Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

阿尔茨海默氏病及其相关的痴呆类型:通过基于纳米技术的治疗策略进行的治疗回顾

卷 17, 期 14, 2020

页: [1239 - 1261] 页: 23

弟呕挨: 10.2174/1567205018666210218160812

价格: $65

摘要

背景:痴呆症及其相关类型,例如阿尔茨海默氏病,血管性痴呆和混合性痴呆属于脑相关疾病,导致长期进行性记忆丧失。这些疾病非常严重,可能会影响一个人的日常生活。迄今为止,由于痴呆症的复杂病理生理学和缺乏有效的药理学方法,痴呆症的治疗仍然是一个尚未得到解决的挑战。基于纳米技术的药物产品的使用可能会改善痴呆症的管理,因为纳米载体可以更有效地将药物输送到大脑。 目的:本研究的目的是提供当前基于纳米技术的药物输送系统,用于治疗各种类型的痴呆症。另外,正在讨论针对所述痴呆类型的当前诊断生物标志物以及它们可用的药理学治疗。 方法:对当前的纳米系统进行了广泛的综述,例如针对阿尔茨海默氏病,血管性痴呆和混合性痴呆的脑部药物输送系统。此外,也报道了纳米热疗作为此类痴呆症的可能成像标志。 结果:鉴于纳米级药物输送系统很容易穿透血脑屏障并在体内循环较长时间,因此纳米技术领域对于靶向痴呆非常有利。这些纳米制剂由聚合物纳米颗粒,固体脂质纳米颗粒,纳米结构脂质载体,微乳液,纳米乳液和液晶组成。纳米治疗剂的递送可以通过各种给药途径来实现,例如透皮,注射,口服,更重要的是,通过鼻内途径。然而,纳米载体主要限于针对阿尔茨海默氏病的疾病。因此,应开发用于其他类型痴呆的纳米载体。 结论:总而言之,了解神经退行性病变的机理并审查当前针对阿尔茨海默氏病和其他痴呆类型的药物递送系统对于医学和药学界产生有效的治疗选择和基于多功能和生物相容性纳米载体的新颖策略具有重要意义,这些纳米载体可以递送药物充分进入大脑

关键词: 痴呆,老年痴呆症,脑部药物递送,纳米技术,纳米颗粒,微乳剂,脂质纳米载体。

Next »
[1]
Alzheimer Europe. Dementia in Europe Yearbook 2019: Estimating the Prevalence of Dementia in Europe 2020.
[2]
Chui HC, Ramirez-Gomez L. Clinical and imaging features of mixed Alzheimer and vascular pathologies. Alzheimers Res Ther 2015; 7(1): 21.
[http://dx.doi.org/10.1186/s13195-015-0104-7] [PMID: 25722748]
[3]
Custodio N, Montesinos R, Lira D, Herrera-Pérez E, Bardales Y, Valeriano-Lorenzo L. Mixed dementia: A review of the evidence. Dement Neuropsychol 2017; 11(4): 364-70.
[http://dx.doi.org/10.1590/1980-57642016dn11-040005] [PMID: 29354216]
[4]
Cummings J, Feldman HH, Scheltens P. The “rights” of precision drug development for Alzheimer’s disease. Alzheimers Res Ther 2019; 11(1): 76.
[http://dx.doi.org/10.1186/s13195-019-0529-5] [PMID: 31470905]
[5]
Gauthier S, Ng KP, Pascoal TA, Zhang H, Rosa-Neto P. Targeting Alzheimer’s disease at the right time and the right place: Validation of a personalized approach to diagnosis and treatment. J Alzheimers Dis 2018; 64(s1): S23-31.
[http://dx.doi.org/10.3233/JAD-179924] [PMID: 29504543]
[6]
Karthivashan G, Ganesan P, Park SY, Kim JS, Choi DK. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv 2018; 25(1): 307-20.
[http://dx.doi.org/10.1080/10717544.2018.1428243] [PMID: 29350055]
[7]
Sgarbossa A, Giacomazza D, di Carlo M. Ferulic Acid: A hope for Alzheimer’s disease therapy from plants. Nutrients 2015; 7(7): 5764-82.
[http://dx.doi.org/10.3390/nu7075246] [PMID: 26184304]
[8]
Sakurai R, Watanabe Y, Osuka Y, et al. Overlap between apolipoprotein eε4 allele and slowing gait results in cognitive impairment. Front Aging Neurosci 2019; 11: 247.
[http://dx.doi.org/10.3389/fnagi.2019.00247] [PMID: 31572165]
[9]
Aliev G, Ashraf GM, Tarasov VV, et al. Alzheimer’s disease – future therapy based on dendrimers. Curr Neuropharmacol 2018; 17: 288-94.
[10]
Sabbagh M, Cummings J. Progressive cholinergic decline in Alzheimer’s Disease: Consideration for treatment with donepezil 23 mg in patients with moderate to severe symptomatology. BMC Neurol 2011; 11: 21.
[http://dx.doi.org/10.1186/1471-2377-11-21] [PMID: 21299848]
[11]
Rodríguez-Gómez O, Rodrigo A, Iradier F, et al. The MOPEAD Project: Advancing patient engagement for the detection of “hidden” undiagnosed cases of Alzheimer’s disease in the community. Alzheimers Dement 2019; 15(6): 828-39.
[12]
Okur ME, Karantas ID, Siafaka PI. Diabetes mellitus: A review on pathophysiology, current status of oral medications and future perspectives. Acta Pharm Sci 2017; 55(1): 61-82.
[13]
Okur ME, Karantas ID, Okur NU, Siafaka PI. Hypertension in 2017: Update in treatment and pharmaceutical innovations. Curr Pharm Des 2017; 23(44): 6795-814.
[http://dx.doi.org/10.2174/1381612823666170927123454] [PMID: 28969533]
[14]
Venkat P, Chopp M, Chen J. Models and mechanisms of vascular dementia. Exp Neurol 2015; 272: 97-108.
[http://dx.doi.org/10.1016/j.expneurol.2015.05.006] [PMID: 25987538]
[15]
Villemagne VL, Burnham S, Bourgeat P, et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: A prospective cohort study. Lancet Neurol 2013; 12(4): 357-67.
[http://dx.doi.org/10.1016/S1474-4422(13)70044-9] [PMID: 23477989]
[16]
Jack CR Jr, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol 2013; 12(2): 207-16.
[http://dx.doi.org/10.1016/S1474-4422(12)70291-0] [PMID: 23332364]
[17]
Hanyu H. Diagnosis and treatment of mixed dementia. Brain Nerve 2012; 64(9): 1047-55.
[PMID: 22941841]
[18]
de la Torre JC. Vascular basis of Alzheimer’s pathogenesis. Ann N Y Acad Sci 2002; 977(1): 196-215.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04817.x] [PMID: 12480752]
[19]
Agrawal M, Saraf S, Saraf S, et al. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J Control Release 2020; 321: 372-415.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.020] [PMID: 32061621]
[20]
Sharma M, Dube T, Chibh S, Kour A, Mishra J, Panda JJ. Nanotheranostics, a future remedy of neurological disorders. Expert Opin Drug Deliv 2019; 16(2): 113-28.
[http://dx.doi.org/10.1080/17425247.2019.1562443] [PMID: 30572726]
[21]
Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology based theranostic approaches in Alzheimer’s disease management: Current status and future perspective. Curr Alzheimer Res 2017; 14(11): 1164-81.
[http://dx.doi.org/10.2174/1567205014666170508121031] [PMID: 28482786]
[22]
Leszek J, Md Ashraf G, Tse WH, et al. Nanotechnology for Alzheimer disease. Curr Alzheimer Res 2017; 14(11): 1182-9.
[http://dx.doi.org/10.2174/1567205014666170203125008] [PMID: 28164767]
[23]
Ahmed RM, Paterson RW, Warren JD, et al. Biomarkers in dementia: Clinical utility and new directions. J Neurol Neurosurg Psychiatry 2014; 85(12): 1426-34.
[http://dx.doi.org/10.1136/jnnp-2014-307662] [PMID: 25261571]
[24]
Shekhar S, Kumar R, Rai N, et al. Estimation of tau and phosphorylated tau181 in serum of Alzheimer’s disease and mild cognitive impairment patients. PLoS One 2016; 11(7)e0159099
[http://dx.doi.org/10.1371/journal.pone.0159099] [PMID: 27459603]
[25]
Altuna-Azkargorta M, Mendioroz-Iriarte M. Blood biomarkers in Alzheimer’s disease Neurologia 2018; 50213-4853(18): 3009-4..
[26]
Armentero MT, Sinforiani E, Ghezzi C, et al. Peripheral expression of key regulatory kinases in Alzheimer’s disease and Parkinson’s disease. Neurobiol Aging 2011; 32(12): 2142-51.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.01.004] [PMID: 20106550]
[27]
Janel N, Sarazin M, Corlier F, et al. Plasma DYRK1A as a novel risk factor for Alzheimer’s disease. Transl Psychiatry 2014; 4(8): e425-5.
[http://dx.doi.org/10.1038/tp.2014.61] [PMID: 25116835]
[28]
Gaiottino J, Norgren N, Dobson R, et al. Increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS One 2013; 8(9)e75091
[http://dx.doi.org/10.1371/journal.pone.0075091] [PMID: 24073237]
[29]
Park J-C, Han S-H, Mook-Jung I. Peripheral inflammatory biomarkers in Alzheimer’s disease: A brief review. BMB Rep 2020; 53(1): 10-9.
[http://dx.doi.org/10.5483/BMBRep.2020.53.1.309] [PMID: 31865964]
[30]
Wu J, Li L. Autoantibodies in Alzheimer’s disease: Potential biomarkers, pathogenic roles, and therapeutic implications. J Biomed Res 2016; 30(5): 361-72.
[PMID: 27476881]
[31]
Zhao S, Zhao J, Zhang T, Guo C. Increased apoptosis in the platelets of patients with Alzheimer’s disease and amnestic mild cognitive impairment. Clin Neurol Neurosurg 2016; 143: 46-50.
[http://dx.doi.org/10.1016/j.clineuro.2016.02.015] [PMID: 26895209]
[32]
Ewers M, Mielke MM, Hampel H. Blood-based biomarkers of microvascular pathology in Alzheimer’s disease. Exp Gerontol 2010; 45(1): 75-9.
[http://dx.doi.org/10.1016/j.exger.2009.09.005] [PMID: 19782124]
[33]
Peña-Bautista C, Roca M, Hervás D, et al. Plasma metabolomics in early Alzheimer’s disease patients diagnosed with amyloid biomarker. J Proteomics 2019; 200: 144-52.
[http://dx.doi.org/10.1016/j.jprot.2019.04.008] [PMID: 30978462]
[34]
Baird AL, Westwood S, Lovestone S. Blood-based proteomic biomarkers of Alzheimer’s disease pathology. Front Neurol 2015; 6: 236.
[http://dx.doi.org/10.3389/fneur.2015.00236] [PMID: 26635716]
[35]
Quinn TJ, Gallacher J, Deary IJ, Lowe GDO, Fenton C, Stott DJ. Association between circulating hemostatic measures and dementia or cognitive impairment: Systematic review and meta-analyzes. J Thromb Haemost 2011; 9(8): 1475-82.
[http://dx.doi.org/10.1111/j.1538-7836.2011.04403.x] [PMID: 21676170]
[36]
Kaerst L, Kuhlmann A, Wedekind D, Stoeck K, Lange P, Zerr I. Cerebrospinal fluid biomarkers in Alzheimer’s disease, vascular dementia and ischemic stroke patients: A critical analysis. J Neurol 2013; 260(11): 2722-7.
[http://dx.doi.org/10.1007/s00415-013-7047-3] [PMID: 23877436]
[37]
Humpel C. Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol 2011; 29(1): 26-32.
[http://dx.doi.org/10.1016/j.tibtech.2010.09.007] [PMID: 20971518]
[38]
Maclin JMA, Wang T, Xiao S. Biomarkers for the diagnosis of Alzheimer’s disease, dementia lewy body, frontotemporal dementia and vascular dementia. Gen Psychiatr 2019; 32(1)e100054
[http://dx.doi.org/10.1136/gpsych-2019-100054] [PMID: 31179427]
[39]
Simonsen AH, Hagnelius N-O, Waldemar G, Nilsson TK, McGuire J. Protein markers for the differential diagnosis of vascular dementia and Alzheimer’s disease. Int J Proteomics 2012; 2012824024
[http://dx.doi.org/10.1155/2012/824024] [PMID: 22701795]
[40]
Rosenberg GA, Sullivan N, Esiri MM. White matter damage is associated with matrix metalloproteinases in vascular dementia. Stroke 2001; 32(5): 1162-8.
[http://dx.doi.org/10.1161/01.STR.32.5.1162] [PMID: 11340226]
[41]
Tullberg M, Månsson JE, Fredman P, et al. CSF sulfatide distinguishes between normal pressure hydrocephalus and subcortical arteriosclerotic encephalopathy. J Neurol Neurosurg Psychiatry 2000; 69(1): 74-81.
[http://dx.doi.org/10.1136/jnnp.69.1.74] [PMID: 10864607]
[42]
Zhao Y, Xin Y, Meng S, He Z, Hu W. Neurofilament light chain protein in neurodegenerative dementia: A systematic review and network meta-analysis. Neurosci Biobehav Rev 2019; 102: 123-38.
[http://dx.doi.org/10.1016/j.neubiorev.2019.04.014] [PMID: 31026486]
[43]
Hsu P-F, Pan W-H, Yip B-S, Chen RC-Y, Cheng H-M, Chuang S-Y. C-reactive protein predicts incidence of dementia in an elderly Asian community cohort. J Am Med Dir Assoc 2017; 18(3): 277.e7-277.e11.
[http://dx.doi.org/10.1016/j.jamda.2016.12.006] [PMID: 28159467]
[44]
Llorens F, Hermann P, Villar-Piqué A, et al. Cerebrospinal fluid lipocalin 2 as a novel biomarker for the differential diagnosis of vascular dementia. Nat Commun 2020; 11(1): 619.
[http://dx.doi.org/10.1038/s41467-020-14373-2] [PMID: 32001681]
[45]
Stoye NM, Jung P, Guilherme MDS, Lotz J, Fellgiebel A, Endres K. Apolipoprotein A1 in cerebrospinal fluid is insufficient to distinguish Alzheimer’s disease from other dementias in a naturalistic, clinical setting. J Alzheimers Dis Rep 2020; 4(1): 15-9.
[http://dx.doi.org/10.3233/ADR-190165] [PMID: 32206754]
[46]
Jagtap A, Gawande S, Sharma S. Biomarkers in vascular dementia: A recent update. Biomarkers Genomic Med 2015; 7(2): 43-56.
[http://dx.doi.org/10.1016/j.bgm.2014.11.001]
[47]
Nilsson K, Gustafson L, Hultberg B. Elevated plasma homocysteine level in vascular dementia reflects the vascular disease process. Dement Geriatr Cogn Disord Extra 2013; 3(1): 16-24.
[http://dx.doi.org/10.1159/000345981] [PMID: 23569455]
[48]
Lippi G, Danese E, Favaloro EJ. Vascular disease and dementia: Lipoprotein(a) as a neglected link. Semin Thromb Hemost 2019; 45(5): 544-7.
[http://dx.doi.org/10.1055/s-0039-1687907] [PMID: 31096303]
[49]
Gustaw-Rothenberg K, Kowalczuk K, Stryjecka-Zimmer M. Lipids’ peroxidation markers in Alzheimer’s disease and vascular dementia. Geriatr Gerontol Int 2010; 10(2): 161-6.
[PMID: 20446930]
[50]
Malaguarnera M, Ferri R, Bella R, Alagona G, Carnemolla A, Pennisi G. Homocysteine, vitamin B12 and folate in vascular dementia and in Alzheimer disease. Clin Chem Lab Med 2004; 42(9): 1032-5.
[http://dx.doi.org/10.1515/CCLM.2004.208] [PMID: 15497469]
[51]
Tang S-C, Yang K-C, Hu C-J, Chiou H-Y, Wu CC, Jeng J-S. Elevated plasma level of soluble form of rage in ischemic stroke patients with dementia. Neuromolecular Med 2017; 19(4): 579-83.
[http://dx.doi.org/10.1007/s12017-017-8471-9] [PMID: 29098526]
[52]
Pantoni L, Sarti C, Alafuzoff I, et al. Postmortem examination of vascular lesions in cognitive impairment: a survey among neuropathological services. Stroke 2006; 37(4): 1005-9.
[http://dx.doi.org/10.1161/01.STR.0000206445.97511.ae] [PMID: 16514100]
[53]
Ray L, Khemka VK, Behera P, et al. Serum homocysteine, dehydroepiandrosterone sulphate and lipoprotein (a) in Alzheimer’s disease and vascular dementia. Aging Dis 2013; 4(2): 57-64.
[PMID: 23696950]
[54]
Sachdev P, Kalaria R, O’Brien J, et al. Diagnostic criteria for vascular cognitive disorders: A VASCOG statement. Alzheimer Dis Assoc Disord 2014; 28(3): 206-18.
[http://dx.doi.org/10.1097/WAD.0000000000000034] [PMID: 24632990]
[55]
Jellinger KA, Attems J. Neuropathological evaluation of mixed dementia. J Neurol Sci 2007; 257(1-2): 80-7.
[http://dx.doi.org/10.1016/j.jns.2007.01.045] [PMID: 17324442]
[56]
Birks JS, Harvey RJ. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev 2018; 6CD001190
[http://dx.doi.org/10.1002/14651858.CD001190.pub3] [PMID: 29923184]
[57]
Kandiah N, Pai M-C, Senanarong V, et al. Rivastigmine: The advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin Interv Aging 2017; 12: 697-707.
[http://dx.doi.org/10.2147/CIA.S129145] [PMID: 28458525]
[58]
Lefèvre G, Callegari F, Gsteiger S, Xiong Y. Effects of renal impairment on steady-state plasma concentrations of rivastigmine: A population pharmacokinetic analysis of capsule and patch formulations in patients with Alzheimer’s disease. Drugs Aging 2016; 33(10): 725-36.
[http://dx.doi.org/10.1007/s40266-016-0405-y] [PMID: 27681702]
[59]
Folch J, Busquets O, Ettcheto M, et al. Memantine for the treatment of dementia: A review on its current and future applications. J Alzheimers Dis 2018; 62(3): 1223-40.
[http://dx.doi.org/10.3233/JAD-170672] [PMID: 29254093]
[60]
Boinpally R, Chen L, Zukin SR, McClure N, Hofbauer RK, Periclou A. A novel once-daily fixed-dose combination of memantine extended release and donepezil for the treatment of moderate to severe Alzheimer’s disease: Two phase I studies in healthy volunteers. Clin Drug Investig 2015; 35(7): 427-35.
[http://dx.doi.org/10.1007/s40261-015-0296-4] [PMID: 26016820]
[61]
Turner JH. Recent advances in theranostics and challenges for the future. Br J Radiol 2018; 91(1091)20170893
[http://dx.doi.org/10.1259/bjr.20170893] [PMID: 29565650]
[62]
Siafaka PI, Üstündağ Okur N, Karavas E, Bikiaris DN. Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: Current status and uses. Int J Mol Sci 2016; 17(9): 1440.
[http://dx.doi.org/10.3390/ijms17091440] [PMID: 27589733]
[63]
Siafaka PI, Üstündağ Okur N, Karantas ID, Okur ME, Gündoğdu EA. Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J Pharm Sci 2021; 16(1): 24-46.
[64]
Barrios-Lopez B, Raki M, Bergström K. Radiolabeled peptides for Alzheimer’s diagnostic imaging: Mini review. Curr Radiopharm 2013; 6(4): 181-91.
[http://dx.doi.org/10.2174/1874471006666131126222835] [PMID: 24283961]
[65]
Chen Q, Du Y, Zhang K, et al. Tau-targeted multifunctional nanocomposite for combinational therapy of Alzheimer’s disease. ACS Nano 2018; 12(2): 1321-38.
[http://dx.doi.org/10.1021/acsnano.7b07625] [PMID: 29364648]
[66]
Yin Z, Yul T, Xu Y. Preparation of amyloid immuno-nanoparticles as potential MRI contrast agents for Alzheimer’s disease diagnosis. J Nanosci Nanotechnol 2015; 15(9): 6429-34.
[http://dx.doi.org/10.1166/jnn.2015.11296] [PMID: 26716196]
[67]
Zeng JQ, Wu JQ, Li MH, Wang PJ. In vitro early detection of amyloid plaques in Alzheimer’s disease by Pittsburgh compound B-modified magnetic nanoparticles. Zhonghua Yi Xue Za Zhi 2017; 97(41): 3258-62.
[PMID: 29141366]
[68]
Sun J, Xie W, Zhu X, Xu M, Liu J. Sulfur nanoparticles with novel morphologies coupled with brain-targeting peptides RVG as a new type of inhibitor against metal-induced Aβ aggregation. ACS Chem Neurosci 2018; 9(4): 749-61.
[http://dx.doi.org/10.1021/acschemneuro.7b00312] [PMID: 29192759]
[69]
Costa PM, Wang JT-W, Morfin J-F, et al. Functionalised carbon nanotubes enhance Brain delivery of amyloid-targeting Pittsburgh Compound B (PiB)-derived ligands. Nanotheranostics 2018; 2(2): 168-83.
[http://dx.doi.org/10.7150/ntno.23125] [PMID: 29577020]
[70]
Lammers T, Koczera P, Fokong S, et al. Theranostic USPIO-loaded microbubbles for mediating and monitoring blood-brain barrier permeation. Adv Funct Mater 2015; 25(1): 36-43.
[http://dx.doi.org/10.1002/adfm.201401199] [PMID: 25729344]
[71]
Yiannopoulou KG, Papageorgiou SG. Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disorder 2013; 6(1): 19-33.
[http://dx.doi.org/10.1177/1756285612461679] [PMID: 23277790]
[72]
D’Arrigo JS. Targeting early dementia: Using lipid cubic phase nanocarriers to cross the blood-brain barrier. Biomimetics (Basel) 2018; 3(1): 4.
[http://dx.doi.org/10.3390/biomimetics3010004] [PMID: 31105226]
[73]
Bonda DJ, Liu G, Men P, Perry G, Smith MA, Zhu X. Nanoparticle delivery of transition-metal chelators to the brain: Oxidative stress will never see it coming. CNS Neurol Disord Drug Targets 2012; 11(1): 81-5.
[http://dx.doi.org/10.2174/187152712799960709] [PMID: 22229318]
[74]
Weinstein J D. A New direction for Alzheimer’s research Neural Regen Res 2018; 13: 190-3..
[http://dx.doi.org/10.4103/1673-5374.226381]
[75]
Vinters HV, Zarow C, Borys E, et al. Review: Vascular dementia: Clinicopathologic and genetic considerations. Neuropathol Appl Neurobiol 2018; 44(3): 247-66.
[http://dx.doi.org/10.1111/nan.12472] [PMID: 29380913]
[76]
Baskys A, Hou AC. Vascular dementia: Pharmacological treatment approaches and perspectives. Clin Interv Aging 2007; 2(3): 327-35.
[PMID: 18044183]
[77]
Chen H, Liu S, Ji L, et al. Folic acid supplementation mitigates Alzheimer’s disease by reducing inflammation: A randomized controlled trial. Mediators Inflamm 2016; 20165912146
[http://dx.doi.org/10.1155/2016/5912146]
[78]
Li Y. Protective effects of curcumin on brain vascular dementia by chronic cerebral ischemia in rats and study of the molecular mechanism. Alzheimers Dement 2011; 7(4): e47-8.
[http://dx.doi.org/10.1016/j.jalz.2011.09.200]
[79]
Meng Q, Wang A, Hua H, et al. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int J Nanomedicine 2018; 13: 705-18.
[http://dx.doi.org/10.2147/IJN.S151474] [PMID: 29440896]
[80]
Fonseca-Santos B, Gremião MPD, Chorilli M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int J Nanomedicine 2015; 10: 4981-5003.
[http://dx.doi.org/10.2147/IJN.S87148] [PMID: 26345528]
[81]
Silva-Abreu M, Calpena AC, Andrés-Benito P, et al. PPARγ agonist-loaded PLGA-PEG nanocarriers as a potential treatment for Alzheimer’s disease: In vitro and in vivo studies. Int J Nanomedicine 2018; 13: 5577-90.
[http://dx.doi.org/10.2147/IJN.S171490] [PMID: 30271148]
[82]
Dong X. Current strategies for brain drug delivery. Theranostics 2018; 8(6): 1481-93.
[http://dx.doi.org/10.7150/thno.21254] [PMID: 29556336]
[83]
Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release 2016; 235: 34-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.044] [PMID: 27208862]
[84]
Martín-Rapun R, De Matteis L, Ambrosone A, Garcia-Embid S, Gutierrez L, de la Fuente JM. Targeted nanoparticles for the treatment of Alzheimer’s disease. Curr Pharm Des 2017; 23(13): 1927-52.
[http://dx.doi.org/10.2174/1381612822666161226151011] [PMID: 28025949]
[85]
Tonda-Turo C, Origlia N, Mattu C, Accorroni A, Chiono V. Current limitations in the treatment of Parkinson’s and Alzheimer’s diseases: State-of-the-art and future perspective of polymeric carriers. Curr Med Chem 2018; 25(41): 5755-71.
[http://dx.doi.org/10.2174/0929867325666180221125759] [PMID: 29473493]
[86]
Pardridge WM. Blood-brain barrier drug targeting: The future of brain drug development. Mol Interv 2003; 3(2): 90-105, 51..
[http://dx.doi.org/10.1124/mi.3.2.90] [PMID: 14993430]
[87]
Öztürk-Atar K, Özkan MY, Eroğlu H, Çapan Y. Nano-based carriers for brain drug delivery Characterization and biology of nanomaterials for drug delivery. Elsevier 2019; pp. 563-86.
[http://dx.doi.org/10.1016/B978-0-12-814031-4.00020-9]
[88]
Pashirova TN, Zueva IV, Petrov KA, et al. Mixed cationic liposomes for brain delivery of drugs by the intranasal route: The Acetylcholinesterase Reactivator 2-PAM as encapsulated drug model. Colloids Surf B Biointerfaces 2018; 171: 358-67.
[89]
Carpenter TS, Kirshner DA, Lau EY, Wong SE, Nilmeier JP, Lightstone FC. A method to predict blood-brain barrier permeability of drug-like compounds using molecular dynamics simulations. Biophys J 2014; 107(3): 630-41.
[http://dx.doi.org/10.1016/j.bpj.2014.06.024] [PMID: 25099802]
[90]
Siafaka PI, Bülbül EÖ, Mutlu G, Okur ME, Karantas ID, Okur NÜ. Transdermal drug delivery systems and their potential in Alzheimer’s disease management. CNS Neurol Disord Drug Targets 2020; 19(5): 360-73.
[http://dx.doi.org/10.2174/1871527319666200618150046] [PMID: 32552655]
[91]
Nowak M, Brown TD, Graham A, Helgeson ME, Mitragotri S. Size, shape, and flexibility influence nanoparticle transport across brain endothelium under flow. Bioeng Transl Med 2019; 5(2)e10153
[http://dx.doi.org/10.1002/btm2.10153] [PMID: 32440560]
[92]
Brown TD, Habibi N, Wu D, Lahann J, Mitragotri S. Effect of nanoparticle composition, size, shape, and stiffness on penetration across the blood-brain barrier. ACS Biomater Sci Eng 2020; 6(9): 4916-28.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00743] [PMID: 33455287]
[93]
Kulkarni SA, Feng S-S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res 2013; 30(10): 2512-22.
[http://dx.doi.org/10.1007/s11095-012-0958-3] [PMID: 23314933]
[94]
Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond) 2016; 11(6): 673-92.
[http://dx.doi.org/10.2217/nnm.16.5] [PMID: 27003448]
[95]
Choi HS, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol 2007; 25(10): 1165-70.
[http://dx.doi.org/10.1038/nbt1340] [PMID: 17891134]
[96]
Kang JH, Cho J, Ko YT. Investigation on the effect of nanoparticle size on the blood-brain tumour barrier permeability by in situ perfusion via internal carotid artery in mice. J Drug Target 2019; 27(1): 103-10.
[http://dx.doi.org/10.1080/1061186X.2018.1497037] [PMID: 29972326]
[97]
Kolhar P, Anselmo AC, Gupta V, et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci USA 2013; 110(26): 10753-8.
[http://dx.doi.org/10.1073/pnas.1308345110] [PMID: 23754411]
[98]
Herd H, Daum N, Jones AT, Huwer H, Ghandehari H, Lehr C-M. Nanoparticle geometry and surface orientation influence mode of cellular uptake. ACS Nano 2013; 7(3): 1961-73.
[http://dx.doi.org/10.1021/nn304439f] [PMID: 23402533]
[99]
Anselmo AC, Zhang M, Kumar S, et al. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano 2015; 9(3): 3169-77.
[http://dx.doi.org/10.1021/acsnano.5b00147] [PMID: 25715979]
[100]
Ceña V, Játiva P. Nanoparticle crossing of blood-brain barrier: a road to new therapeutic approaches to central nervous system diseases. Nanomedicine (Lond) 2018; 13(13): 1513-6.
[http://dx.doi.org/10.2217/nnm-2018-0139] [PMID: 29998779]
[101]
Bramini M, Ye D, Hallerbach A, et al. Imaging approach to mechanistic study of nanoparticle interactions with the blood-brain barrier. ACS Nano 2014; 8(5): 4304-12.
[http://dx.doi.org/10.1021/nn5018523] [PMID: 24773217]
[102]
Parikh T, Bommana MM, Squillante E III. Efficacy of surface charge in targeting pegylated nanoparticles of sulpiride to the brain. Eur J Pharm Biopharm 2010; 74(3): 442-50.
[http://dx.doi.org/10.1016/j.ejpb.2009.11.001] [PMID: 19941957]
[103]
Sun Z, Worden M, Thliveris JA, et al. Biodistribution of negatively charged iron oxide nanoparticles (IONPs) in mice and enhanced brain delivery using lysophosphatidic acid (LPA). Nanomedicine (Lond) 2016; 12(7): 1775-84.
[http://dx.doi.org/10.1016/j.nano.2016.04.008] [PMID: 27125435]
[104]
Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 2015; 33(9): 941-51.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[105]
Gao X, Qian J, Zheng S, et al. Overcoming the blood-brain barrier for delivering drugs into the brain by using adenosine receptor nanoagonist. ACS Nano 2014; 8(4): 3678-89.
[http://dx.doi.org/10.1021/nn5003375] [PMID: 24673594]
[106]
Li J, Sabliov C. PLA/PLGA nanoparticles for delivery of drugs across the blood-brain barrier. Nanotechnol Rev 2013; 2(3): 241-57.
[http://dx.doi.org/10.1515/ntrev-2012-0084]
[107]
Lin T, Zhao P, Jiang Y, et al. Blood-brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano 2016; 10(11): 9999-10012.
[http://dx.doi.org/10.1021/acsnano.6b04268] [PMID: 27934069]
[108]
Zhao X, Shang T, Zhang X, Ye T, Wang D, Rei L. Passage of magnetic tat-conjugated Fe3O4@SiO2 nanoparticles across in vitro blood-brain barrier. Nanoscale Res Lett 2016; 11(1): 451.
[http://dx.doi.org/10.1186/s11671-016-1676-2] [PMID: 27726119]
[109]
Zou L-L, Ma J-L, Wang T, Yang T-B, Liu C-B. Cell-penetrating Peptide-mediated therapeutic molecule delivery into the central nervous system. Curr Neuropharmacol 2013; 11(2): 197-208.
[http://dx.doi.org/10.2174/1570159X11311020006] [PMID: 23997754]
[110]
Masserini M. Nanoparticles for brain drug delivery. ISRN Biochem 2013; 2013238428
[http://dx.doi.org/10.1155/2013/238428] [PMID: 25937958]
[111]
Khongkow M, Yata T, Boonrungsiman S, Ruktanonchai UR, Graham D, Namdee K. Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood-brain barrier penetration. Sci Rep 2019; 9(1): 8278.
[http://dx.doi.org/10.1038/s41598-019-44569-6] [PMID: 31164665]
[112]
Tang S, Wang A, Yan X, et al. Brain-targeted intranasal delivery of dopamine with borneol and lactoferrin co-modified nanoparticles for treating Parkinson’s disease. Drug Deliv 2019; 26(1): 700-7.
[http://dx.doi.org/10.1080/10717544.2019.1636420] [PMID: 31290705]
[113]
Cheng Y, Morshed RA, Auffinger B, Tobias AL, Lesniak MS. Multifunctional nanoparticles for brain tumor imaging and therapy. Adv Drug Deliv Rev 2014; 66: 42-57.
[http://dx.doi.org/10.1016/j.addr.2013.09.006] [PMID: 24060923]
[114]
Shakeri S, Ashrafizadeh M, Zarrabi A, et al. Multifunctional polymeric nanoplatforms for brain diseases diagnosis, therapy and theranostics. Biomedicines 2020; 8(1)E13
[http://dx.doi.org/10.3390/biomedicines8010013] [PMID: 31941057]
[115]
Begley DJ. Delivery of therapeutic agents to the central nervous system: The problems and the possibilities. Pharmacol Ther 2004; 104(1): 29-45.
[http://dx.doi.org/10.1016/j.pharmthera.2004.08.001] [PMID: 15500907]
[116]
Zeeshan M, Mukhtar M, Ul Ain Q, Khan S, Ali H. Nanopharmaceuticals: A Boon to the brain-targeted drug delivery Pharmaceutical formulation design - recent practices. IntechOpen 2020.
[http://dx.doi.org/10.5772/intechopen.83040]
[117]
Bhavna M, Md S, Ali M, et al. Design, development, optimization and characterization of donepezil loaded chitosan nanoparticles for brain targeting to treat Alzheimer’s disease. Sci Adv Mater 2014; 6(4): 720-35.
[http://dx.doi.org/10.1166/sam.2014.1761]
[118]
Kaur SP, Rao R, Hussain A, Khatkar S. Preparation and characterization of rivastigmine loaded chitosan nanoparticles. J Pharm Sci Res 2011; 3(5): 1227-32.
[119]
Fazil M, Md S, Haque S, et al. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci 2012; 47(1): 6-15.
[http://dx.doi.org/10.1016/j.ejps.2012.04.013] [PMID: 22561106]
[120]
Goodarzi A, Khanmohammadi M, Ebrahimi-Barough S, et al. Alginate-based hydrogel containing taurine-loaded chitosan nanoparticles in biomedical application. Arch Neurosci 2019; 6(2)e86349
[121]
Elnaggar YSR, Etman SM, Abdelmonsif DA, Abdallah OY. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in alzheimer’s disease: Optimization, biological efficacy, and potential toxicity. J Pharm Sci 2015; 104(10): 3544-56.
[http://dx.doi.org/10.1002/jps.24557]
[122]
Alam S, Khan ZI, Mustafa G, et al. Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic study. Int J Nanomedicine 2012; 7: 5705-18.
[http://dx.doi.org/10.2147/IJN.S35329] [PMID: 23180965]
[123]
Jain S, Jain R. Design and evaluation of chitosan nanoparticles as novel drug carrier for the delivery of galantamine to treat Alzheimer’s disease. Parkinsonism Relat Disord 2018; 46e51
[http://dx.doi.org/10.1016/j.parkreldis.2017.11.175]
[124]
Hassanzadeh G, Fallahi Z, Khanmohammadi M, et al. Effect of magnetic tacrine-loaded chitosan nanoparticles on spatial learning, memory, amyloid precursor protein and seladin-1 expression in the hippocampus of streptozotocin-exposed rats. Int Clin Neurosci J 2016; 3(1): 25-31.
[125]
Jiang Z, Dong X, Sun Y. Charge effects of self-assembled chitosan-hyaluronic acid nanoparticles on inhibiting amyloid β-protein aggregation. Carbohydr Res 2018; 461: 11-8.
[http://dx.doi.org/10.1016/j.carres.2018.03.001] [PMID: 29549749]
[126]
Beauvais S, Drevelle O, Lauzon M-A, Daviau A, Faucheux N. Modulation of MAPK signalling by immobilized adhesive peptides: Effect on stem cell response to BMP-9-derived peptides. Acta Biomater 2016; 31: 241-51.
[http://dx.doi.org/10.1016/j.actbio.2015.12.005] [PMID: 26675130]
[127]
Del Prado-Audelo ML, Caballero-Florán IH, Meza-Toledo JA, et al. Formulations of curcumin nanoparticles for brain diseases. Biomolecules 2019; 9(2): 1-28.
[http://dx.doi.org/10.3390/biom9020056] [PMID: 30743984]
[128]
Yang R, Zheng Y, Wang Q, Zhao L. Curcumin-loaded chitosan-bovine serum albumin nanoparticles potentially enhanced Aβ 42 phagocytosis and modulated macrophage polarization in Alzheimer’s disease. Nanoscale Res Lett 2018; 13(1): 330.
[http://dx.doi.org/10.1186/s11671-018-2759-z] [PMID: 30350003]
[129]
Singh SK, Mishra DN. Nose to brain delivery of galantamine loaded nanoparticles: In-vivo pharmacodynamic and biochemical study in mice. Curr Drug Deliv 2018; 16(1): 51-8.
[http://dx.doi.org/10.2174/1567201815666181004094707]
[130]
Chowdhury S, Mondal S, Muthuraj B, Balaji SN, Trivedi V, Krishnan IP. Remarkably efficient blood-brain barrier crossing polyfluorene-chitosan nanoparticle selectively tweaks amyloid oligomer in cerebrospinal fluid and Aβ1-40. ACS Omega 2018; 3(7): 8059-66.
[http://dx.doi.org/10.1021/acsomega.8b00764] [PMID: 30087934]
[131]
Basta-Kaim A, Ślusarczyk J, Szczepanowicz K, et al. Protective effects of polydatin in free and nanocapsulated form on changes caused by lipopolysaccharide in hippocampal organotypic cultures. Pharmacol Rep 2019; 71(4): 603-13.
[http://dx.doi.org/10.1016/j.pharep.2019.02.017] [PMID: 31176102]
[132]
Li Y, Wang C, Zong S, et al. The trigeminal pathway dominates the nose-to-brain transportation of intact polymeric nanoparticles: Evidence from aggregation-caused quenching probes. J Biomed Nanotechnol 2019; 15(4): 686-702.
[http://dx.doi.org/10.1166/jbn.2019.2724] [PMID: 30841963]
[133]
Zhang Q-Z, Zha L-S, Zhang Y, et al. The brain targeting efficiency following nasally applied MPEG-PLA nanoparticles in rats. J Drug Target 2006; 14(5): 281-90.
[http://dx.doi.org/10.1080/10611860600721051] [PMID: 16882548]
[134]
Tosi G, Bortot B, Ruozi B, et al. Potential use of polymeric nanoparticles for drug delivery across the blood-brain barrier. Curr Med Chem 2013; 20(17): 2212-25.
[http://dx.doi.org/10.2174/0929867311320170006] [PMID: 23458620]
[135]
Mathew A, Fukuda T, Nagaoka Y, et al. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One 2012; 7(3)e32616
[http://dx.doi.org/10.1371/journal.pone.0032616] [PMID: 22403681]
[136]
Tiwari SK, Agarwal S, Seth B, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 2014; 8(1): 76-103.
[http://dx.doi.org/10.1021/nn405077y] [PMID: 24467380]
[137]
Sun D, Li N, Zhang W, et al. Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease. Colloids Surf B Biointerfaces 2016; 148: 116-29.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.052] [PMID: 27591943]
[138]
Bhatt PC, Verma A, Al-Abbasi FA, Anwar F, Kumar V, Panda BP. Development of surface-engineered PLGA nanoparticulate-delivery system of Tet1-conjugated nattokinase enzyme for inhibition of Aβ40 plaques in Alzheimer’s disease. Int J Nanomedicine 2017; 12: 8749-68.
[http://dx.doi.org/10.2147/IJN.S144545] [PMID: 29263666]
[139]
Jeon SG, Cha M-Y, Kim JI, et al. Vitamin D-binding protein-loaded PLGA nanoparticles suppress Alzheimer’s disease-related pathology in 5XFAD mice. Nanomedicine (Lond) 2019; 17: 297-307.
[http://dx.doi.org/10.1016/j.nano.2019.02.004] [PMID: 30794963]
[140]
Barbara R, Belletti D, Pederzoli F, et al. Novel Curcumin loaded nanoparticles engineered for Blood-Brain Barrier crossing and able to disrupt Abeta aggregates. Int J Pharm 2017; 526(1-2): 413-24.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.015] [PMID: 28495580]
[141]
Muntimadugu E, Dhommati R, Jain A, Challa VGS, Shaheen M, Khan W. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer’s disease. Eur J Pharm Sci 2016; 92: 224-34.
[http://dx.doi.org/10.1016/j.ejps.2016.05.012] [PMID: 27185298]
[142]
Kuo Y-C, Rajesh R. Targeted delivery of rosmarinic acid across the blood-brain barrier for neuronal rescue using polyacrylamide-chitosan-poly(lactide-co-glycolide) nanoparticles with surface cross-reacting material 197 and apolipoprotein E. Int J Pharm 2017; 528(1-2): 228-41.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.039] [PMID: 28549973]
[143]
Kuo Y-C, Tsai H-C. Rosmarinic acid- and curcumin-loaded polyacrylamide-cardiolipin-poly(lactide-co-glycolide) nanoparticles with conjugated 83-14 monoclonal antibody to protect β-amyloid-insulted neurons. Mater Sci Eng C 2018; 91: 445-57.
[http://dx.doi.org/10.1016/j.msec.2018.05.062] [PMID: 30033276]
[144]
Zhang C, Wan X, Zheng X, et al. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice. Biomaterials 2014; 35(1): 456-65.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.063] [PMID: 24099709]
[145]
Cano A, Ettcheto M, Chang J-H, et al. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model. J Control Release 2019; 301: 62-75.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.010] [PMID: 30876953]
[146]
Loureiro JA, Gomes B, Fricker G, Coelho MAN, Rocha S, Pereira MC. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloids Surf B Biointerfaces 2016; 145: 8-13.
[http://dx.doi.org/10.1016/j.colsurfb.2016.04.041] [PMID: 27131092]
[147]
Carradori D, Balducci C, Re F, et al. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer’s disease-like transgenic mouse model. Nanomedicine (Lond) 2018; 14(2): 609-18.
[http://dx.doi.org/10.1016/j.nano.2017.12.006] [PMID: 29248676]
[148]
Zhang C, Chen J, Feng C, et al. Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer’s disease. Int J Pharm 2014; 461(1-2): 192-202.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.049] [PMID: 24300213]
[149]
Brambilla D, Verpillot R, De Kimpe L, et al. Nanoparticles against Alzheimer’s disease: PEG-PACA nanoparticles are able to link the Aβ-peptide and influence its aggregation kinetic. J Control Release 2010; 148(1): e112-3.
[http://dx.doi.org/10.1016/j.jconrel.2010.07.084] [PMID: 21529583]
[150]
Joshi SA, Chavhan SS, Sawant KK. Rivastigmine-loaded PLGA and PBCA nanoparticles: Preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur J Pharm Biopharm 2010; 76(2): 189-99.
[http://dx.doi.org/10.1016/j.ejpb.2010.07.007] [PMID: 20637869]
[151]
Amirthalingam M, Nayanabhirama U, Mutalik S. Sustained delivery of surface modified donepezil hcl loaded pcl nanoparticles for Alzheimer’s disease. Alzheimers Dement 2014; 10(4): 467.
[http://dx.doi.org/10.1016/j.jalz.2014.05.661]
[152]
Wang P, Zheng X, Guo Q, et al. Systemic delivery of BACE1 siRNA through neuron-targeted nanocomplexes for treatment of Alzheimer’s disease. J Control Release 2018; 279: 220-33.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.034] [PMID: 29679667]
[153]
Ismail MF, Elmeshad AN, Salem NA-H. Potential therapeutic effect of nanobased formulation of rivastigmine on rat model of Alzheimer’s disease. Int J Nanomedicine 2013; 8: 393-406.
[http://dx.doi.org/10.2147/IJN.S39232] [PMID: 23378761]
[154]
Al Asmari AK, Ullah Z, Tariq M, Fatani A. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil Drug Des Devel Ther 2016; 10: 205-15..
[PMID: 26834457]
[155]
Kuo Y-C, Liu Y-C. Cardiolipin-incorporated liposomes with surface CRM197 for enhancing neuronal survival against neurotoxicity. Int J Pharm 2014; 473(1-2): 334-44.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.003] [PMID: 24999054]
[156]
Vieira DB, Gamarra LF. Getting into the brain: Liposome-based strategies for effective drug delivery across the blood-brain barrier. Int J Nanomedicine 2016; 11: 5381-414.
[http://dx.doi.org/10.2147/IJN.S117210] [PMID: 27799765]
[157]
Rotman M, Welling MM, Bunschoten A, et al. Enhanced glutathione PEGylated liposomal brain delivery of an anti-amyloid single domain antibody fragment in a mouse model for Alzheimer’s disease. J Control Release 2015; 203: 40-50.
[http://dx.doi.org/10.1016/j.jconrel.2015.02.012] [PMID: 25668771]
[158]
Markoutsa E, Papadia K, Giannou AD, et al. Mono and dually decorated nanoliposomes for brain targeting, in vitro and in vivo studies. Pharm Res 2014; 31(5): 1275-89.
[http://dx.doi.org/10.1007/s11095-013-1249-3] [PMID: 24338512]
[159]
Mu H, Holm R, Müllertz A. Lipid-based formulations for oral administration of poorly water-soluble drugs. Int J Pharm 2013; 453(1): 215-24.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.054] [PMID: 23578826]
[160]
Mourtas S, Canovi M, Zona C, et al. Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1-42 peptide. Biomaterials 2011; 32(6): 1635-45.
[http://dx.doi.org/10.1016/j.biomaterials.2010.10.027] [PMID: 21131044]
[161]
Lazar AN, Mourtas S, Youssef I, et al. Curcumin-conjugated nanoliposomes with high affinity for Aβ deposits: Possible applications to Alzheimer disease. Nanomedicine (Lond) 2013; 9(5): 712-21.
[http://dx.doi.org/10.1016/j.nano.2012.11.004] [PMID: 23220328]
[162]
Ross C, Taylor M, Fullwood N, Allsop D. Liposome delivery systems for the treatment of Alzheimer’s disease. Int J Nanomedicine 2018; 13: 8507-22.
[http://dx.doi.org/10.2147/IJN.S183117] [PMID: 30587974]
[163]
Nageeb El-Helaly S, Abd Elbary A, Kassem MA, El-Nabarawi MA. Electrosteric stealth Rivastigmine loaded liposomes for brain targeting: preparation, characterization, ex vivo, bio-distribution and in vivo pharmacokinetic studies. Drug Deliv 2017; 24(1): 692-700.
[http://dx.doi.org/10.1080/10717544.2017.1309476] [PMID: 28415883]
[164]
Yang Z-Z, Zhang Y-Q, Wang Z-Z, Wu K, Lou J-N, Qi X-R. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. Int J Pharm 2013; 452(1-2): 344-54.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.009] [PMID: 23680731]
[165]
Kuo YC, Lin CY, Li JS, Lou YI. Wheat germ agglutinin-conjugated liposomes incorporated with cardiolipin to improve neuronal survival in Alzheimer’s disease treatment. Int J Nanomedicine 2017; 12: 1757-74.
[http://dx.doi.org/10.2147/IJN.S128396] [PMID: 28280340]
[166]
Kuo YC, Tsao CW. Neuroprotection against apoptosis of SK-N-MC cells using RMP-7- and lactoferrin-grafted liposomes carrying quercetin. Int J Nanomedicine 2017; 12: 2857-69.
[http://dx.doi.org/10.2147/IJN.S132472] [PMID: 28435263]
[167]
Balducci C, Mancini S, Minniti S, et al. Multifunctional liposomes reduce brain β-amyloid burden and ameliorate memory impairment in Alzheimer’s disease mouse models. J Neurosci 2014; 34(42): 14022-31.
[http://dx.doi.org/10.1523/JNEUROSCI.0284-14.2014] [PMID: 25319699]
[168]
Shah B, Khunt D, Bhatt H, Misra M, Padh H. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: Effect on formulation and characterization parameters. Eur J Pharm Sci 2015; 78: 54-66.
[http://dx.doi.org/10.1016/j.ejps.2015.07.002] [PMID: 26143262]
[169]
Bondì ML, Craparo EF, Giammona G, Drago F. Brain-targeted solid lipid nanoparticles containing riluzole: Preparation, characterization and biodistribution. Nanomedicine (Lond) 2010; 5(1): 25-32.
[http://dx.doi.org/10.2217/nnm.09.67] [PMID: 20025461]
[170]
Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release 2008; 127(2): 97-109.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.018] [PMID: 18313785]
[171]
Sadegh Malvajerd S, Azadi A, Izadi Z, et al. Brain delivery of curcumin using Solid lipid nanoparticles and nanostructured lipid carriers: Preparation, optimization, and pharmacokinetic evaluation. ACS Chem Neurosci 2019; 10(1): 728-39.
[http://dx.doi.org/10.1021/acschemneuro.8b00510] [PMID: 30335941]
[172]
Sathya S, Shanmuganathan B, Manirathinam G, Ruckmani K, Devi KP. α-bisabolol loaded solid lipid nanoparticles attenuates Aβ aggregation and protects neuro-2a cells from Aβ induced neurotoxicity. J Mol Liq 2018; 264: 431-41.
[http://dx.doi.org/10.1016/j.molliq.2018.05.075]
[173]
Yadav A, Sunkaria A, Singhal N, Sandhir R. Resveratrol loaded solid lipid nanoparticles attenuate mitochondrial oxidative stress in vascular dementia by activating Nrf2/HO-1 pathway. Neurochem Int 2018; 112: 239-54.
[http://dx.doi.org/10.1016/j.neuint.2017.08.001] [PMID: 28782592]
[174]
Rishitha N, Muthuraman A. Therapeutic evaluation of solid lipid nanoparticle of cycloastragenol in strepto- zotocin induced vascular dementia in danio rerio. Abnormalities of Vascular System. Open Access eBooks: Las Vegas, NV 89107, USA 2019; pp. 1-19..
[175]
Chauhan MK, Sharma PK. Optimization and characterization of rivastigmine nanolipid carrier loaded transdermal patches for the treatment of dementia. Chem Phys Lipids 2019; 224104794
[http://dx.doi.org/10.1016/j.chemphyslip.2019.104794] [PMID: 31361985]
[176]
Mendes IT, Ruela ALM, Carvalho FC, Freitas JTJ, Bonfilio R, Pereira GR. Development and characterization of nanostructured lipid carrier-based gels for the transdermal delivery of donepezil. Colloids Surf B Biointerfaces 2019; 177: 274-81.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.007] [PMID: 30763792]
[177]
Dara T, Vatanara A, Sharifzadeh M, et al. Improvement of memory deficits in the rat model of Alzheimer’s disease by erythropoietin-loaded solid lipid nanoparticles. Neurobiol Learn Mem 2019; 166107082
[http://dx.doi.org/10.1016/j.nlm.2019.107082] [PMID: 31493483]
[178]
Giacomeli R, Izoton JC, Dos Santos RB, Boeira SP, Jesse CR, Haas SE. Neuroprotective effects of curcumin lipid-core nanocapsules in a model Alzheimer’s disease induced by β-amyloid 1-42 peptide in aged female mice. Brain Res 2019; 1721146325
[http://dx.doi.org/10.1016/j.brainres.2019.146325] [PMID: 31325424]
[179]
Okur NÜ, Er S, Çağlar EŞ, Ekmen TZ, Sala F. Formulation of microemulsions for dermal delivery of cephalexin ACTA Pharm Sci 2017; 55(4): 27..
[http://dx.doi.org/10.23893/1307-2080.APS.05524]
[180]
Üstündaǧ-Okur N, Ege MA, Karasulu HY. Preparation and characterization of naproxen loaded microemulsion formulations for dermal application. Int J Pharm 2014; 4(4): 33-42.
[181]
Lidich N, Garti-Levy S, Aserin A, Garti N. Potentiality of microemulsion systems in treatment of ophthalmic disorders: Keratoconus and dry eye syndrome - in vivo study. Colloids Surf B Biointerfaces 2019; 173(173): 226-32.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.063] [PMID: 30300828]
[182]
Sharma G, Lakkadwala S, Modgil A, Singh J. The role of cell-penetrating peptide and transferrin on enhanced delivery of drug to brain Intern J Mol Sci 2016; 25; 17(6): 806..
[183]
Erdő F, Bors LA, Farkas D, Bajza Á, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull 2018; 143: 155-70.
[http://dx.doi.org/10.1016/j.brainresbull.2018.10.009] [PMID: 30449731]
[184]
Bonferoni MC, Rossi S, Sandri G, et al. Nanoemulsions for “nose-to-brain” drug delivery. Pharmaceutics 2019; 11(2)E84
[http://dx.doi.org/10.3390/pharmaceutics11020084] [PMID: 30781585]
[185]
Parikh RH, Patel RJ. Nanoemulsions for intranasal delivery of riluzole to improve brain bioavailability: Formulation development and pharmacokinetic studies. Curr Drug Deliv 2016; 13(7): 1130-43.
[http://dx.doi.org/10.2174/1567201813666151202195729] [PMID: 26638977]
[186]
Mahajan HS, Mahajan MS, Nerkar PP, Agrawal A. Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting. Drug Deliv 2014; 21(2): 148-54.
[http://dx.doi.org/10.3109/10717544.2013.838014] [PMID: 24128122]
[187]
Sharma D, Singh M, Kumar P, Vikram V, Mishra N. Development and characterization of morin hydrate loaded microemulsion for the management of Alzheimer’s disease. Artif Cells Nanomed Biotechnol 2017; 45(8): 1620-30.
[http://dx.doi.org/10.1080/21691401.2016.1276919] [PMID: 28102083]
[188]
Shah BM, Misra M, Shishoo CJ, Padh H. Nose to brain microemulsion-based drug delivery system of rivastigmine: Formulation and ex-vivo characterization. Drug Deliv 2015; 22(7): 918-30.
[http://dx.doi.org/10.3109/10717544.2013.878857] [PMID: 24467601]
[189]
Kaur A, Nigam K, Srivastava S, Tyagi A, Dang S. Memantine nanoemulsion: A new approach to treat Alzheimer’s disease. J Microencapsul 2020; 37(5): 355-65.
[http://dx.doi.org/10.1080/02652048.2020.1756971] [PMID: 32293915]
[190]
Kaur A, Nigam K, Bhatnagar I, et al. Treatment of Alzheimer’s diseases using donepezil nanoemulsion: An intranasal approach. Drug Deliv Transl Res 2020; 10(6): 1862-75.
[http://dx.doi.org/10.1007/s13346-020-00754-z] [PMID: 32297166]
[191]
Espinoza LC, Silva-Abreu M, Clares B, et al. Formulation strategies to improve nose-to-brain delivery of donepezil. Pharmaceutics 2019; 11(2): 64.
[http://dx.doi.org/10.3390/pharmaceutics11020064] [PMID: 30717264]
[192]
Etman SM, Elnaggar YSR, Abdelmonsif DA, Abdallah OY. Oral brain-targeted microemulsion for enhanced piperine delivery in alzheimer’s disease therapy: In Vitro appraisal, in vivo activity, and nanotoxicity. AAPS PharmSciTech 2018; 19(8): 3698-711.
[http://dx.doi.org/10.1208/s12249-018-1180-3] [PMID: 30238305]
[193]
Singh M, Singh SP, Rachana R. Development, characterization and cytotoxicity evaluation of gingko biloba extract (EGB761) loaded microemulsion for intra-nasal application. J Appl Pharm Sci 2017; 7(1): 24-34.
[http://dx.doi.org/10.7324/JAPS.2017.70104]
[194]
Md S, Gan SY, Haw YH, Ho CL, Wong S, Choudhury H. In vitro neuroprotective effects of naringenin nanoemulsion against β-amyloid toxicity through the regulation of amyloidogenesis and tau phosphorylation Int J Biol Macromol 2018; 118(Pt A): 1211-9..
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.190 ] [PMID: 30001606]
[195]
Desai PP, Patravale VB. Curcumin cocrystal micelles-multifunctional nanocomposites for management of neurodegenerative ailments. J Pharm Sci 2018; 107(4): 1143-56.
[http://dx.doi.org/10.1016/j.xphs.2017.11.014] [PMID: 29183742]
[196]
Claeysen S, Bockaert J, Giannoni P. Serotonin: A new hope in Alzheimer’s disease? ACS Chem Neurosci 2015; 6(7): 940-3.
[http://dx.doi.org/10.1021/acschemneuro.5b00135] [PMID: 26011650]
[197]
Bilia AR, Nardiello P, Piazzini V, et al. Successful brain delivery of andrographolide loaded in human albumin nanoparticles to TgCRND8 Mice, an Alzheimer’s disease mouse model. Front Pharmacol 2019; 10: 910.
[http://dx.doi.org/10.3389/fphar.2019.00910] [PMID: 31507412]
[198]
Kishore V, Yarla NS, Bishayee A, et al. Multi-targeting andrographolide and its natural analogs as potential therapeutic agents. Curr Top Med Chem 2017; 17(8): 845-57.
[http://dx.doi.org/10.2174/1568026616666160927150452] [PMID: 27697058]
[199]
Varela-Nallar L, Arredondo SB, Tapia-Rojas C, Hancke J, Inestrosa NC. Andrographolide stimulates neurogenesis in the adult hippocampus. Neural Plast 2015; 2015935403
[http://dx.doi.org/10.1155/2015/935403] [PMID: 26798521]
[200]
Lohan S, Raza K, Mehta SK, Bhatti GK, Saini S, Singh B. Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: A preclinical evidence. Int J Pharm 2017; 530(1-2): 263-78.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.080] [PMID: 28774853]
[201]
Xiao S, Zhou D, Luan P, et al. Graphene quantum dots conjugated neuroprotective peptide improve learning and memory capability. Biomaterials 2016; 106: 98-110.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.021] [PMID: 27552320]
[202]
Aso E, Martinsson I, Appelhans D, et al. Poly(propylene imine) dendrimers with histidine-maltose shell as novel type of nanoparticles for synapse and memory protection. Nanomedicine (Lond) 2019; 17: 198-209.
[http://dx.doi.org/10.1016/j.nano.2019.01.010] [PMID: 30708052]
[203]
Koseoglu E. New Treatment Modalities in Alzheimer’s Disease 2019; 7: 1764-74.
[204]
Aguilar-Navarro SG, Mimenza-Alvarado AJ, Corona-Sevilla I, et al. Cerebral Vascular Reactivity in Frail Older Adults with Vascular Cognitive Impairment. Brain Sci 2019; 9(9): 214.
[http://dx.doi.org/10.3390/brainsci9090214] [PMID: 31450572]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy