Abstract
The increasing importance of visible light photoredox catalysis as a powerful strategy for the activation of small molecules require the development of new effective radical sources and photocatalysts. The unique properties of organoboron compounds have contributed significantly to the rapid progress of photocatalysis. Since the first work on the topic in 2005, many researchers have appreciated the role of boron-containing compounds in photocatalysis, and this is reflected in several publications. In this review, we highlight the utility of organoboron compounds in various photocatalytic reactions enabling the construction of carbon- carbon and carbon-heteroatom bonds. The dual role of organoboron compounds in photocatalysis is highlighted by their applications as reactants and as well as organic photocatalysts.
Keywords: Photocatalysis, radicals, alkyltrifluoroborates, alkoxyorganoboranes, boronic acids, borohydrides, BODPIY.
Graphical Abstract
[http://dx.doi.org/10.1021/cr300503r] [PMID: 23509883]
(b)Xuan, J.; Xiao, W-J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed. Engl., 2012, 51(28), 6828-6838.
[http://dx.doi.org/10.1002/anie.201200223] [PMID: 22711502]
(c)Tóth, B.L.; Tischler, O.; Novák, Z. Recent advances in dual transition metal-visible light photoredox catalysis. Tetrahedron Lett., 2016, 57, 4505-4513.
[http://dx.doi.org/10.1016/j.tetlet.2016.08.081]
(d)Shaw, M.H.; Twilton, J.; MacMillan, D.W.C. Photoredox catalysis in organic chemistry. J. Org. Chem., 2016, 81(16), 6898-6926.
[http://dx.doi.org/10.1021/acs.joc.6b01449] [PMID: 27477076]
(e)Busch, J.; Knoll, D.M.; Zippel, C.H.; Bräse, S.; Bizzarri, C. Metal-supported and -assisted stereoselective cooperative photoredox catalysis. Dalton Trans., 2019, 48, 15338-15357.
[http://dx.doi.org/10.1039/C9DT02094B] [PMID: 31573576]
(f)Staveness, D.; Bosque, I.; Stephenson, C.R.J. Free radical chemistry enabled by visible light-induced electron transfer. Acc. Chem. Res., 2016, 49(10), 2295-2306.
[http://dx.doi.org/10.1021/acs.accounts.6b00270] [PMID: 27529484]
(g)Lantano, B.; Torvisoa, M.R.; Bonesi, S.M.; Barata-Vallejoa, S.; Postigo, A. Late-stage electron-catalyzed perfluoroalkylation of coumarine derivatives - thermal fluoroalkyl radical production from sodium perfluoroalkyl sulfinate salts. Coord. Chem. Rev., 2015, 285, 76-108.
[http://dx.doi.org/10.1016/j.jfluchem.2017.03.005]
(h)Kancherla, R.; Muralirajan, K.; Sagadevan, A.; Rueping, M. Visible light-induced excited-state transition-metal catalysis. Trends Chem., 2019, 1(5), 510-523.
[http://dx.doi.org/10.1016/j.trechm.2019.03.012]
[http://dx.doi.org/10.1016/j.trechm.2019.01.008]
[http://dx.doi.org/10.1016/j.tetlet.2018.04.060]
[http://dx.doi.org/10.1016/j.tet.2018.09.020] [PMID: 30906076]
[http://dx.doi.org/10.1021/acs.joc.6b01058] [PMID: 27323289]
[http://dx.doi.org/10.1021/acs.chemrev.6b00018] [PMID: 27109441]
[http://dx.doi.org/10.1055/s-0036-1588365]
[http://dx.doi.org/10.1039/C5CS00659G] [PMID: 27094803]
[http://dx.doi.org/10.1021/jo202538x] [PMID: 22283525]
(b)Ren, X.; Giesen, D.J.; Rajeswaran, M.; Madaras, M. Synthesis, characterization, and physical properties of cyclometalated iridium(III) complexes with 2-phenylthiophene or 2-phenylfuran ligands. Organometallics, 2009, 28, 6079-6089.
[http://dx.doi.org/10.1021/om9006246]
(c)Hironaka, K.; Fukuzumi, S.; Tanaka, T. Tris(bipyridyl)-ruthenium(II)-photosensitized dihydronicotinamide with benzyl bromide. J. Chem. Soc. Perkin Trans., 1984, II, 1705-1708.
[http://dx.doi.org/10.1039/p29840001705]
(d)Jing, B.; Zhang, M.; Shen, T. An unusual photosensitizer: dyad of eosin-tris(2,2′-bipyridine)Ru(II). Org. Lett., 2003, 5(20), 3709-3711.
[http://dx.doi.org/10.1021/ol0353924] [PMID: 14507211]
(e)Angerani, S.; Winssinger, N. Visible light photoredox catalysis using ruthenium complexes in chemical biology. Chemistry, 2019, 25(27), 6661-6672.
[http://dx.doi.org/10.1002/chem.201806024] [PMID: 30689234]
(f)Wallentin, C-J.; Nguyen, J.D.; Finkbeiner, P.; Stephenson, C.R.J. Visible light-mediated atom transfer radical addition via oxidative and reductive quenching of photocatalysts. J. Am. Chem. Soc., 2012, 134(21), 8875-8884.
[http://dx.doi.org/10.1021/ja300798k] [PMID: 22486313]
(g)Nguyen, J.D.; Tucker, J.W.; Konieczynska, M.D.; Stephenson, C.R.J. Intermolecular atom transfer radical addition to olefins mediated by oxidative quenching of photoredox catalysts. J. Am. Chem. Soc., 2011, 133(12), 4160-4163.
[http://dx.doi.org/10.1021/ja108560e] [PMID: 21381734]
[http://dx.doi.org/10.1021/acs.chemrev.6b00057] [PMID: 27285582]
(b)Zhou, M-D.; Peng, Z.; Li, L.; Wang, H. Visible-light-promoted organic dye catalyzed perfluoroalkylation of hydrazones under mild conditions. Tetrahedron Lett., 2019, 60151124
[http://dx.doi.org/10.1016/j.tetlet.2019.151124]
(c)Tiwari, D.P.; Dabral, S.; Wen, J.; Wiesenthal, J.; Terhorst, S.; Bolm, C. Organic dye-catalyzed atom transfer radical addition−elimination (ATRE) reaction for the synthesis of perfluoroalkylated alkenes. Org. Lett., 2017, 19(16), 4295-4298.
[http://dx.doi.org/10.1021/acs.orglett.7b01952] [PMID: 28766948]
(d)Xiang, M.; Xin, Z.K.; Chen, B.; Tung, C.H.; Wu, L-Z. Exploring the reducing ability of organic dye (Acr+-Mes) for fluorination and oxidation of benzylic C(sp3)−H bonds under visible light irradiation. Org. Lett., 2017, 19(11), 3009-3012.
[http://dx.doi.org/10.1021/acs.orglett.7b01270] [PMID: 28530821]
(e)Margrey, K.A.; Nicewicz, D.A. A general approach to catalytic alkene anti-Markovnikov hydrofunctionalization reactions via acridinium photoredox catalysis. Acc. Chem. Res., 2016, 49(9), 1997-2006.
[http://dx.doi.org/10.1021/acs.accounts.6b00304] [PMID: 27588818]
(f)Joshi-Pangu, A.; Lévesque, F.; Roth, H.G.; Oliver, S.F.; Campeau, L-Ch.; Nicewicz, D.; DiRocco, D.A. Acridinium-based photocatalysts: a sustainable option in photoredox catalysis. J. Org. Chem., 2016, 81(16), 7244-7249.
[http://dx.doi.org/10.1021/acs.joc.6b01240] [PMID: 27454776]
[http://dx.doi.org/10.1021/acscatal.7b00094] [PMID: 28413692]
[http://dx.doi.org/10.1002/adsc.201701626]
(b)Duret, G.; Quinlan, R.; Bisseret, P.; Blanchard, N. Boron chemistry in a new light. Chem. Sci. (Camb.), 2015, 6(10), 5366-5382.
[http://dx.doi.org/10.1039/C5SC02207J] [PMID: 28717443]
[http://dx.doi.org/10.1139/v63-113]
(b)Bir, G.; Schacht, W.; Kaufmann, D. Eine allgemeine, einfache und schonende synthesemethode für fluoroorganylborane. J. Organomet. Chem., 1988, 340, 267-271.
[http://dx.doi.org/10.1016/0022-328X(88)80020-2]
[http://dx.doi.org/10.1002/anie.201004513] [PMID: 20931642]
[http://dx.doi.org/10.3762/bjoc.14.103] [PMID: 29977389]
[http://dx.doi.org/10.1021/ol201900d] [PMID: 21819097]
[http://dx.doi.org/10.1021/cr0509758] [PMID: 18095714]
[http://dx.doi.org/10.1002/adsc.201200588]
[http://dx.doi.org/10.1039/C5RA01826A]
[http://dx.doi.org/10.1002/anie.201706263] [PMID: 28700104]
[http://dx.doi.org/10.1021/ja413208y] [PMID: 24490981]
[http://dx.doi.org/10.1002/anie.201410176] [PMID: 25504966]
[http://dx.doi.org/10.1021/acs.joc.6b01207] [PMID: 27336284]
[http://dx.doi.org/10.1021/acs.orglett.9b01747] [PMID: 31145628]
[http://dx.doi.org/10.1016/j.tetlet.2018.04.035]
[http://dx.doi.org/10.1007/s41981-019-00053-w]
[http://dx.doi.org/10.1002/ejoc.201901063]
[http://dx.doi.org/10.1016/j.tetlet.2017.04.075]
[http://dx.doi.org/10.1016/j.tetlet.2018.05.086]
[http://dx.doi.org/10.1126/science.1253647] [PMID: 24903560]
[http://dx.doi.org/10.1073/pnas.1509715112] [PMID: 26371299]
[http://dx.doi.org/10.1021/acs.orglett.6b01357] [PMID: 27265019]
[http://dx.doi.org/10.1021/acs.orglett.6b00911] [PMID: 27218884]
[http://dx.doi.org/10.1002/anie.201506147] [PMID: 26592731]
[http://dx.doi.org/10.1021/jacs.6b03399] [PMID: 27218134]
[http://dx.doi.org/10.1002/ange.201700097]
[http://dx.doi.org/10.1021/acs.orglett.6b03448] [PMID: 28078893]
[http://dx.doi.org/10.1021/acs.joc.6b02897] [PMID: 28093913]
[http://dx.doi.org/10.1021/jacs.7b06288] [PMID: 28719197]
[http://dx.doi.org/10.1021/acs.orglett.7b03747] [PMID: 29314848]
[http://dx.doi.org/10.1002/anie.201814488] [PMID: 30650241]
[http://dx.doi.org/10.1002/anie.201813917] [PMID: 30681266]
[http://dx.doi.org/10.1039/D0OB01610A] [PMID: 32812987]
[http://dx.doi.org/10.1002/anie.198307531]
[http://dx.doi.org/10.1021/jacs.9b07564] [PMID: 31461622]
[http://dx.doi.org/10.1002/anie.201605548] [PMID: 27709749]
[http://dx.doi.org/10.1021/jacs.7b02569] [PMID: 28402109]
[http://dx.doi.org/10.1002/anie.201915409] [PMID: 31912963]
[http://dx.doi.org/10.1002/anie.201107028] [PMID: 22161996]
[http://dx.doi.org/10.1021/acs.joc.9b02777] [PMID: 31886669]
[http://dx.doi.org/10.1016/j.tetlet.2020.152425]
[http://dx.doi.org/10.1002/cjoc.201800461]
[http://dx.doi.org/10.1021/ja301553c] [PMID: 22624669]
[http://dx.doi.org/10.1002/adsc.201200416]
[http://dx.doi.org/10.1021/acs.orglett.7b01181] [PMID: 28474531]
[http://dx.doi.org/10.1002/anie.201609393] [PMID: 28000346]
[http://dx.doi.org/10.1002/anie.201800421] [PMID: 29446188]
[http://dx.doi.org/10.1002/anie.202005749] [PMID: 32339397]
[http://dx.doi.org/10.1039/C9CC06506G] [PMID: 31528910]
[http://dx.doi.org/10.1021/acs.orglett.0c00020] [PMID: 32052975]
[http://dx.doi.org/10.1021/jacs.8b09790] [PMID: 30474979]
[http://dx.doi.org/10.1021/cr078381n] [PMID: 17924696]
[http://dx.doi.org/10.1021/ja050760f] [PMID: 15926809]
[http://dx.doi.org/10.1039/C4RA03631J]
[http://dx.doi.org/10.1039/c3ra40932e]
[http://dx.doi.org/10.1021/jo400769u] [PMID: 23668289]
[http://dx.doi.org/10.1039/c3ra43299h]
[http://dx.doi.org/10.1021/ja01614a039]
[http://dx.doi.org/10.1021/cr100026f] [PMID: 20536123]
(b)Tokoro, Y.; Nagai, A.; Kokado, K.; Chujo, Y. Synthesis of organoboron quinoline-8-thiolate and quinoline-8-selenolate complexes and their incorporation into the π-conjugated polymer main-chain. Macromolecules, 2009, 42(8), 2988-2993.
[http://dx.doi.org/10.1021/ma900008m]
(c)Wesela-Bauman, G.; Ciećwierz, P.; Durka, K.; Luliński, S.; Serwatowski, J.; Woźniak, K. Heteroleptic (2-fluoro-3-pyridyl)arylborinic 8-oxyquinolinates for the potential application in organic light-emitting devices. Inorg. Chem., 2013, 52(19), 10846-10859.
[http://dx.doi.org/10.1021/ic400729t] [PMID: 24070324]
(d)Durka, K.; Głowacki, I.; Luliński, S.; Łuszczynska, B.; Smętek, J.; Szczepanik, P.; Serwatowski, J.; Wawrzyniak, U.E.; Wesela-Bauman, G.; Witkowska, E.; Wiosna-Sałyga, G.; Wozniak, K. Efficient 8-oxyquinolinato emitters based on a 9,10-dihydro-9,10-diboraanthracene scaffold for applications in optoelectronic devices. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3(6), 1354-1364.
[http://dx.doi.org/10.1039/C4TC02350A]
[http://dx.doi.org/10.1021/ic0489746] [PMID: 15679390]
(b)Kappaun, S.; Rentenberger, S.; Pogantsch, A.; Zojer, E.; Mereiter, K.; Trimmel, G.; Saf, R.; Möller, K.C.; Stelzer, F.; Slugovc, C. Organoboron quinolinates with extended conjugated chromophores: synthesis, structure and electronic and electroluminescent properties., Chem. Mater., 2006, 18(15), 3539-3547..
[http://dx.doi.org/10.1021/cm060720q]
(c)Teng, Y.L.; Kan, Y.H.; Su, Z.M.; Liao, Y.; Yang, S.Y.; Wang, R.S. Time-dependent density functional theory study on electronic and spectroscopic properties for Ph2BQ and its complexes. Theor. Chem. Acc., 2007, 117, 1-5.
[http://dx.doi.org/10.1007/s00214-005-0025-9]
[http://dx.doi.org/10.1016/j.tetlet.2017.02.022]
[http://dx.doi.org/10.1016/j.tetlet.2019.06.032]
[http://dx.doi.org/10.1039/D0CC03230A] [PMID: 32568331]
[http://dx.doi.org/10.1021/ja994522u]
(b)Moon, J.; Moon, Y.K.; Park, D.D.; Choi, S.; You, Y.; Cho, E.J. Visible-light-induced trifluoromethylation of unactivated alkenes with tri(9-anthryl)borane as an organophotocatalyst. J. Org. Chem., 2019, 84(20), 12925-12932.
[http://dx.doi.org/10.1021/acs.joc.9b01624] [PMID: 31389697]
[http://dx.doi.org/10.1021/acsomega.8b03290] [PMID: 31459486]