Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Advances on Quinazoline Based Congeners for Anticancer Potential

Author(s): Parul Grover*, Monika Bhardwaj, Garima Kapoor, Lovekesh Mehta, Roma Ghai and K. Nagarajan

Volume 25, Issue 6, 2021

Published on: 12 February, 2021

Page: [695 - 723] Pages: 29

DOI: 10.2174/1385272825666210212121056

Price: $65

Abstract

The heterocyclic compounds have a great significance in medicinal chemistry because they have extensive biological activities. Cancer is globally the leading cause of death and it is a challenge to develop appropriate treatment for the management of cancer. Continuous efforts are being made to find a suitable medicinal agent for cancer therapy. Nitrogencontaining heterocycles have received noteworthy attention due to their wide and distinctive pharmacological activities. One of the most important nitrogen-containing heterocycles in medicinal chemistry is ‘quinazoline’ that possesses a wide spectrum of biological properties. This scaffold is an important pharmacophore and is considered a privileged structure. Various substituted quinazolines displayed anticancer activity against different types of cancer. This review highlights the recent advances in quinazoline based molecules as anticancer agents. Several in-vitro and in-vivo models used along with the results are also included. A subpart briefing natural quinazoline containing anticancer compounds is also incorporated in the review.

Keywords: Quinazoline, anticancer, cytotoxicity, IC50, cell line, heterocycle.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Falzone, L.; Salomone, S.; Libra, M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front. Pharmacol., 2018, 9, 1300.
[http://dx.doi.org/10.3389/fphar.2018.01300] [PMID: 30483135]
[3]
Nurgali, K.; Jagoe, R.T.; Abalo, R. Adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae? Front. Pharmacol., 2018, 9, 245.
[http://dx.doi.org/10.3389/fphar.2018.00245] [PMID: 29623040]
[4]
Shang, X.F.; Morris-Natschke, S.L.; Liu, Y.Q.; Guo, X.; Xu, X.S.; Goto, M.; Li, J.C.; Yang, G.Z.; Lee, K.H. Biologically active quinoline and quinazoline alkaloids part I. Med. Res. Rev., 2018, 38(3), 775-828.
[http://dx.doi.org/10.1002/med.21466] [PMID: 28902434]
[5]
Zhang, Y.; Xu, W. Progress on kinesin spindle protein inhibitors as anti-cancer agents. Anticancer. Agents Med. Chem., 2008, 8(6), 698-704.
[http://dx.doi.org/10.2174/187152008785133119] [PMID: 18690830]
[6]
Sarli, V.; Giannis, A. Targeting the kinesin spindle protein: basic principles and clinical implications. Clin. Cancer Res., 2008, 14(23), 7583-7587.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0120] [PMID: 19047082]
[7]
Lamora, A.; Mullard, M.; Amiaud, J.; Brion, R.; Heymann, D.; Redini, F.; Verrecchia, F. Anticancer activity of halofuginone in a preclinical model of osteosarcoma: inhibition of tumor growth and lung metastases. Oncotarget, 2015, 6(16), 14413-14427.
[http://dx.doi.org/10.18632/oncotarget.3891] [PMID: 26015407]
[8]
Koltai, T. Re-purposing evodiamine as an anti-cancer drug: effects on migration and apoptosis. Open Acc J. Oncol. Med., 2018, 1, 37-51.
[http://dx.doi.org/10.32474/OAJOM.2018.01.000111]]
[9]
Mehta, L. Naved, T.; Grover, P.; Bhardwaj, M.; Mukherjee, D. LC and LC-MS/MS studies for identification and characterization of new degradation products of ibrutinib and elucidation of their degradation pathway. J. Pharm. Biomed. Anal., 2021, 194113768
[http://dx.doi.org/10.1016/j.jpba.2020.113768] [PMID: 33279300]
[10]
Dey, T.; Dutta, P.; Manna, P.; Kalita, J.; Boruah, H.P.D.; Buragohain, A.K.; Unni, B. Anti-proliferative activities of vasicinone on lung carcinoma cells mediated via activation of both mitochondria-dependent and independent pathways. Biomol. Ther. (Seoul), 2018, 26(4), 409-416.
[http://dx.doi.org/10.4062/biomolther.2017.097] [PMID: 29310422]
[11]
Mai, H.D.T. Synthesis and biological evaluation of febrifugine analogues. Nat. Prod. Commun., 2014, 9(12), 1717-1720.
[PMID: 25632466]
[12]
Venkatesh, R.; Ramaiah, M.J.; Gaikwad, H.K.; Janardhan, S.; Bantu, R.; Nagarapu, L.; Sastry, G.N.; Ganesh, A.R.; Bhadra, M. Luotonin-A based quinazolinones cause apoptosis and senescence via HDAC inhibition and activation of tumor suppressor proteins in HeLa cells. Eur. J. Med. Chem., 2015, 94, 87-101.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.057] [PMID: 25757092]
[13]
Kim, D.H.; Karim, M.; Lu, Y.; Jahng, Y. Synthesis of hydroxylated tryptanthrins as possible metabolites and characterization. Heterocycl. Commun., 2015, 21(2), 67-71.
[http://dx.doi.org/10.1515/hc-2014-0103]
[14]
Tan, Q.; Zhang, J. Evodiamine and its role in chronic diseases. Adv. Exp. Med. Biol., 2016, 929, 315-328.
[http://dx.doi.org/10.1007/978-3-319-41342-6_14] [PMID: 27771931]
[15]
Yao, J.; Xiao, J.; Wei, X.; Lu, Y. Chaetominine induces cell cycle arrest in human leukemia K562 and colon cancer SW1116 cells. Oncol. Lett., 2018, 16(4), 4671-4678.
[http://dx.doi.org/10.3892/ol.2018.9161] [PMID: 30214601]
[16]
Kornsakulkarn, J.; Saepua, S.; Srijomthong, K.; Rachtawee, P.; Thongpanchang, C. Quinazolinone alkaloids from actinomycete Streptomyces sp. BCC 21795. Phytochem. Lett., 2015, 12, 6-8.
[http://dx.doi.org/10.1016/j.phytol.2015.02.007]
[17]
Kshirsagar, U.A. Recent developments in the chemistry of quinazolinone alkaloids. Org. Biomol. Chem., 2015, 13(36), 9336-9352.
[http://dx.doi.org/10.1039/C5OB01379H] [PMID: 26278395]
[18]
Asif, M. Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. Int. J. Med. Chem., 2014, 2014395637
[http://dx.doi.org/10.1155/2014/395637] [PMID: 25692041]
[19]
Yu, C.H.; Lin, R.C.; Wang, P.S. Anti-proliferative effects of evodiamine and rutaecarpine on human ovarian cancer cell line SKOV3. Biol. Reprod., 2010, 83, 134.
[http://dx.doi.org/10.1093/biolreprod/83.s1.134]
[20]
Karunakar, P.; Gujjewar, S.; Sharma, S.; Pothukanuri, S.; Muthusamy, K.; Arumugam, P.; Kumar, C.N.S.S.P. Design, synthesis and anticancer activity of novel triazole substituted quinazoline hybrids. Int. J. Pharm. Sci. Res., 2020, 11(3), 3569-3579.
[http://dx.doi.org/10.26452/ijrps.v11i3.2513]
[21]
Li, W.; Chen, S.Y.; Hu, W.N.; Zhu, M.; Liu, J.M.; Fu, Y.H.; Wang, Z.C.; OuYang, G.P. Design, synthesis, and biological evaluation of quinazoline derivatives containing piperazine moieties as antitumor agents. J. Chem. Res., 2020, 44, 536-542.
[http://dx.doi.org/10.1177/1747519820910384]
[22]
Lv, J.J.; Song, W.T.; Li, X.M.; Gao, J.M.; Yuan, Z.L. Synthesis of a new phenyl chlormethine-quinazoline derivative, a potential anti-cancer agent, induced apoptosis in hepatocellular carcinoma through mediating sirt1/caspase 3 signaling pathway. Front. Pharmacol., 2020, 11, 911.
[http://dx.doi.org/10.3389/fphar.2020.00911] [PMID: 32670058]
[23]
Buggana, S.J.; Paturi, M.C. VVS, R.P. Design and synthesis of novel 2, 3-disubstituted quinazolines: Evaluation of in vitro anticancer activity and in silico studies. Asian J. Pharm. Clin. Res, 2019, 13, 174-179.
[http://dx.doi.org/10.22159/ajpcr.2020.v13i1.36215]
[24]
Bathula, R.; Satla, S.R.; Kyatham, R.; Gangarapu, K. Design, one pot synthesis and molecular docking studies of substituted-1H-pyrido[2,1-b] quinazolines as apoptosis-inducing anticancer agents. Asian Pac. J. Cancer Prev., 2020, 21(2), 411-421.
[http://dx.doi.org/10.31557/APJCP.2020.21.2.411] [PMID: 32102519]
[25]
Zhuo, L.S.; Wu, F.X.; Wang, M.S.; Xu, H.C.; Yang, F.P.; Tian, Y.G.; Zhao, X.E.; Ming, Z.H.; Zhu, X.L.; Hao, G.F.; Huang, W. Structure-activity relationship study of novel quinazoline-based 1,6-naphthyridinones as MET inhibitors with potent antitumor efficacy. Eur. J. Med. Chem., 2020, 208112785
[http://dx.doi.org/10.1016/j.ejmech.2020.112785] [PMID: 32898795]
[26]
Markosyan, A.I.; Ayvazyan, A.S.; Gabrielyan, S.H.; Mamyan, S.S.; Arsenyan, F.H.; Muradyan, R.E.; Avakimyan, J.A. Synthesis and biological activity of 3-substituted 1H-spiro [benzo [h]-quinazoline-5, 1′-cycloheptane]-2, 4 (3 H, 6 H)-diones. Pharm. Chem. J., 2020, 54(5), 449-454.
[http://dx.doi.org/10.1007/s11094-020-02221-y]
[27]
Kovvuri, J. Visible light photoredox-catalyzed synthesis of quinazolinone derivatives and their cytotoxicity. Der Pharma Chem., 2020, 12(4), 8-15.
[28]
Hu, S.; Sechi, M.; Singh, P.K.; Dai, L.; McCann, S.; Sun, D.; Ljungman, M.; Neamati, N. A Novel redox modulator induces a GPX4-mediated cell death that is dependent on iron and reactive oxygen species. J. Med. Chem., 2020, 63(17), 9838-9855.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01016] [PMID: 32809827]
[29]
Catanzaro, E.; Betari, N.; Arencibia, J.M.; Montanari, S.; Sissi, C.; De Simone, A.; Vassura, I.; Santini, A.; Andrisano, V.; Tumiatti, V.; De Vivo, M.; Krysko, D.V.; Rocchi, M.B.L.; Fimognari, C.; Milelli, A. Targeting topoisomerase II with trypthantrin derivatives: Discovery of 7-((2-(dimethylamino)ethyl)amino)indolo[2,1-b]quinazoline-6,12-dione as an antiproliferative agent and to treat cancer. Eur. J. Med. Chem., 2020, 202112504
[http://dx.doi.org/10.1016/j.ejmech.2020.112504] [PMID: 32712536]
[30]
Perupogu, N.; Krishna, C.M.; Ramachandran, D. Design, synthesis and anticancer evaluation of 1, 2, 4-thiadiazole linked benzoxazole-quinazoline derivatives. Chem. Data Collect., 2020, 28100482
[http://dx.doi.org/10.1016/j.cdc.2020.100482]
[31]
El-Adl, K.; El-Helby, A.A.; Sakr, H.; El-Hddad, S.S.A. Design, synthesis, molecular docking, and anticancer evaluations of 1-benzylquinazoline-2,4(1H,3H)-dione bearing different moieties as VEGFR-2 inhibitors. Arch. Pharm. (Weinheim), 2020, 353(8)e2000068
[http://dx.doi.org/10.1002/ardp.202000068] [PMID: 32510731]
[32]
Hadi, S.R.A.E.; Lasheen, D.S.; Soliman, D.H.; Elrazaz, E.Z.; Abouzid, K.A.M. Scaffold hopping and redesign approaches for quinazoline based urea derivatives as potent VEGFR-2 inhibitors. Bioorg. Chem., 2020, 101103961
[http://dx.doi.org/10.1016/j.bioorg.2020.103961] [PMID: 32480170]
[33]
El-Shafey, H.W.; Gomaa, R.M.; El-Messery, S.M.; Goda, F.E. Quinazoline Based HSP90 Inhibitors: Synthesis, Modeling Study and ADME Calculations Towards Breast Cancer Targeting. Bioorg. Med. Chem. Lett., 2020, 30(15)127281
[http://dx.doi.org/10.1016/j.bmcl.2020.127281] [PMID: 32527460]
[34]
Das, D.; Xie, L.; Wang, J.; Shi, J.; Hong, J. In vivo efficacy studies of novel quinazoline derivatives as irreversible dual EGFR/HER2 inhibitors, in lung cancer xenografts (NCI-H1975) mice models. Bioorg. Chem., 2020, 99103790
[http://dx.doi.org/10.1016/j.bioorg.2020.103790] [PMID: 32279037]
[35]
Valderrama, J.A.; Ríos, D.; Muccioli, G.G.; Buc Calderon, P.; Benites, J. In vitro inhibition of Hsp90 protein by benzothiazoloquinazolinequinones is enhanced in the presence of ascorbate. A preliminary in vivo antiproliferative study. Molecules, 2020, 25(4), 953.
[http://dx.doi.org/10.3390/molecules25040953] [PMID: 32093392]
[36]
Khazir, J.; Mir, B.A.; Pandita, M.; Pilcher, L.; Riley, D.; Chashoo, G. Design and synthesis of sulphonyl acetamide analogues of quinazoline as anticancer agents. Med. Chem. Res., 2020, 29, 916-925.
[http://dx.doi.org/10.1007/s00044-020-02533-4]
[37]
Allam, H.A.; Aly, E.E.; Farouk, A.K.B.A.W.; El Kerdawy, A.M.; Rashwan, E.; Abbass, S.E.S. Design and synthesis of some new 2,4,6-trisubstituted quinazoline EGFR inhibitors as targeted anticancer agents. Bioorg. Chem., 2020, 98103726
[http://dx.doi.org/10.1016/j.bioorg.2020.103726] [PMID: 32171987]
[38]
Schmitt, J.; Goodfellow, E.; Huang, S.; Williams, C.; Gomes, I.N.F.; Rosa, M.N.; Reis, R.M.; Yang, R.; Titi, H.M.; Jean-Claude, B.J. Comparative analysis of the dual EGFR-DNA targeting and growth inhibitory properties of 6-mono-alkylamino- and 6,6-dialkylaminoquinazoline-based type II combi-molecules. Eur. J. Med. Chem., 2020, 192112185
[http://dx.doi.org/10.1016/j.ejmech.2020.112185] [PMID: 32145644]
[39]
Sun, M.; Jia, J.; Sun, H.; Wang, F. Design and synthesis of a novel class EGFR/HER2 dual inhibitors containing tricyclic oxazine fused quinazolines scaffold. Bioorg. Med. Chem. Lett., 2020, 30(9)127045
[http://dx.doi.org/10.1016/j.bmcl.2020.127045] [PMID: 32139324]
[40]
Abdelmonsef, A.H.; Mosallam, A.M. Synthesis, in vitro biological evaluation and in silico docking studies of new quinazolin-2, 4-dione analogues as possible anticarcinoma agents. J. Heterocycl. Chem., 2020, 57(4), 1637-1654.
[http://dx.doi.org/10.1002/jhet.3889]
[41]
Szumilak, M.; Lichota, A.; Olczak, A.; Szczesio, M.; Stanczak, A. Molecular insight into quinazoline derivatives with cytotoxic activity. J. Mol. Struct., 2019, 1194, 28-34.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.042]
[42]
Srinivasa, M.; Satyavenia, S.; Ram, B. Design, synthesis, and biological evaluation of 1,2,4-oxadiazole-isoxazole linked quinazoline derivatives as anticancer agents. Russ. J. Gen. Chem., 2019, 89(12), 2492-2497.
[http://dx.doi.org/10.1134/S1070363219120260]
[43]
Rahmannejadi, N.; Yavari, I.; Khabnadideh, S. Synthesis and antitumor activities of novel bis-quinazolin-4(3H)-ones. J. Heter. Chem., 2020, 57(3), 978-982.
[http://dx.doi.org/10.1002/jhet.3749]]
[44]
Zhang, K.; Lai, F.; Lin, S.; Ji, M.; Zhang, J.; Zhang, Y.; Jin, J.; Fu, R.; Wu, D.; Tian, H.; Xue, N.; Sheng, L.; Zou, X.; Li, Y.; Chen, X.; Xu, H. Design, synthesis, and biological evaluation of 4-methyl quinazoline derivatives as anticancer agents simultaneously targeting phosphoinositide 3-kinases and histone deacetylases. J. Med. Chem., 2019, 62(15), 6992-7014.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00390] [PMID: 31117517]
[45]
El-Sayed, A.A.; Ismail, M.F.; Amr, A.E.E.; Naglah, A.M. Synthesis, antiproliferative, and antioxidant evaluation of 2-pentylquinazolin-4(3H)-one(thione) derivatives with DFT study. Molecules, 2019, 24(20), 3787.
[http://dx.doi.org/10.3390/molecules24203787] [PMID: 31640238]
[46]
Joshi, G.; Kalra, S.; Yadav, U.P.; Sharma, P.; Singh, P.K.; Amrutkar, S.; Ansari, A.J.; Kumar, S.; Sharon, A.; Sharma, S.; Sawant, D.M.; Banerjee, U.C.; Singh, S.; Kumar, R. E-pharmacophore guided discovery of pyrazolo[1,5-c]quinazolines as dual inhibitors of topoisomerase-I and histone deacetylase. Bioorg. Chem., 2020, 94103409
[http://dx.doi.org/10.1016/j.bioorg.2019.103409] [PMID: 31732194]
[47]
Yang, Z.; Gu, J.M.; Ma, Q.Y.; Xue, N.; Shi, X.W.; Wang, L.; Zhang, K.; Wang, Y.B.; Cao, D.Y.; Guo, R.; Xing, R.J. Design, synthesis and antitumor activity of aromatic urea-quinazolines. Future Med. Chem., 2019, 11(21), 2821-2830.
[http://dx.doi.org/10.4155/fmc-2019-0220] [PMID: 31510797]
[48]
Bose, P.; Siddique, M.U.M.; Acharya, R.; Jayaprakash, V.; Sinha, B.N.; Lapenna, A.; Pattanayak, S.P. Quinazolinone derivative BNUA-3 ameliorated [NDEA+2-AAF]-induced liver carcinogenesis in SD rats by modulating AhR-CYP1B1-Nrf2-Keap1 pathway. Clin. Exp. Pharmacol. Physiol., 2020, 47(1), 143-157.
[http://dx.doi.org/10.1111/1440-1681.13184] [PMID: 31563143]
[49]
Degorce, S.L.; Anjum, R.; Bloecher, A.; Carbajo, R.J.; Dillman, K.S.; Drew, L.; Halsall, C.T.; Lenz, E.M.; Lindsay, N.A.; Mayo, M.F.; Pink, J.H.; Robb, G.R.; Rosen, A.; Scott, J.S.; Xue, Y. Discovery of a series of 5-azaquinazolines as orally efficacious IRAK4 inhibitors targeting MyD88L265P mutant diffuse large b cell lymphoma. J. Med. Chem., 2019, 62(21), 9918-9930.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01346] [PMID: 31622099]
[50]
Khodair, A.I.; Alsafi, M.A.; Nafie, M.S. Synthesis, molecular modeling and anti-cancer evaluation of a series of quinazoline derivatives. Carbohydr. Res., 2019, 486107832
[http://dx.doi.org/10.1016/j.carres.2019.107832] [PMID: 31622868]
[51]
Baska, F.; Sipos, A.; Őrfi, Z.; Nemes, Z.; Dobos, J.; Szántai-Kis, C.; Szabó, E.; Szénási, G.; Dézsi, L.; Hamar, P.; Cserepes, M.T.; Tóvári, J.; Garamvölgyi, R.; Krekó, M.; Őrfi, L. Discovery and development of extreme selective inhibitors of the ITD and D835Y mutant FLT3 kinases. Eur. J. Med. Chem., 2019, 184111710
[http://dx.doi.org/10.1016/j.ejmech.2019.111710] [PMID: 31614258]
[52]
El-Gazzar, M.G.; El-Hazek, R.M.; Zaher, N.H.; El-Ghazaly, M.A.; El-Ghazaly, M.A. Design and synthesis of novel pyridazinoquinazoline derivatives as potent VEGFR-2 inhibitors: in vitro and in vivo study. Bioorg. Chem., 2019, 92103251
[http://dx.doi.org/10.1016/j.bioorg.2019.103251] [PMID: 31525526]
[53]
Zhang, Y.; Chen, L.; Li, X.; Gao, L.; Hao, Y.; Li, B.; Yan, Y. Novel 4-arylaminoquinazolines bearing N,N-diethyl(aminoethyl)amino moiety with antitumour activity as EGFRwt-TK inhibitor. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1668-1677.
[http://dx.doi.org/10.1080/14756366.2019.1667341] [PMID: 31530043]
[54]
Kavita, K.; Srinivasan, N.; Hari, B.Y.; Suresh, R. Synthesis and molecular docking study of novel 2-phenyl quinazoline-4(-3H)-one derivatives as COX-2 inhibitors. IAJPS, 2019, 6, 4032-4037.
[55]
Zhang, Y.; Niu, P.; Wen, Q.; Sun, L.; Wang, W.; Xu, S.; Liu, G. Design, synthesis, and anticancer activities of sodium quinazolin-4-diselenide compounds. J. Heter. Chem., 2019, 57(1), 497-502.
[http://dx.doi.org/10.1002/jhet.3743]]
[56]
Huan, L.C.; Tran, P.T.; Phuong, C.V.; Duc, P.H.; Anh, D.T.; Hai, P.T.; Huong, L.T.T.; Thuan, N.T.; Lee, H.J.; Park, E.J.; Kang, J.S.; Linh, N.P.; Hieu, T.T.; Oanh, D.T.K.; Han, S.B.; Nam, N.H. Novel 3,4-dihydro-4-oxoquinazoline-based acetohydrazides: design, synthesis and evaluation of antitumor cytotoxicity and caspase activation activity. Bioorg. Chem., 2019, 92103202
[http://dx.doi.org/10.1016/j.bioorg.2019.103202] [PMID: 31479984]
[57]
Zhang, Y.; Hou, Q.; Li, X.; Zhu, J.; Wang, W.; Li, B.; Zhao, L.; Xia, H. Enrichment of novel quinazoline derivatives with high antitumor activity in mitochondria tracked by its self-fluorescence. Eur. J. Med. Chem., 2019, 178, 417-432.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.015] [PMID: 31202990]
[58]
Hei, Y.Y.; Zhang, S.Q.; Feng, Y.; Wang, J.; Duan, W.; Zhang, H.; Mao, S.; Sun, H.; Xin, M. Alkylsulfonamide-containing quinazoline derivatives as potent and orally bioavailable PI3Ks inhibitors. Bioorg. Med. Chem., 2019, 27(20)114930
[http://dx.doi.org/10.1016/j.bmc.2019.05.043] [PMID: 31176568]
[59]
Abdelsalam, E.A.; Zaghary, W.A.; Amin, K.M.; Abou Taleb, N.A.; Mekawey, A.A.I.; Eldehna, W.M.; Abdel-Aziz, H.A.; Hammad, S.F.; Hammada, S.F. Synthesis and in vitro anticancer evaluation of some fused indazoles, quinazolines and quinolines as potential EGFR inhibitors. Bioorg. Chem., 2019, 89102985
[http://dx.doi.org/10.1016/j.bioorg.2019.102985] [PMID: 31121559]
[60]
Fan, H.; Wei, D.; Zheng, K.; Qin, X.; Yang, L.; Yang, Y.; Duan, Y.; Xu, Y.; Hu, L. Discovery of Dioxino[2,3-f]quinazoline derivative VEGFR-2 inhibitors exerting significant antipro-liferative activity in HUVECs and mice. Eur. J. Med. Chem., 2019, 175, 349-356.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.015] [PMID: 31096155]
[61]
Wei, D.; Fan, H.; Zheng, K.; Qin, X.; Yang, L.; Yang, Y.; Duan, Y.; Zhang, Q.; Zeng, C.; Hu, L. Synthesis and anti-tumor activity of [1,4] dioxino [2,3-f] quinazoline derivatives as dual inhibitors of c-Met and VEGFR-2. Bioorg. Chem., 2019, 88102916
[http://dx.doi.org/10.1016/j.bioorg.2019.04.010] [PMID: 31026719]
[62]
Mularski, J.; Malarz, K.; Pacholczyk, M.; Musiol, R. The p53 stabilizing agent CP-31398 and multi-kinase inhibitors. Designing, synthesizing and screening of styrylquinazoline series. Eur. J. Med. Chem., 2019, 163, 610-625.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.012] [PMID: 30562697]
[63]
Song, J.; Jang, S.; Lee, J.W.; Jung, D.; Lee, S.; Min, K.H. Click chemistry for improvement in selectivity of quinazoline-based kinase inhibitors for mutant epidermal growth factor receptors. Bioorg. Med. Chem. Lett., 2019, 29(3), 477-480.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.020] [PMID: 30554954]
[64]
Srivallian, T.; Suthakaran, R. Evaluation of anticancer activity for pyrazolequinazoline derivatives by trypan blue assay method. Int. J. Res. Pharm. Chem., 2018, 8, 583-587.
[65]
Xiangchuan, M.; Na, L.; Erdong, L.; Tonghang, C.; Meng, L.; Qingyi, L.; Wenjuan, Y.; Qingqing, Z.; Yu, Z.; Zhiyu, Z.; Panpan, S. Synthesis and antitumor activities evaluation of 2-methylthio-4-arylamine quinazoline derivatives. Youji Huaxue, 2018, 38(11), 3063-3069.
[http://dx.doi.org/10.6023/cjoc201805015]
[66]
Na, L.; Jingchao, X.; Yaqi, M.; Erdong, L.; Qisheng, M.; Chongnan, B.; Peng, Y.; Panpan, S.; Fei, C.; Peirong, Z.; Wen, L. Synthesis and antitumor evaluation of 2, 4-substituted quinazoline derivatives containing benzimidazole. Youji Huaxue, 2018, 38(10), 2673-2679.
[http://dx.doi.org/10.6023/cjoc2018004016]
[67]
Ahmed, M.; Magdy, N. Design, synthesis and anticancer activity evaluation of new quinazoline derivatives linked to thiazolidinone, azetidinone or oxadiazol moieties. Acta Pol. Pharm., 2018, 75(6), 1321-132.
[http://dx.doi.org/10.32383/appdr/89488]
[68]
Mphahlele, M.J.; Mmonwa, M.M.; Aro, A.; McGaw, L.J.; Choong, Y.S. Synthesis, biological evaluation and molecular docking of novel indole-aminoquinazoline hybrids for anticancer properties. Int. J. Mol. Sci., 2018, 19(8), 2232.
[http://dx.doi.org/10.3390/ijms19082232] [PMID: 30065164]
[69]
Nowar, R.M.A.; Osman, A. E.E.; Abou-Seri, S.M.; El Moghazy, S.M.; Abou El Ella, D.A. Design, synthesis and biological evaluation of some novel quinazolinone derivatives as potent apoptotic inducers. Future Med. Chem., 2018, 10(10), 1191-1205.
[http://dx.doi.org/10.4155/fmc-2017-0284] [PMID: 29749767]
[70]
Das, D.; Xie, L.; Wang, J.; Xu, X.; Zhang, Z.; Shi, J.; Le, X.; Hong, J. Discovery of new quinazoline derivatives as irreversible dual EGFR/HER2 inhibitors and their anticancer activities - Part 1. Bioorg. Med. Chem. Lett., 2019, 29(4), 591-596.
[PMID: 7850785]
[71]
Heppell, J.T.; Islam, M.A.; McAlpine, S.R.; Al-Rawi, J.M. Functionalization of quinazolin-4-ones part 3: synthesis, structures elucidation, DNA-PK, PI3K, and cytotoxicity of novel 8-aryl-2-morpholino-quinazolin-4-ones. J. Heterocycl. Chem., 2019, 56(1), 124-141.
[http://dx.doi.org/10.1002/jhet.3385]
[72]
Bosco, D.; Balakrishnan, A.; Mishra, R.; Aneesh, T. Design, synthesis and pharmacological evaluation of 2-phenyl quinazolin-4-one derivatives as anticolorectal cancer and anti-inflammatory agent. Asian J. Chem., 2018, 30(12), 2677-2685.
[http://dx.doi.org/10.14233/ajchem.2018.21547]
[73]
Banerji, B.; Chandrasekhar, K.; Sreenath, K.; Roy, S.; Nag, S.; Saha, K.D. Synthesis of triazole-substituted quinazoline hybrids for anticancer activity and a lead compound as the EGFR blocker and ROS inducer agent. ACS Omega, 2018, 3(11), 16134-16142.
[http://dx.doi.org/10.1021/acsomega.8b01960] [PMID: 30556027]
[74]
Chen, J.; Sang, Z.; Jiang, Y.; Yang, C.; He, L. Design, synthesis, and biological evaluation of quinazoline derivatives as dual HDAC1 and HDAC6 inhibitors for the treatment of cancer. Chem. Biol. Drug Des., 2019, 93(3), 232-241.
[http://dx.doi.org/10.1111/cbdd.13405] [PMID: 30251407]
[75]
Rahmannejadi, N.; Khabnadideh, S.; Yavari, I. Synthesis, docking, and cytotoxic activities of novel 2-aryl-4-(arylamino) quinazolines. Monatsh. Chem., 2018, 149(11), 2085-2092.
[http://dx.doi.org/10.1007/s00706-018-2270-3]
[76]
Hu, X.; Zhao, H.; Wang, Y.; Liu, Z.; Feng, B.; Tang, C. Synthesis and biological evaluation of novel 5,6-dihydropyrimido[4,5-f]quinazoline derivatives as potent CDK2 inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(20), 3385-3390.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.035] [PMID: 30197029]
[77]
Wu, T.; Pang, Y.; Guo, J.; Yin, W.; Zhu, M.; Hao, C.; Wang, K.; Wang, J.; Zhao, D.; Cheng, M. Discovery of 2-(4-substituted-piperidin/piperazine-1-yl)-N-(5-cyclopropyl-1H-pyrazol-3-yl)-quinazoline-2, 4-diamines as PAK4 inhibitors with potent A549 cell proliferation, migration, and invasion inhibition activity. Molecules, 2018, 23(2), 417.
[http://dx.doi.org/10.3390/molecules23020417] [PMID: 29443911]
[78]
Zhao, H.; Hu, X.; Cao, K.; Zhang, Y.; Zhao, K.; Tang, C.; Feng, B. Synthesis and SAR of 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivatives as potent and selective CDK4/6 inhibitors. Eur. J. Med. Chem., 2018, 157, 935-945.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.043] [PMID: 30165341]
[79]
Sun, S.; Zhang, J.; Wang, N.; Kong, X.; Fu, F.; Wang, H.; Yao, J. Design and discovery of quinazoline-and thiourea-containing sorafenib analogs as EGFR and VEGFR-2 dual TK inhibitors. Molecules, 2018, 23(1), 24.
[http://dx.doi.org/10.3390/molecules23010024] [PMID: 29342095]
[80]
Poudapally, S.; Battu, S.; Velatooru, L.R.; Bethu, M.S.; Janapala, V.R.; Sharma, S.; Sen, S.; Pottabathini, N.; Iska, V.B.R.; Katangoor, V. Synthesis and biological evaluation of novel quinazoline-sulfonamides as anti-cancer agents. Bioorg. Med. Chem. Lett., 2017, 27(9), 1923-1928.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.042] [PMID: 28351589]
[81]
Shi, H.; Li, Y.; Ren, X.; Zhang, Y.; Yang, Z.; Qi, C. A novel quinazoline-based analog induces G2/M cell cycle arrest and apoptosis in human A549 lung cancer cells via a ROS-dependent mechanism. Biochem. Biophys. Res. Commun., 2017, 486(2), 314-320.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.034] [PMID: 28302490]
[82]
Chang, J.; Ren, H.; Zhao, M.; Chong, Y.; Zhao, W.; He, Y.; Zhao, Y.; Zhang, H.; Qi, C. Development of a series of novel 4-anlinoquinazoline derivatives possessing quinazoline skeleton: design, synthesis, EGFR kinase inhibitory efficacy, and evaluation of anticancer activities in vitro. Eur. J. Med. Chem., 2017, 138(29), 669-688.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.005] [PMID: 28711702]
[83]
Krapf, M.K.; Gallus, J.; Wiese, M. Synthesis and biological investigation of 2,4-substituted quinazolines as highly potent inhibitors of breast cancer resistance protein (ABCG2). Eur. J. Med. Chem., 2017, 139(20), 587-611.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.020] [PMID: 28841513]
[84]
Madhavi, S.; Sreenivasulu, R.; Yazala, J.P.; Raju, R.R. Synthesis of chalcone incorporated quinazoline derivatives as anticancer agents. Saudi Pharm. J., 2017, 25(2), 275-279.
[http://dx.doi.org/10.1016/j.jsps.2016.06.005] [PMID: 28344479]
[85]
Maestri, V.; Tarozzi, A.; Simoni, E.; Cilia, A.; Poggesi, E.; Naldi, M.; Nicolini, B.; Pruccoli, L.; Rosini, M.; Minarini, A. Quinazoline based α1-adrenoreceptor antagonists with potent antiproliferative activity in human prostate cancer cell lines. Eur. J. Med. Chem., 2017, 136, 259-269.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.003] [PMID: 28499171]
[86]
Zeng, M.; Lu, J.; Li, L.; Feru, F.; Quan, C.; Gero, T.W.; Ficarro, S.B.; Xiong, Y.; Ambrogio, C.; Paranal, R.M.; Catalano, M.; Shao, J.; Wong, K.K.; Marto, J.A.; Fischer, E.S.; Jänne, P.A.; Scott, D.A.; Westover, K.D.; Gray, N.S. Potent and selective covalent quinazoline inhibitors of KRAS G12C. Cell Chem. Biol., 2017, 24(8), 1005-1016.e3.
[http://dx.doi.org/10.1016/j.chembiol.2017.06.017] [PMID: 28781124]
[87]
Zhang, Y.; Gao, H.; Liu, R.; Liu, J.; Chen, L.; Li, X.; Zhao, L.; Wang, W.; Li, B. Quinazoline-1-deoxynojirimycin hybrids as high active dual inhibitors of EGFR and α-glucosidase. Bioorg. Med. Chem. Lett., 2017, 27(18), 4309-4313.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.035] [PMID: 28838691]
[88]
Zhao, H.; Ji, M.; Cui, G.; Zhou, J.; Lai, F.; Chen, X.; Xu, B. Discovery of novel quinazoline-2,4(1H,3H)-dione derivatives as potent PARP-2 selective inhibitors. Bioorg. Med. Chem., 2017, 25(15), 4045-4054.
[http://dx.doi.org/10.1016/j.bmc.2017.05.052] [PMID: 28622906]
[89]
Alafeefy, A.M.; Ahmad, R.; Abdulla, M.; Eldehna, W.M.; Al-Tamimi, A-M.S.; Abdel-Aziz, H.A.; Al-Obaid, O.; Carta, F.; Al-Kahtani, A.A.; Supuran, C.T. Development of certain new 2-substituted-quinazolin-4-yl-aminobenze-nesulfonamide as potential antitumor agents. Eur. J. Med. Chem., 2016, 109(15), 247-253.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.001] [PMID: 26774930]
[90]
Aravind, A.; Dhanya, S. In-silico design, synthesis and anti-proliferative evaluation of acetidino-quinazoline derivatives. Int. J. Pharm. Sci. Rev. Res., 2016, 36(1), 249-255.
[91]
Jiang, Y.; Chen, A.C.; Kuang, G.T.; Wang, S.K.; Ou, T.M.; Tan, J.H.; Li, D.; Huang, Z.S. Design, synthesis and biological evaluation of 4-anilino-quinazoline derivatives as new c-myc G-quadruplex ligands. Eur. J. Med. Chem., 2016, 122, 264-279.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.040] [PMID: 27372288]
[92]
Kim, J.H.; Kwak, Y.; Song, C.; Roh, E.J.; Oh, C-H.; Lee, S.H.; Sim, T.; Choi, J.H.; Yoo, K.H. Synthesis of novel arylaminoquinazolinylurea derivatives and their antiproliferative activities against bladder cancer cell line. Bioorg. Med. Chem. Lett., 2016, 26(20), 5082-5086.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.076] [PMID: 27599742]
[93]
Kraege, S.; Stefan, K.; Juvale, K.; Ross, T.; Willmes, T.; Wiese, M. The combination of quinazoline and chalcone moieties leads to novel potent heterodimeric modulators of breast cancer resistance protein (BCRP/ABCG2). Eur. J. Med. Chem., 2016, 117, 212-229.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.067] [PMID: 27100033]
[94]
Mahdavi, M.; Lavi, M.M.; Yekta, R.; Moosavi, M.A.; Nobarani, M.; Balalaei, S.; Arami, S.; Rashidi, M.R. Evaluation of the cytotoxic, apoptosis inducing activity and molecular docking of spiroquinazolinone benzamide derivatives in MCF-7 breast cancer cells. Chem. Biol. Interact., 2016, 260, 232-242.
[http://dx.doi.org/10.1016/j.cbi.2016.10.004] [PMID: 27712999]
[95]
Mohamed, M.A.; Ayyad, R.R.; Shawer, T.Z.; Abdel-Aziz, A.A.M.; El-Azab, A.S. Synthesis and antitumor evaluation of trimethoxyanilides based on 4(3H)-quinazolinone scaffolds. Eur. J. Med. Chem., 2016, 112, 106-113.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.002] [PMID: 26890117]
[96]
Newton, R.; Bowler, K.A.; Burns, E.M.; Chapman, P.J.; Fairweather, E.E.; Fritzl, S.J.R.; Goldberg, K.M.; Hamilton, N.M.; Holt, S.V.; Hopkins, G.V.; Jones, S.D.; Jordan, A.M.; Lyons, A.J.; Nikki March, H.; McDonald, N.Q.; Maguire, L.A.; Mould, D.P.; Purkiss, A.G.; Small, H.F.; Stowell, A.I.J.; Thomson, G.J.; Waddell, I.D.; Waszkowycz, B.; Watson, A.J.; Ogilvie, D.J. The discovery of 2-substituted phenol quinazolines as potent RET kinase inhibitors with improved KDR selectivity. Eur. J. Med. Chem., 2016, 112, 20-32.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.039] [PMID: 26874741]
[97]
Qin, X.; Lv, Y.; Liu, P.; Li, Z.; Hu, L.; Zeng, C.; Yang, L. Novel morpholin-3-one fused quinazoline derivatives as EGFR tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(6), 1571-1575.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.009] [PMID: 26879314]
[98]
Shao, J.; Chen, E.; Shu, K.; Chen, W.; Zhang, G.; Yu, Y. 6-Oxooxazolidine-quinazolines as noncovalent inhibitors with the potential to target mutant forms of EGFR. Bioorg. Med. Chem., 2016, 24(16), 3359-3370.
[http://dx.doi.org/10.1016/j.bmc.2016.04.046] [PMID: 27387355]
[99]
Vodnala, S.; Bhavani, A.K.D.; Kamutam, R.; Naidu, V.G.M. Promila; Prabhakar, Ch. DABCO-catalyzed one-pot three component synthesis of dihydropyrano[3,2-c]chromene substituted quinazolines and their evaluation towards anticancer activity. Bioorg. Med. Chem. Lett., 2016, 26(16), 3973-3977.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.003] [PMID: 27432765]
[100]
Wang, S.B.; Cui, M.T.; Wang, X.F.; Ohkoshi, E.; Goto, M.; Yang, D.X.; Li, L.; Yuan, S.; Morris-Natschke, S.L.; Lee, K.H.; Xie, L. Synthesis, biological evaluation, and physicochemical property assessment of 4-substituted 2-phenylaminoquinazolines as Mer tyrosine kinase inhibitors. Bioorg. Med. Chem., 2016, 24(13), 3083-3092.
[http://dx.doi.org/10.1016/j.bmc.2016.05.025] [PMID: 27238842]
[101]
Zhang, Y.; Yang, C.R.; Tang, X.; Cao, S.L.; Ren, T.T.; Gao, M.; Liao, J.; Xu, X. Synthesis and antitumor activity evaluation of quinazoline derivatives bearing piperazine-1-carbodithioate moiety at C4-position. Bioorg. Med. Chem. Lett., 2016, 26(19), 4666-4670.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.060] [PMID: 27575478]
[102]
Alafeefy, A.M.; Ashour, A.E.; Prasad, O.; Sinha, L.; Pathak, S.; Alasmari, F.A.; Rishi, A.K.; Abdel-Aziz, H.A. Development of certain novel N-(2-(2-(2-oxoindolin-3-ylidene)hydrazinecarbonyl)phenyl)-benzamides and 3-(2-oxoindolin-3-ylideneamino)-2-substituted quinazolin-4(3H)-ones as CFM-1 analogs: design, synthesis, QSAR analysis and anticancer activity. Eur. J. Med. Chem., 2015, 92, 191-201.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.048] [PMID: 25555142]
[103]
Cheng, W.; Zhu, S.; Ma, X.; Qiu, N.; Peng, P.; Sheng, R.; Hu, Y. Design, synthesis and biological evaluation of 6-(nitroimidazole-1H-alkyloxyl)-4-anilinoquinazolines as efficient EGFR inhibitors exerting cytotoxic effects both under normoxia and hypoxia. Eur. J. Med. Chem., 2015, 89, 826-834.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.010] [PMID: 25462282]
[104]
Elkamhawy, A.; Farag, A.K.; Viswanath, A.N.I.; Bedair, T.M.; Leem, D.G.; Lee, K.T.; Pae, A.N.; Roh, E.J. Targeting EGFR/HER2 tyrosine kinases with a new potent series of 6-substituted 4-anilinoquinazoline hybrids: Design, synthesis, kinase assay, cell-based assay, and molecular docking. Bioorg. Med. Chem. Lett., 2015, 25(22), 5147-5154.
[http://dx.doi.org/10.1016/j.bmcl.2015.10.003] [PMID: 26475520]
[105]
Elkamhawy, A.; Viswanath, A.N.I.; Pae, A.N.; Kim, H.Y.; Heo, J.C.; Park, W.K.; Lee, C.O.; Yang, H.; Kim, K.H.; Nam, D.H.; Seol, H.J.; Cho, H.; Roh, E.J. Discovery of potent and selective cytotoxic activity of new quinazoline-ureas against TMZ-resistant glioblastoma multiforme (GBM). Eur. J. Med. Chem., 2015, 103(20), 210-222.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.001] [PMID: 26355532]
[106]
Fairhurst, R.A.; Gerspacher, M.; Imbach-Weese, P.; Mah, R.; Caravatti, G.; Furet, P.; Fritsch, C.; Schnell, C.; Blanz, J.; Blasco, F.; Desrayaud, S.; Guthy, D.A.; Knapp, M.; Arz, D.; Wirth, J.; Roehn-Carnemolla, E.; Luu, V.H. Identification and optimisation of 4,5-dihydrobenzo[1,2-d:3,4-d]bisthiazole and 4,5-dihydrothiazolo[4,5-h]quinazoline series of selective phosphatidylinositol-3 kinase alpha inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(17), 3575-3581.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.067] [PMID: 26199119]
[107]
Luxami, V.; Rani, R.; Sharma, A.; Paul, K. Quinazoline-benzimidazole hybrid as dual optical sensor for cyanide and Pb2+ ions and Aurora kinase inhibitor. J. Photochem. Photobiol. Chem., 2015, 311, 68-75.
[http://dx.doi.org/10.1016/j.jphotochem.2015.05.025]
[108]
Mahdavi, M.; Pedrood, K.; Safavi, M.; Saeedi, M.; Pordeli, M.; Ardestani, S.K.; Emami, S.; Adib, M.; Foroumadi, A.; Shafiee, A. Synthesis and anticancer activity of N-substituted 2-arylquinazolinones bearing trans-stilbene scaffold. Eur. J. Med. Chem., 2015, 95, 492-499.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.057] [PMID: 25847767]
[109]
Wang, X.M.; Xin, M.H.; Xu, J.; Kang, B.R.; Li, Y.; Lu, S.M.; Zhang, S.Q. Synthesis and antitumor activities evaluation of m-(4-morpholinoquinazolin- 2-yl)benzamides in vitro and in vivo Eur. J. Med. Chem.,, 2015, 96, 382-395.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.037] [PMID: 25911625]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy