylation of coumarine derivatives - thermal fluoroalkyl radical production from sodium perfluoroalkyl sulfinate salts. Coord. Chem. Rev., 2015, 285, 76-108.
[http://dx.doi.org/10.1016/j.jfluchem.2017.03.005]
(h)Kancherla, R.; Muralirajan, K.; Sagadevan, A.; Rueping, M. Visible light-induced excited-state transition-metal catalysis. Trends Chem., 2019, 1(5), 510-523.
[http://dx.doi.org/10.1016/j.trechm.2019.03.012]
(i)McAtee, R.C.; McClain, E.J.; Stephenson, C.R.J. Illuminating photoredox catalysis. Trends Chem., 2019, 1(1), 111-125.
[http://dx.doi.org/10.1016/j.trechm.2019.01.008]
(j)Guo, J.J.; Hu, A.; Zuo, Z. Photocatalytic alkoxy radical-mediated transformations. Tetrahedron Lett., 2018, 59, 2103-2111.
[http://dx.doi.org/10.1016/j.tetlet.2018.04.060]
(k)Lee, K.N.; Lee, J.W.; Ngai, M.Y. Recent development of catalytic trifluoromethoxylation reactions. Tetrahedron, 2018, 74(50), 7127-7135.
[http://dx.doi.org/10.1016/j.tet.2018.09.020] [PMID: 30906076]
(l)Courant, T.; Masson, G. Recent progress in visible-light photoredox-catalyzed intermolecular 1,2-difunctionalization of double bonds via an ATRA-type mechanism. J. Org. Chem., 2016, 81(16), 6945-6952.
[http://dx.doi.org/10.1021/acs.joc.6b01058] [PMID: 27323289]
(m)Skubi, K.L.; Blum, T.R.; Yoon, T.P. Dual catalysis strategies in photochemical synthesis. Chem. Rev., 2016, 116(17), 10035-10074.
[http://dx.doi.org/10.1021/acs.chemrev.6b00018] [PMID: 27109441]
(n)Zhanga, M.; Zhu, Ch.; Ye, L.W. Recent advances in dual visible light photoredox and gold-catalyzed reactions. Synthesis, 2017, 49(06), 1150-1157.
[http://dx.doi.org/10.1055/s-0036-1588365]
(o)Lang, X.; Zhao, J.; Chen, X. Cooperative photoredox catalysis. Chem. Soc. Rev., 2016, 45(11), 3026-3038.
[http://dx.doi.org/10.1039/C5CS00659G] [PMID: 27094803]
[2]
(a)Tucker, J.W.; Stephenson, C.R.J. Shining light on photoredox catalysis: theory and synthetic applications. J. Org. Chem., 2012, 77(4), 1617-1622.
[http://dx.doi.org/10.1021/jo202538x] [PMID: 22283525]
(b)Ren, X.; Giesen, D.J.; Rajeswaran, M.; Madaras, M. Synthesis, characterization, and physical properties of cyclometalated iridium(III) complexes with 2-phenylthiophene or 2-phenylfuran ligands. Organometallics, 2009, 28, 6079-6089.
[http://dx.doi.org/10.1021/om9006246]
(c)Hironaka, K.; Fukuzumi, S.; Tanaka, T. Tris(bipyridyl)-ruthenium(II)-photosensitized dihydronicotinamide with benzyl bromide. J. Chem. Soc. Perkin Trans., 1984, II, 1705-1708.
[http://dx.doi.org/10.1039/p29840001705]
(d)Jing, B.; Zhang, M.; Shen, T. An unusual photosensitizer: dyad of eosin-tris(2,2′-bipyridine)Ru(II). Org. Lett., 2003, 5(20), 3709-3711.
[http://dx.doi.org/10.1021/ol0353924] [PMID: 14507211]
(e)Angerani, S.; Winssinger, N. Visible light photoredox catalysis using ruthenium complexes in chemical biology. Chemistry, 2019, 25(27), 6661-6672.
[http://dx.doi.org/10.1002/chem.201806024] [PMID: 30689234]
(f)Wallentin, C-J.; Nguyen, J.D.; Finkbeiner, P.; Stephenson, C.R.J. Visible light-mediated atom transfer radical addition via oxidative and reductive quenching of photocatalysts. J. Am. Chem. Soc., 2012, 134(21), 8875-8884.
[http://dx.doi.org/10.1021/ja300798k] [PMID: 22486313]
(g)Nguyen, J.D.; Tucker, J.W.; Konieczynska, M.D.; Stephenson, C.R.J. Intermolecular atom transfer radical addition to olefins mediated by oxidative quenching of photoredox catalysts. J. Am. Chem. Soc., 2011, 133(12), 4160-4163.
[http://dx.doi.org/10.1021/ja108560e] [PMID: 21381734]
[3]
(a)Romero, N.A.; Nicewicz, D.A. Organic photoredox catalysis. Chem. Rev., 2016, 116(17), 10075-10166.
[http://dx.doi.org/10.1021/acs.chemrev.6b00057] [PMID: 27285582]
(b)Zhou, M-D.; Peng, Z.; Li, L.; Wang, H. Visible-light-promoted organic dye catalyzed perfluoroalkylation of hydrazones under mild conditions. Tetrahedron Lett., 2019, 60151124
[http://dx.doi.org/10.1016/j.tetlet.2019.151124]
(c)Tiwari, D.P.; Dabral, S.; Wen, J.; Wiesenthal, J.; Terhorst, S.; Bolm, C. Organic dye-catalyzed atom transfer radical addition−elimination (ATRE) reaction for the synthesis of perfluoroalkylated alkenes. Org. Lett., 2017, 19(16), 4295-4298.
[http://dx.doi.org/10.1021/acs.orglett.7b01952] [PMID: 28766948]
(d)Xiang, M.; Xin, Z.K.; Chen, B.; Tung, C.H.; Wu, L-Z. Exploring the reducing ability of organic dye (Acr+-Mes) for fluorination and oxidation of benzylic C(sp3)−H bonds under visible light irradiation. Org. Lett., 2017, 19(11), 3009-3012.
[http://dx.doi.org/10.1021/acs.orglett.7b01270] [PMID: 28530821]
(e)Margrey, K.A.; Nicewicz, D.A. A general approach to catalytic alkene anti-Markovnikov hydrofunctionalization reactions via acridinium photoredox catalysis. Acc. Chem. Res., 2016, 49(9), 1997-2006.
[http://dx.doi.org/10.1021/acs.accounts.6b00304] [PMID: 27588818]
(f)Joshi-Pangu, A.; Lévesque, F.; Roth, H.G.; Oliver, S.F.; Campeau, L-Ch.; Nicewicz, D.; DiRocco, D.A. Acridinium-based photocatalysts: a sustainable option in photoredox catalysis. J. Org. Chem., 2016, 81(16), 7244-7249.
[http://dx.doi.org/10.1021/acs.joc.6b01240] [PMID: 27454776]
[4]
Pelter, A.; Smith, K.; Brown, H.C. Borane reagents; Academic Press: London, 1988.
[5]
Matsui, J.K.; Lang, S.B.; Heitz, D.R.; Molander, G.A. Photoredox-mediated routes to radicals: the value of catalytic radical generation in synthetic methods development. ACS Catal., 2017, 7(4), 2563-2575.
[http://dx.doi.org/10.1021/acscatal.7b00094] [PMID: 28413692]
[6]
(a)Duan, K.; Yan, X.; Liu, Y.; Li, Z. Recent progress in the radical chemistry of alkylborates and alkylboronates., Adv. Synth. Catal., 2018, 360(15), 2781-2795..
[http://dx.doi.org/10.1002/adsc.201701626]
(b)Duret, G.; Quinlan, R.; Bisseret, P.; Blanchard, N. Boron chemistry in a new light. Chem. Sci. (Camb.), 2015, 6(10), 5366-5382.
[http://dx.doi.org/10.1039/C5SC02207J] [PMID: 28717443]
[7]
(a)Stafford, S.L. The vinyltrifluoroborate anion., Can. J. Chem., 1963, 41(3), 807-808.
[http://dx.doi.org/10.1139/v63-113]
(b)Bir, G.; Schacht, W.; Kaufmann, D. Eine allgemeine, einfache und schonende synthesemethode für fluoroorganylborane. J. Organomet. Chem., 1988, 340, 267-271.
[http://dx.doi.org/10.1016/0022-328X(88)80020-2]
[8]
Sorin, G.; Martinez Mallorquin, R.; Contie, Y.; Baralle, A.; Malacria, M.; Goddard, J-P.; Fensterbank, L. Oxidation of alkyl trifluoroborates: an opportunity for tin-free radical chemistry. Angew. Chem. Int. Ed. Engl., 2010, 49(46), 8721-8723.
[http://dx.doi.org/10.1002/anie.201004513] [PMID: 20931642]
[9]
Pan, Y.; Jia, K.; Chen, Y.; Chen, Y. Investigations of alkynylbenziodoxole derivatives for radical alkynylations in photoredox catalysis. Beilstein J. Org. Chem., 2018, 14, 1215-1221.
[http://dx.doi.org/10.3762/bjoc.14.103] [PMID: 29977389]
[10]
Molander, G.A.; McKee, S.A. Copper-catalyzed β-boration of α,β-unsaturated carbonyl compounds with tetrahydroxydiborane. Org. Lett., 2011, 13(17), 4684-4687.
[http://dx.doi.org/10.1021/ol201900d] [PMID: 21819097]
[11]
Darses, S.; Genet, J-P. Potassium organotrifluoroborates: new perspectives in organic synthesis. Chem. Rev., 2008, 108(1), 288-325.
[http://dx.doi.org/10.1021/cr0509758] [PMID: 18095714]
[12]
Yasu, Y.; Koike, T.; Akita, M. Visible light-induced selective generation of radicals from organoborates by photoredox catalysis. Adv. Synth. Catal., 2012, 354(18), 3414-3420.
[http://dx.doi.org/10.1002/adsc.201200588]
[13]
Chinzei, T.; Miyazawa, K.; Yasu, Y.; Koike, T.; Akita, M. Redox economical radical generation from organoborates and carboxylic acids by organic photoredox catalysis. RSC Adv, 2015, 5, 21297-21300.
[http://dx.doi.org/10.1039/C5RA01826A]
[14]
Yatham, V.R.; Shen, Y.; Martin, R. Catalytic intermolecular dicarbofunctionalization of styrenes with CO2 and radical precursors. Angew. Chem. Int. Ed. Engl., 2017, 56(36), 10915-10919.
[http://dx.doi.org/10.1002/anie.201706263] [PMID: 28700104]
[15]
Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. Visible-light-induced chemoselective deboronative alkynylation under biomolecule-compatible conditions. J. Am. Chem. Soc., 2014, 136(6), 2280-2283.
[http://dx.doi.org/10.1021/ja413208y] [PMID: 24490981]
[16]
Huang, H.; Jia, K.; Chen, Y. Hypervalent iodine reagents enable chemoselective deboronative/decarboxylative alkenylation by photoredox catalysis. Angew. Chem. Int. Ed. Engl., 2015, 54(6), 1881-1884.
[http://dx.doi.org/10.1002/anie.201410176] [PMID: 25504966]
[17]
Heitz, D.R.; Rizwan, K.; Molander, G.A. Visible-light-mediated alkenylation, allylation and cyanation of potassium alkyltrifluoroborates with organic photoredox catalysts. J. Org. Chem., 2016, 81(16), 7308-7313.
[http://dx.doi.org/10.1021/acs.joc.6b01207] [PMID: 27336284]
[18]
Yi, J.; Badir, S.O.; Alam, R.; Molander, G.A. Photoredox-catalyzed multicomponent Petasis reaction with alkyltrifluoroborates. Org. Lett., 2019, 21(12), 4853-4858.
[http://dx.doi.org/10.1021/acs.orglett.9b01747] [PMID: 31145628]
[19]
Ye, H.; Ye, Q.; Cheng, D.; Li, X.; Xu, X. Regioselective oxidative ring opening of cyclopropenyl carboxylates by visible photoredox catalysis. Tetrahedron Lett., 2018, 59(26), 2046-2049.
[http://dx.doi.org/10.1016/j.tetlet.2018.04.035]
[20]
Roseau, M.; Dhaouadi, N.; Rolando, Ch.; Chausset-Boissarie, L.; Penhoat, M. Continous photocatalyzed aerobic oxidation of benzylic organotrifluoroborates to benzaldehydes under Taylor flow conditions. J. Flow Chem., 2020, 10, 347-352.
[http://dx.doi.org/10.1007/s41981-019-00053-w]
[21]
Ghiazza, C.; Khrouz, L.; Billard, T.; Monnereau, C.; Tlili, A. Visible light-promoted fluoroalkylselenolation: toward the reactivity of unsaturated compounds. Eur. J. Org. Chem., 2020, 2020(10), 1559-1566.
[http://dx.doi.org/10.1002/ejoc.201901063]
[22]
Kublicki, M.; Dąbrowski, M.; Durka, K.; Kliś, T.; Serwatowski, J.; Woźniak, K. Visible light-promoted alkylation of unsaturated MIDA boronates using Ru(bpy)3Cl2 as the photoredox catalyst. Tetrahedron Lett., 2017, 58(22), 2162-2165.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.075]
[23]
Kublicki, M.; Durka, K.; Kliś, T. Merging photocatalysis with allylboration. The photochemical perfluoroalkylation of unsaturated potassium alkyltrifluoroborates and synthesis of fluorinated alcohols. Tetrahedron Lett., 2018, 59(27), 2700-2703.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.086]
[24]
Tellis, J.C.; Primer, D.N.; Molander, G.A. Dual catalysis. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science, 2014, 345(6195), 433-436.
[http://dx.doi.org/10.1126/science.1253647] [PMID: 24903560]
[25]
Yamashita, Y.; Tellis, J.C.; Molander, G.A. Protecting group-free, selective cross-coupling of alkyltrifluoroborates with borylated aryl bromides via photoredox/nickel dual catalysis. Proc. Natl. Acad. Sci. USA, 2015, 112(39), 12026-12029.
[http://dx.doi.org/10.1073/pnas.1509715112] [PMID: 26371299]
[26]
Tellis, J.C.; Amani, J.; Molander, G.A. Single-electron transmetalation: photoredox/nickel dual catalytic cross-coupling of secondary alkyl β-trifluoroboratoketones and -esters with aryl bromides. Org. Lett., 2016, 18(12), 2994-2997.
[http://dx.doi.org/10.1021/acs.orglett.6b01357] [PMID: 27265019]
[27]
Karimi-Nami, R.; Tellis, J.C.; Molander, G.A. Single-electron transmetalation: protecting-group-independent synthesis of secondary benzylic alcohol derivatives via photoredox/nickel dual catalysis. Org. Lett., 2016, 18(11), 2572-2575.
[http://dx.doi.org/10.1021/acs.orglett.6b00911] [PMID: 27218884]
[28]
El Khatib, M.; Serafim, R.A.M.; Molander, G.A. α-Arylation/heteroarylation of chiral α-aminomethyltrifluoroborates via synergistic iridium photoredox/nickel cross-coupling catalysis. Angew. Chem. Int. Ed. Engl., 2016, 55(1), 254-258.
[http://dx.doi.org/10.1002/anie.201506147] [PMID: 26592731]
[29]
Huo, H.; Harms, K.; Meggers, E. Catalytic, enantioselective addition of alkyl radicals to alkenes via visible-light-activated photoredox catalysis with a chiral rhodium complex. J. Am. Chem. Soc., 2016, 138(22), 6936-6939.
[http://dx.doi.org/10.1021/jacs.6b03399] [PMID: 27218134]
[30]
Stache, E.; Rovis, T.; Doyle, A. Dual nickel- and photoredox-catalyzed enantioselective desymmetrization of cyclic meso-anhydrides. Angew. Chem., 2017, 129(13), 3733-3737.
[http://dx.doi.org/10.1002/ange.201700097]
[31]
Matsui, J.K.; Molander, G.A. Direct α-arylation/heteroarylation of 2-trifluoroboratochromanones via photoredox/nickel dual catalysis. Org. Lett., 2017, 19(3), 436-439.
[http://dx.doi.org/10.1021/acs.orglett.6b03448] [PMID: 28078893]
[32]
Amani, J.; Molander, G.A. Synergistic photoredox/nickel coupling of acyl chlorides with secondary alkyltrifluoroborates: dialkyl ketone synthesis. J. Org. Chem., 2017, 82(3), 1856-1863.
[http://dx.doi.org/10.1021/acs.joc.6b02897] [PMID: 28093913]
[33]
Primer, D.N.; Molander, G.A. Enabling the cross-coupling of tertiary organoboron nucleophiles through radical-mediated alkyl transfer. J. Am. Chem. Soc., 2017, 139(29), 9847-9850.
[http://dx.doi.org/10.1021/jacs.7b06288] [PMID: 28719197]
[34]
Yu, X-Y.; Zhou, Q-Q.; Wang, P-Z.; Liao, C-M.; Chen, J-R.; Xiao, W-J. Dual photoredox/nickel-catalyzed regioselective cross-coupling of 2-arylaziridines and potassium benzyltrifluoroborates: synthesis of β-substituted amines. Org. Lett., 2018, 20(2), 421-424.
[http://dx.doi.org/10.1021/acs.orglett.7b03747] [PMID: 29314848]
[35]
Yan, H.; Hou, Z-W.; Xu, H-Ch. Photoelectrochemical C-H alkylation of heteroarenes with organotrifluoroborates. Angew. Chem. Int. Ed. Engl., 2019, 58(14), 4592-4595.
[http://dx.doi.org/10.1002/anie.201814488] [PMID: 30650241]
[36]
Shu, C.; Noble, A.; Aggarwal, V.K. Photoredox-catalyzed cyclobutene synthesis by a deboronative radical addition-polar cyclization cascade. Angew. Chem. Int. Ed. Engl., 2019, 58(12), 3870-3874.
[http://dx.doi.org/10.1002/anie.201813917] [PMID: 30681266]
[37]
Sato, Y.; Miyamoto, Y.; Sumida, Y.; Hosoya, T.; Ohmiya, H. Boracene-based alkylborate enabled Ni/Ir hybrid catalysis. Org. Biomol. Chem., 2020, 18(34), 6598-6601.
[http://dx.doi.org/10.1039/D0OB01610A] [PMID: 32812987]
[38]
Giese, B. Formation of CC bonds by addition of free radicals to alkenes. Angew. Chem. Int. Ed. Engl., 1983, 22(10), 753-764.
[http://dx.doi.org/10.1002/anie.198307531]
[39]
Kaiser, D.; Noble, A.; Fasano, V.; Aggarwal, V.K. 1,2-boron shifts of β-boryl radicals generated from bis-boronic esters using photoredox catalysis. J. Am. Chem. Soc., 2019, 141(36), 14104-14109.
[http://dx.doi.org/10.1021/jacs.9b07564] [PMID: 31461622]
[40]
Lima, F.; Kabeshov, M.A.; Tran, D.N.; Battilocchio, C.; Sedelmeier, J.; Sedelmeier, G.; Schenkel, B.; Ley, S.V. Visible light activation of boronic esters enables efficient photoredox C(sp2)-C(sp3) cross-couplings in flow. Angew. Chem. Int. Ed. Engl., 2016, 55(45), 14085-14089.
[http://dx.doi.org/10.1002/anie.201605548] [PMID: 27709749]
[41]
Silvi, M.; Sandford, C.; Aggarwal, V.K. Merging photoredox with 1,2-metallate rearrangements: the photochemical alkylation of vinyl boronate complexes. J. Am. Chem. Soc., 2017, 139(16), 5736-5739.
[http://dx.doi.org/10.1021/jacs.7b02569] [PMID: 28402109]
[42]
Davenport, R.; Silvi, M.; Noble, A.; Hosni, Z.; Fey, N.; Aggarwal, V.K. Visible light-driven strain-increase ring contraction allows the synthesis of cyclobutyl boronic esters. Angew. Chem. Int. Ed. Engl., 2020, 59(16), 6525-6528.
[http://dx.doi.org/10.1002/anie.201915409] [PMID: 31912963]
[43]
Zou, Y-Q.; Chen, J-R.; Liu, X-P.; Lu, L-Q.; Davis, R.L.; Jørgensen, K.A.; Xiao, W-J. Highly efficient aerobic oxidative hydroxylation of arylboronic acids: photoredox catalysis using visible light. Angew. Chem. Int. Ed. Engl., 2012, 51(3), 784-788.
[http://dx.doi.org/10.1002/anie.201107028] [PMID: 22161996]
[44]
Yang, H-M.; Liu, M-L.; Tu, J-W.; Miura-Stempel, E.; Campbell, M.G.; Chuang, G.J. Bimetallic photoredox catalysis: visible light promoted aerobic hydroxylation of boronic acids with a dirhodium(II) catalyst. J. Org. Chem., 2020, 85(4), 2040-2047.
[http://dx.doi.org/10.1021/acs.joc.9b02777] [PMID: 31886669]
[45]
Chen, Y.; Ni, N.; Cheng, D.; Xu, X. The coupling of boronic acids with α-(trifluoromethyl)styrenes by Lewis base/photoredox dual catalysis. Tetrahedron Lett., 2020, 61(43)152425
[http://dx.doi.org/10.1016/j.tetlet.2020.152425]
[46]
Liu, M.; Huang, H.; Chen, Y. Cyclic iodine reagents enable allylic alcohols for alkyl boronate addition/rearrangement by photoredox catalysis. Chin. J. Chem., 2018, 36(12), 1209-1212.
[http://dx.doi.org/10.1002/cjoc.201800461]
[47]
Ye, Y.; Sanford, M.S. Ye., Y. Merging visible-light photocatalysis and transition-metal catalysis in the copper-catalyzed trifluoromethylation of boronic acids with CF3I. J. Am. Chem. Soc., 2012, 134(22), 9034-9037.
[http://dx.doi.org/10.1021/ja301553c] [PMID: 22624669]
[48]
Yu, J.; Zhang, L.; Yan, G. Metal-free, visible light-induced borylation of aryldiazonium salts: a simple and green synthetic route to arylboronates. Adv. Synth. Catal., 2012, 354(14-15), 2625-2628.
[http://dx.doi.org/10.1002/adsc.201200416]
[49]
Hu, D.; Wang, L.; Li, P. Decarboxylative borylation of aliphatic esters under visible-light photoredox conditions. Org. Lett., 2017, 19(10), 2770-2773.
[http://dx.doi.org/10.1021/acs.orglett.7b01181] [PMID: 28474531]
[50]
Teders, M.; Gómez-Suárez, A.; Pitzer, L.; Hopkinson, M.N.; Glorius, F. Diverse visible-light-promoted functionalization of benzotriazoles inspired by mechanism-based luminescence screening. Angew. Chem. Int. Ed. Engl., 2017, 56(3), 902-906.
[http://dx.doi.org/10.1002/anie.201609393] [PMID: 28000346]
[51]
Zhou, N.; Yuan, X-A.; Zhao, Y.; Xie, J.; Zhu, C. Synergistic photoredox catalysis and organocatalysis for inverse hydroboration of imines. Angew. Chem. Int. Ed. Engl., 2018, 57(15), 3990-3994.
[http://dx.doi.org/10.1002/anie.201800421] [PMID: 29446188]
[52]
Zhu, C.; Dong, J.; Liu, X.; Gao, L.; Zhao, Y.; Xie, J.; Li, S.; Zhu, C. Photoredox-controlled β-regioselective radical hydroboration of activated alkenes with NHC-boranes. Angew. Chem. Int. Ed. Engl., 2020, 59(31), 12817-12821.
[http://dx.doi.org/10.1002/anie.202005749] [PMID: 32339397]
[53]
Huang, Y.S.; Wang, J.; Zheng, W.X.; Zhang, F.L.; Yu, Y.J.; Zheng, M.; Zhou, X.; Wang, Y-F. Regioselective radical hydroboration of electron-deficient alkenes: synthesis of α-boryl functionalized molecules. Chem. Commun. (Camb.), 2019, 55(79), 11904-11907.
[http://dx.doi.org/10.1039/C9CC06506G] [PMID: 31528910]
[54]
Xia, P.J.; Ye, Z-P.; Hu, Y-Z.; Xiao, J-A.; Chen, K.; Xiang, H-Y.; Chen, X.Q.; Yang, H. Photocatalytic C-F bond borylation of polyfluoroarenes with NHC-boranes. Org. Lett., 2020, 22(5), 1742-1747.
[http://dx.doi.org/10.1021/acs.orglett.0c00020] [PMID: 32052975]
[55]
Tian, Y-M.; Guo, X-N.; Kuntze-Fechner, M.W.; Krummenacher, I.; Braunschweig, H.; Radius, U.; Steffen, A.; Marder, T.B. Selective photocatalytic C-F borylation of polufluoroarenes by Rh/Ni dual catalysis providing valuable fluorinated arylboronate esters. J. Am. Chem. Soc., 2018, 140(50), 17612-17623.
[http://dx.doi.org/10.1021/jacs.8b09790] [PMID: 30474979]
[56]
Loudet, A.; Burgess, K. BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem. Rev., 2007, 107(11), 4891-4932.
[http://dx.doi.org/10.1021/cr078381n] [PMID: 17924696]
[57]
Sundararajan, C.; Falvey, D.E. Photorelease of carboxylic acids, amino acids, and phosphates from N-alkylpicolinium esters using photosensitization by high wavelength laser dyes. J. Am. Chem. Soc., 2005, 127(22), 8000-8001.
[http://dx.doi.org/10.1021/ja050760f] [PMID: 15926809]
[58]
Guo, S.; Tao, R.; Zhao, J. Photoredox catalytic organic reactions promoted with broadband visible light-absorbing Bodipy-iodo-aza-Bodipy triad photocatalyst. RSC Advances, 2014, 4(68), 36131-36139.
[http://dx.doi.org/10.1039/C4RA03631J]
[59]
Li, W.; Li, L.; Xiao, H.; Qi, R.; Huang, Y.; Xie, Z.; Jing, X.; Zhang, H. Iodo-BODIPY: a visible-light-driven, highly efficient and photostable metal-free organic photocatalyst. RSC Adv, 2013, 3(32), 13417-13421.
[http://dx.doi.org/10.1039/c3ra40932e]
[60]
Huang, L.; Zhao, J.; Guo, S.; Zhang, C.; Ma, J. Bodipy derivatives as organic triplet photosensitizers for aerobic photoorganocatalytic oxidative coupling of amines and photooxidation of dihydroxylnaphthalenes. J. Org. Chem., 2013, 78(11), 5627-5637.
[http://dx.doi.org/10.1021/jo400769u] [PMID: 23668289]
[61]
Huang, L.; Zhao, J. Iodo-Bodipys as visible-light-absorbing dual-functional photoredox catalysts for preparation of highly functionalized organic compounds by formation of C–C bonds via reductive and oxidative quenching catalytic mechanisms. RSC Adv, 2013, 3(45), 23377-23388.
[http://dx.doi.org/10.1039/c3ra43299h]
[62]
Guo, S.; Tao, R.; Zhao, J. Photoredox catalytic organic reactions promoted with broadband visible light-absorbing Bodipyiodo-aza-Bodipy triad photocatalyst. RSC Adv, 2014, 4(68), 36131-36139.
[63]
Letsinger, R.L.; Skoog, I. Organoboron compounds. IV. Aminoethyldiarylborinates. J. Am. Chem. Soc., 1955, 77, 2491-2494.
[http://dx.doi.org/10.1021/ja01614a039]
[64]
(a)Jäkle, F. Advances in the synthesis of organoborane polymers for optical, electronic, and sensory applications. Chem. Rev., 2010, 110(7), 3985-4022.
[http://dx.doi.org/10.1021/cr100026f] [PMID: 20536123]
(b)Tokoro, Y.; Nagai, A.; Kokado, K.; Chujo, Y. Synthesis of organoboron quinoline-8-thiolate and quinoline-8-selenolate complexes and their incorporation into the π-conjugated polymer main-chain. Macromolecules, 2009, 42(8), 2988-2993.
[http://dx.doi.org/10.1021/ma900008m]
(c)Wesela-Bauman, G.; Ciećwierz, P.; Durka, K.; Luliński, S.; Serwatowski, J.; Woźniak, K. Heteroleptic (2-fluoro-3-pyridyl)arylborinic 8-oxyquinolinates for the potential application in organic light-emitting devices. Inorg. Chem., 2013, 52(19), 10846-10859.
[http://dx.doi.org/10.1021/ic400729t] [PMID: 24070324]
(d)Durka, K.; Głowacki, I.; Luliński, S.; Łuszczynska, B.; Smętek, J.; Szczepanik, P.; Serwatowski, J.; Wawrzyniak, U.E.; Wesela-Bauman, G.; Witkowska, E.; Wiosna-Sałyga, G.; Wozniak, K. Efficient 8-oxyquinolinato emitters based on a 9,10-dihydro-9,10-diboraanthracene scaffold for applications in optoelectronic devices. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3(6), 1354-1364.
[http://dx.doi.org/10.1039/C4TC02350A]
[65]
(a)Cui, Y.; Liu, Q-D.; Bai, D-R.; Jia, W-L.; Tao, Y.; Wang, S. Organoboron compounds with an 8-hydroxyquinolato chelate and its derivatives: substituent effects on structures and luminescence. Inorg. Chem., 2005, 44(3), 601-609.
[http://dx.doi.org/10.1021/ic0489746] [PMID: 15679390]
(b)Kappaun, S.; Rentenberger, S.; Pogantsch, A.; Zojer, E.; Mereiter, K.; Trimmel, G.; Saf, R.; Möller, K.C.; Stelzer, F.; Slugovc, C. Organoboron quinolinates with extended conjugated chromophores: synthesis, structure and electronic and electroluminescent properties., Chem. Mater., 2006, 18(15), 3539-3547..
[http://dx.doi.org/10.1021/cm060720q]
(c)Teng, Y.L.; Kan, Y.H.; Su, Z.M.; Liao, Y.; Yang, S.Y.; Wang, R.S. Time-dependent density functional theory study on electronic and spectroscopic properties for Ph2BQ and its complexes. Theor. Chem. Acc., 2007, 117, 1-5.
[http://dx.doi.org/10.1007/s00214-005-0025-9]
[66]
Durka, K.; Górska, A.; Jankowski, P.; Kliś, T.; Kublicki, M.; Serwatowski, J.; Urban, M.; Wesela-Bauman, G.; Woźniak, K. Synthesis, characterization and photoluminescence of 8-oxyquinolinato organoboron complexes derived from pyrazole. Tetrahedron Lett., 2017, 58(12), 1185-1189.
[http://dx.doi.org/10.1016/j.tetlet.2017.02.022]
[67]
Kublicki, M.; Ogonowski, B.; Wieczorkowski, D.; Durka, K.; Kliś, T. 1,4-phenylene-bis-((1-methyl-1-H-pyrazol-5-yl)boronic 8-oxyquinolinate) as a photoredox catalyst in the atom transfer radical addition of iodoperfluoroalkanes to alkenyl groups bearing organoboron compounds. Tetrahedron Lett., 2019, 60(29), 1918-1923.
[http://dx.doi.org/10.1016/j.tetlet.2019.06.032]
[68]
Zu, W.; Day, C.; Wei, L.; Jia, X.; Xu, L. Dual aminoquinolate diarylboron and nickel catalysed metallaphotoredox platform for carbon-oxygen bond construction. Chem. Commun. (Camb.), 2020, 56(59), 8273-8276.
[http://dx.doi.org/10.1039/D0CC03230A] [PMID: 32568331]
[69]
(a)Yamaguchi, S.; Akiyama, S.; Tamao, K. Tri-9-anthrylborane and its derivatives: new boron-containing π-electron systems with divergently extended π-conjugation through boron. J. Am. Chem. Soc., 2000, 122, 6335-6336.
[http://dx.doi.org/10.1021/ja994522u]
(b)Moon, J.; Moon, Y.K.; Park, D.D.; Choi, S.; You, Y.; Cho, E.J. Visible-light-induced trifluoromethylation of unactivated alkenes with tri(9-anthryl)borane as an organophotocatalyst. J. Org. Chem., 2019, 84(20), 12925-12932.
[http://dx.doi.org/10.1021/acs.joc.9b01624] [PMID: 31389697]
[70]
Durka, K.; Urban, M.; Dąbrowski, M.; Jankowski, P.; Kliś, T.; Luliński, S. Cationic and betaine-type boronated acridinium dyes: synthesis, characterization and photocatalytic activity. ACS Omega, 2019, 4(2), 2482-2492.
[http://dx.doi.org/10.1021/acsomega.8b03290] [PMID: 31459486]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy