Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Three-component Synthesis of 4-Arylidene-3-alkylisoxazol-5(4H)-ones in the Presence of Potassium 2,5-dioxoimidazolidin-1-ide

Author(s): Neda Reihani and Hamzeh Kiyani*

Volume 25, Issue 8, 2021

Published on: 12 February, 2021

Page: [950 - 962] Pages: 13

DOI: 10.2174/1385272825666210212120517

Price: $65

Abstract

An efficient synthesis of 4-arylidene-3-alkylisoxazole-5(4H)-ones has been implemented via the three-component cyclocondensation of aryl(heteroaryl)aldehydes with hydroxylamine hydrochloride and β-ketoesters. The potassium 2,5-dioxoimidazolidin-1-ide has been introduced as the new organocatalyst to facilitate this heterocyclization. In the current process, three starting materials, including substituted benzaldehydes/heterocyclic aromatic aldehydes, hydroxylamine hydrochloride, and ethyl acetoacetate/propyl acetoacetate/butyryl acetoacetate have been successfully used to synthesize the number of substituted isoxazole- 5(4H)-ones in good to high yields in ethylene glycol as a green reaction medium at 80 ºC. The low catalyst loading is also a main advantage over some reported catalysts.

Keywords: 4-Arylidene-3-alkylisoxazole-5(4H)-ones, potassium 2, 5-dioxoimidazolidin-1-ide, green chemistry, aryl aldehyde, hydroxylamine hydrochloride, β-dicarbonyl.

« Previous
Graphical Abstract

[1]
Chen, W.; Zhang, J.; Wang, B.; Zhao, Z.; Wang, X.; Hu, Y. Tandem Synthesis of 3-chloro-4-iodoisoxazoles from 1-copper(I) alkynes, dichloroformaldoxime, and molecular iodine. J. Org. Chem., 2015, 80(4), 2413-2417.
[http://dx.doi.org/10.1021/jo502634h] [PMID: 25594794]
[2]
Volkova, Y.A.; Averina, E.B.; Vasilenko, D.A.; Sedenkova, K.N.; Grishin, Y.K.; Bruheim, P.; Kuznetsova, T.S.; Zefirov, N.S. Unexpected heterocyclization of electrophilic alkenes by tetranitromethane in the presence of triethylamine. Synthesis of 5-nitroisoxazoles. J. Org. Chem., 2019, 84(6), 3192-3200.
[http://dx.doi.org/10.1021/acs.joc.8b03086] [PMID: 30726081]
[3]
Agrawal, N.; Mishra, P. The synthetic and therapeutic expedition of isoxazole and its analogs. Med. Chem. Res., 2018, 27(5), 1309-1344.
[http://dx.doi.org/10.1007/s00044-018-2152-6] [PMID: 32214770]
[4]
Chalyk, B.A.; Hrebeniuk, K.V.; Gavrilenko, K.S.; Shablykin, O.V.; Yanshyna, O.O.; Bash, D.; Mykhailiuk, P.K.; Liashuk, O.S.; Grygorenko, O.O. Synthesis of bi- and polyfunctional isoxazoles from amino acid derived halogenoximes and active methylene nitriles. Eur. J. Org. Chem., 2018, 2753-2761.
[http://dx.doi.org/10.1002/ejoc.201800311]
[5]
Barmade, M.A.; Murumkar, P.R.; Sharma, M.K.; Yadav, M.R. Medicinal chemistry perspective of fused isoxazole derivatives. Curr. Top. Med. Chem., 2016, 16(26), 2863-2883.
[http://dx.doi.org/10.2174/1568026616666160506145700] [PMID: 27150366]
[6]
Dong, K.Y.; Qin, H.T.; Bao, X.X.; Liu, F.; Zhu, C. Oxime-mediated facile access to 5-methylisoxazoles and applications in the synthesis of valdecoxib and oxacillin. Org. Lett., 2014, 16(20), 5266-5268.
[http://dx.doi.org/10.1021/ol502246t] [PMID: 25255195]
[7]
Meng, W.T.; Zheng, Y.; Nie, J.; Xiong, H.Y.; Ma, J.A. Organocatalytic asymmetric one-pot sequential conjugate addition/dearomative fluorination: synthesis of chiral fluorinated isoxazol-5(4H)-ones. J. Org. Chem., 2013, 78(2), 559-567.
[http://dx.doi.org/10.1021/jo302419e] [PMID: 23205848]
[8]
Kim, S.J.; Yang, J.; Lee, S.; Park, C.; Kang, D.; Akter, J.; Ullah, S.; Kim, Y.J.; Chun, P.; Moon, H.R. The tyrosinase inhibitory effects of isoxazolone derivatives with a (Z)-β-phenyl-α, β-unsaturated carbonyl scaffold. Bioorg. Med. Chem., 2018, 26(14), 3882-3889.
[http://dx.doi.org/10.1016/j.bmc.2018.05.047] [PMID: 29907470]
[9]
Wazalwar, S.S.; Banpurkar, A.R.; Perdih, F. Aqueous phase synthesis, crystal structure and biological study of isoxazole extensions of pyrazole-4-carbaldehyde derivatives. J. Mol. Struct., 2017, 1150, 258-267.
[http://dx.doi.org/10.1016/j.molstruc.2017.08.094]
[10]
Bhatt, D.; Gojiya, D.G.; Kalavadiya, P.L.; Joshi, H.S. Rapid, greener and ultrasound irradiated one-pot synthesis of 4-(substituted-1H-pyrazol-4-yl)methylene)-3-isopropylisoxazol-5(4H)-ones and their in vitro anticancer activity. ChemistrySelect, 2019, 4, 11125-11129.
[http://dx.doi.org/10.1002/slct.201902164]
[11]
Breuer, S.; Chang, M.W.; Yuan, J.; Torbett, B.E. Identification of HIV-1 inhibitors targeting the nucleocapsid protein. J. Med. Chem., 2012, 55(11), 4968-4977.
[http://dx.doi.org/10.1021/jm201442t] [PMID: 22587465]
[12]
Reddy, C.V.R.; Reddy, G.G. Water mediated one-pot and step-wise syntheses of indolylidine isoxazoles and their anti-cancer activity and molecular modeling studies. Chem. Africa, 2020, 3, 61-74.
[http://dx.doi.org/10.1007/s42250-019-00101-x]
[13]
Giovannoni, M.P.; Crocetti, L.; Cantini, N.; Guerrini, G.; Vergelli, C.; Iacovone, A.; Teodori, E.; Schepetkin, I.A.; Quinn, M.T.; Ciattini, S.; Rossi, P.; Paoli, P. New 3-unsubstituted isoxazolones as potent human neutrophil elastase inhibitors: synthesis and molecular dynamic simulation. Drug Dev. Res., 2020, 81(3), 338-349.
[http://dx.doi.org/10.1002/ddr.21625] [PMID: 31800122]
[14]
Ameur, N.; Ferouani, G.; Belkadi, Z.; Bachir, R.; Calvino, J.J.; Hakkoum, A. A novel approach for the preparation of silver nanoparticles supported on titanate nanotubes and bentonite-application in the synthesis of heterocyclic compound derivatives. Mater. Res. Express, 2019, 6, 125051.
[http://dx.doi.org/10.1088/2053-1591/ab5734]
[15]
Zhang, X.; Jiang, X.; Li, Y.; Lin, Z.; Zhang, G.; Wu, Y. Isoxazolone-based single crystals with large second harmonic generation effect. CrystEngComm, 2015, 17, 7316-7322.
[http://dx.doi.org/10.1039/C5CE01006C]
[16]
Zhu, Y.M.; Xu, P.; Wang, S.Y.; Ji, S.J. Palladium catalyzed insertion reaction of isocyanides with 3-arylisoxazol-5(4H)-ones: synthesis of 4-aminomethylidene isoxazolone derivates. J. Org. Chem., 2019, 84(17), 11007-11013.
[http://dx.doi.org/10.1021/acs.joc.9b01585] [PMID: 31407574]
[17]
da Silva, A.F.; Fernandes, A.A.G.; Thurow, S.; Stivanin, M.L.; Jurberg, I.D. Isoxazol-5-ones as strategic building blocks in organic synthesis. Synthesis, 2018, 50, 2473-2489.
[http://dx.doi.org/10.1055/s-0036-1589534]
[18]
Hemmer, J.R.; Page, Z.A.; Clark, K.D.; Stricker, F.; Dolinski, N.D.; Hawker, C.J.; Read de Alaniz, J. Controlling dark equilibria and enhancing donor–acceptor Stenhouse adduct photoswitching properties through carbon acid design. J. Am. Chem. Soc., 2018, 140(33), 10425-10429.
[http://dx.doi.org/10.1021/jacs.8b06067] [PMID: 30074782]
[19]
Aret, E.; Meekes, H.; Vlieg, E.; Deroover, G. Polymorphic behavior of a yellow isoxazolone dye. Dyes Pigments, 2007, 72, 339-344.
[http://dx.doi.org/10.1016/j.dyepig.2005.09.018]
[20]
Macchia, A.; Cuomo, V.D.; Di Mola, A.; Pierri, G.; Tedesco, C.; Palombi, L.; Massa, A. On the necessity of one-pot tautomer trapping in asymmetric Michael reactions of arylideneisoxazol-5-ones. Eur. J. Org. Chem., 2020, 2020, 2264-2270.
[http://dx.doi.org/10.1002/ejoc.202000286]
[21]
Galenko, E.E.; Linnik, S.A.; Khoroshilova, O.V.; Novikov, M.S.; Khlebnikov, A.F. An isoxazole strategy for the synthesis of α-aminopyrrole derivatives. J. Org. Chem., 2019, 84(17), 11275-11285.
[http://dx.doi.org/10.1021/acs.joc.9b01634] [PMID: 31385507]
[22]
Stivanin, M.L.; Duarte, M.; Sartori, C.; Capreti, N.M.R.; Angolini, C.F.F.; Jurberg, I.D. An aminocatalyzed Michael addition/iron-mediated decarboxylative cyclization sequence for the preparation of 2,3,4,6-tetrasubstituted pyridines: scope and mechanistic insights. J. Org. Chem., 2017, 82(19), 10319-10330.
[http://dx.doi.org/10.1021/acs.joc.7b01789] [PMID: 28905627]
[23]
Kappe, C.O.; Kvaskoff, D.; Moloney, D.W.J.; Flammang, R.; Wentrup, C. Iminopropadienethiones, Ar−NCCCS. J. Org. Chem., 2001, 66(5), 1827-1831.
[http://dx.doi.org/10.1021/jo001595j] [PMID: 11262134]
[24]
Capreti, N.M.R.; Jurberg, I.D. Michael addition of soft carbon nucleophiles to alkylidene isoxazol-5-ones: a divergent entry to β-branched carbonyl compounds. Org. Lett., 2015, 17(10), 2490-2493.
[http://dx.doi.org/10.1021/acs.orglett.5b01004] [PMID: 25928191]
[25]
Rieckhoff, S.; Titze, M.; Frey, W.; Peters, R. Ruthenium-catalyzed synthesis of 2H-azirines from isoxazolinones. Org. Lett., 2017, 19(17), 4436-4439.
[http://dx.doi.org/10.1021/acs.orglett.7b01895] [PMID: 28832162]
[26]
Ye, Z.; Bai, L.; Bai, Y.; Gan, Z.; Zhou, H.; Pan, T.Yu.Y.; Zhou, J. High diastereoselective synthesis of spiro-isoxazolonechromans via domino oxa-Michael/1,6-addition reactions of ortho-hydroxyphenylsubstituted para-quinone methides with unsaturated isoxazolones. Tetrahedron, 2019, 75, 682-687.
[http://dx.doi.org/10.1016/j.tet.2018.12.064]
[27]
Fernandes, A.A.G.; da Silva, A.F.; Okada, C.Y., Jr; Suzukawa, V.; Cormanich, R.A.; Jurberg, I.D. General platform for the conversion of isoxazol-5-ones to 3,5-disubstituted isoxazoles via nucleophilic substitutions and palladium catalyzed cross-coupling strategies. Eur. J. Org. Chem., 2019, 2019, 3022-3034.
[http://dx.doi.org/10.1002/ejoc.201900187]
[28]
Christodoulou, M.S.; Giofrè, S.; Beccalli, E.M.; Foschi, F.; Broggini, G. Divergent conversion of 4-naphthoquinone-substituted 4H-isoxazolones to different benzo-fused indole derivatives. Org. Lett., 2020, 22(7), 2735-2739.
[http://dx.doi.org/10.1021/acs.orglett.0c00709] [PMID: 32182085]
[29]
Shimbayashi, T.; Matsushita, G.; Nanya, A.; Eguchi, A.; Okamoto, K.; Ohe, K. Divergent catalytic approach from cyclic oxime esters to nitrogen-containing heterocycles with group 9 metal catalysts. ACS Catal., 2018, 8, 7773-7780.
[http://dx.doi.org/10.1021/acscatal.8b01646]
[30]
Moshkin, V.S.; Martynov, K.V.; Sosnovskikh, V.Y. Reinvestigation of the reaction between aromatic aldehydes, 3-phenyl-5-isoxazolone and sarcosine: Stabilized azomethine ylides as a synthetic equivalent of the methylaminomethyl anion. Tetrahedron Lett., 2020, 61, 151770.
[http://dx.doi.org/10.1016/j.tetlet.2020.151770]
[31]
Kiyani, H.; Mosallanezhad, A. Sulfanilic acid-catalyzed synthesis of 4-arylidene-3-substituted isoxazole-5(4H)-ones. Curr. Org. Synth., 2018, 15, 715-722.
[http://dx.doi.org/10.2174/1570179415666180423150259]
[32]
Kiyani, H.; Ghorbani, F. Expeditious green synthesis of 3,4-disubstituted isoxazole-5(4H)-ones catalyzed by nano-MgO. Res. Chem. Intermed., 2016, 42, 6831-6844.
[http://dx.doi.org/10.1007/s11164-016-2498-7]
[33]
Kiyani, H.; Ghorbani, F. Potassium phthalimide as efficient basic organocatalyst for the synthesis of 3,4-disubstituted isoxazol-5(4H)-ones in aqueous medium. J. Saudi Chem. Soc., 2017, 21, S112-S119.
[http://dx.doi.org/10.1016/j.jscs.2013.11.002]
[34]
Mosallanezhed, A.; Kiyani, H. KI-Mediated three-component reaction of hydroxylamine hydrochloride with aryl/heteroaryl aldehydes and two -oxoesters. Orbital: Electron. J. Chem., 2018, 10, 133-139.
[http://dx.doi.org/10.17807/orbital.v10i2.1134]
[35]
Kiyani, H.; Darbandi, H.; Mosallanezhad, A.; Ghorbani, F. 2-Hydroxy-5-sulfobenzoic acid: an efficient organocatalyst for the three-component synthesis of 1-amidoalkyl-2-naphthols and 3,4-disubstituted isoxazol-5(4H)-ones. Res. Chem. Intermed., 2015, 41, 7561-7579.
[http://dx.doi.org/10.1007/s11164-014-1844-x]
[36]
Kiyani, H.; Ghorbani, F.; Kanaani, A.; Ajloo, D.; Vakili, M. N-Bromosuccinimide (NBS)-promoted, three component synthesis of α,β-unsaturated isoxazol-5(4H)-ones, and spectroscopic investigation and computational study of 3-methyl-4-(thiophen-2-ylmethylene)isoxazol-5(4H)-one. Res. Chem. Intermed., 2015, 41, 7739-7773.
[http://dx.doi.org/10.1007/s11164-014-1857-5]
[37]
Kiyani, H.; Ghorbani, F. Efficient tandem synthesis of a variety of pyran-annulated heterocycles, 3,4-disubstituted isoxazol-5(4H)-ones, and α,β-unsaturated nitriles catalyzed by potassium hydrogen phthalate in water. Res. Chem. Intermed., 2015, 41, 7847-7882.
[http://dx.doi.org/10.1007/s11164-014-1863-7]
[38]
Nakkalwar, S.L. Shivaji, Patwari, B.; Patel, M.M.; Jadhav, V. B. Iodine catalyzed highly efficient one pot three component Synthesis of 4-arylidene-3-methylisoxazol-5(4H)-one in aqueous medium. Curr. Green Chem., 2018, 5, 121-126.
[http://dx.doi.org/10.2174/2213346105666180711151320]
[39]
Kiyani, H.; Samimi, H.A. Nickel-catalyzed one-pot, three-component synthesis of 3,4-disubstituted isoxazole-5(4H)-ones in aqueous medium. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 2017, 44, 1011-1021.
[40]
Kiyani, H.; Ghorbani, F. Boric acid-catalyzed multi-component reaction for efficient synthesis of 4H-isoxazol-5-ones in aqueous medium. Res. Chem. Intermed., 2015, 41, 2653-2664.
[http://dx.doi.org/10.1007/s11164-013-1411-x]
[41]
Maddila, S.N.; Maddila, S.; van Zyl, W.E.; Jonnalagadda, S.B. Ag/SiO2 as a recyclable catalyst for the facile green synthesis of 3-methyl-4-(phenyl)methylene-isoxazole-5(4H)-ones. Res. Chem. Intermed., 2016, 42, 2553-2566.
[http://dx.doi.org/10.1007/s11164-015-2167-2]
[42]
Vekariya, R.H.; Patel, K.D.; Patel, H.D. Fruit juice of Citrus Limon as a biodegradable and reusable catalyst for facile, eco-friendly and green synthesis of 3,4-disubstituted isoxazol-5(4H)-ones and dihydropyrano[2,3-c]pyrazole derivatives. Res. Chem. Intermed., 2016, 42, 7559-7579.
[http://dx.doi.org/10.1007/s11164-016-2553-4]
[43]
Ahmadzadeh, M.; Zarnegar, Z.; Safari, J. Sonochemical synthesis of methyl-4-(hetero)arylmethylene isoxazole-5(4H)-ones using SnII-montmorillonite. Green Chem. Lett. Rev., 2018, 11, 78-85.
[http://dx.doi.org/10.1080/17518253.2018.1434564]
[44]
Liu, Q.; Zhang, Y.N. One-pot synthesis of 3-methyl-4-arylmethylene-isoxazol-5(4H)-ones catalyzed by sodium benzoate in aqueous media: a green chemistry strategy. Bull. Korean Chem. Soc., 2011, 32, 3559-3560.
[http://dx.doi.org/10.5012/bkcs.2011.32.10.3559]
[45]
Konkala, V.S.; Dubey, P.K. One-pot synthesis of 3-phenyl-4-pyrazolylmethylene-isoxazol-(5H)-ones catalyzed by sodium benzoate in aqueous media under the influence of ultrasound waves: agreen chemistry approach. J. Heterocycl. Chem., 2017, 54, 2483-2493.
[http://dx.doi.org/10.1002/jhet.2848]
[46]
Vekariya, R.H.; Patel, H.D. Facile, eco-friendly and one-pot synthesis of 3,4-disubstituted isoxazol-5(4H)-ones using starch solution as a reaction media. Indian J. Chem., 2017, 56B, 890-896.
[47]
Patil, M.S.; Mudalian, C.; Chaturbhuj, G.U. Sulfated polyborate catalyzed expeditious and efficient three-component synthesis of 3-methyl-4-(hetero)arylmethylene isoxazole-5(4H)-ones. Tetrahedron Lett., 2017, 58, 3256-3261.
[http://dx.doi.org/10.1016/j.tetlet.2017.07.019]
[48]
Laroum, R.; Debache, A. New eco-friendly procedure for the synthesis of 4-arylmethylene-isoxazol-5(4H)-ones catalyzed by pyridinium p-toluenesulfonate (PPTS) in aqueous medium. Synth. Commun., 2018, 48, 1876-1882.
[http://dx.doi.org/10.1080/00397911.2018.1473440]
[49]
Lohar, T.; Kumbhar, A.; Barge, M.; Salunkhe, R. DABCO functionalized dicationic ionic liquid (DDIL): A novel green benchmark in multicomponent synthesis of heterocyclic scaffolds under sustainable reaction conditions. J. Mol. Liq., 2016, 224, 1102-1108.
[http://dx.doi.org/10.1016/j.molliq.2016.10.039]
[50]
Pawar, G.T.; Gadekar, S.P.; Arbad, B.R.; Lande, M.K. Modification, characterization, and catalytic application of mesolite for one pot synthesis of 3-methyl-4-arylmethylene-isoxazol-5(4H)-ones. Bull. Chem. React. Eng. Catal., 2017, 12, 32-40.
[http://dx.doi.org/10.9767/bcrec.12.1.655.32-40]
[51]
Vaidya, S.P.; Shridhar, G.; Ladage, S.; Ravishankar, L. A facile synthesis of isoxazolone derivatives catalyzed by cerium chloride heptahydrate in ethyl lactate as a solvent: a green methodology. Curr. Green Chem., 2016, 3, 160-167.
[http://dx.doi.org/10.2174/2213346103666160526130509]
[52]
Pourmousavi, S.A.; Fattahi, H.R.; Ghorbani, F.; Kanaani, A. Ajloo. D. A green and efficient synthesis of isoxazol-5(4H)-one derivatives in water and a DFT study. J. Iran. Chem. Soc., 2018, 15, 455-469.
[http://dx.doi.org/10.1007/s13738-017-1246-2]
[53]
Farahi, S.; Nowrouzi, N.; Irajzadeh, M. Three-component synthesis of isoxazolone derivatives in the presence of 4-(N,N-dimethylamino)pyridinium acetate as a protic ionic liquid. Iran. J. Sci. Technol. Trans. Sci., 2018, 42, 1881-187.
[http://dx.doi.org/10.1007/s40995-017-0453-0]
[54]
Konkala, V.S.; Dubey, P.K. One-pot synthesis of 3-phenyl-4-pyrazolylmethylene-isoxazol-(5H)-ones catalyzed by sodium benzoate in aqueous media under the influence of ultrasound waves: a green chemistry approach. J. Heterocycl. Chem., 2017, 54, 2483-2493.
[http://dx.doi.org/10.1002/jhet.2848]
[55]
Mosallanezhad, A.; Kiyani, H. Green synthesis of 3-substituted-4-arylmethylideneisoxazol-5(4H)-one derivatives catalyzed by salicylic acid. Curr. Organocatal., 2019, 6, 28-35.
[http://dx.doi.org/10.2174/2213337206666190214161332]
[56]
Kasar, S.B.; Thopate, S.R. Ultrasonically assisted efficient and green protocol for the synthesis of 4H-isoxazol-5-ones using itaconic acid as a homogeneous and reusable organocatalyst. Curr. Organocatal., 2019, 6, 231-237.
[http://dx.doi.org/10.2174/2213337206666190411115402]
[57]
Damghani, F.K.; Kiyani, H.; Pourmousavi, S.A. Green three-component synthesis of merocyanin dyes based on 4-arylideneisoxazol-5(4H)-ones. Curr. Green Chem., 2020, 7, 217-225.
[http://dx.doi.org/10.2174/2213346107666200122093906]
[58]
Shanshak, M.; Budagumpi, S.; Maecki, J.G.; Ker, R.S. Green synthesis of 3,4-disubstituted isoxazol-5(4H)-ones using ZnO@Fe3O4 core–shell nanocatalyst in water. Appl. Organomet. Chem., 2020, 34, e5544.
[http://dx.doi.org/10.1002/aoc.5544]
[59]
Laroum, R.; Boulcina, R.; Bensouici, C.; Debache, A. Facile synthesis and antioxidant evaluation of 4-arylmethylideneisoxazol-5(4H)-ones. Org. Prep. Proced. Int., 2019, 51, 583-588.
[http://dx.doi.org/10.1080/00304948.2019.1677993]
[60]
Maleki, B.; Chahkandi, M.; Tayebee, R.; Kahrobaei, S.; Alinezhad, H.; Hemmati, S. Synthesis and characterization of nanocrystalline hydroxyapatite and its catalytic behavior towards synthesis of 3,4-disubstituted isoxazole-5(4H)-ones in water. Appl. Organomet. Chem., 2019, 33, e5118.
[http://dx.doi.org/10.1002/aoc.5118]
[61]
Ferouani, G.; Ameur, N.; Bachir, R. Preparation and characterization of supported bimetallic gold–iron nanoparticles, and its potential for heterogeneous catalysis. Res. Chem. Intermed., 2020, 46, 1373-1387.
[http://dx.doi.org/10.1007/s11164-019-04039-0]
[62]
Kalhor, M.; Sajjadi, S.M.; Dadras, A. Cu/TCH-pr@SBA-15 nano-composite: a new organometallic catalyst for facile three-component synthesis of 4-arylidene-isoxazolidinones. RSC Advances, 2020, 10, 27439-27446.
[http://dx.doi.org/10.1039/D0RA01314E]
[63]
Ghorbani, F.; Kiyani, H.; Pourmousavi, S.A. Facile and expedient synthesis of α,β-unsaturated isoxazol-5(4H)-ones under mild conditions. Res. Chem. Intermed., 2020, 46, 943-959.
[http://dx.doi.org/10.1007/s11164-019-03999-7]
[64]
Kalhor, M.; Samiei, S.; Mirshokraie, S.A. MnO2@Zeolite-Y nanoporous: preparation and application as a high efficient catalyst for multi-component synthesis of 4-arylidene-isoxazolidinones. Silicon, 2020, 13, 201-210.
[http://dx.doi.org/10.1007/s12633-020-00413-5]
[65]
Basak, P.; Dey, S.; Ghosh, P. Sulfonated graphene-oxideas metal-free efficient carbocatalyst for the synthesis of 3-methyl-4-(hetero)arylmethyl-eneisoxazole-5(4H)-ones and substituted pyrazole. ChemistrySelect, 2020, 5, 626-636.
[http://dx.doi.org/10.1002/slct.201904164]
[66]
Hatvate, N.T.; Ghodse, S.M. One-pot three-component synthesis of isoxazole using ZSM-5 as a heterogeneous catalyst. Synth. Commun., 2020, 50, 3676-3683.
[http://dx.doi.org/10.1080/00397911.2020.1815786]
[67]
Baccolini, G.; Boga, C.; Delpivo, C.; Micheletti, G. Facile synthesis of hydantoins and thiohydantoins in aqueous solution. Tetrahedron Lett., 2011, 52, 1713-1717.
[http://dx.doi.org/10.1016/j.tetlet.2011.02.002]
[68]
Ösz, E.; Szilágyi, L.; Marton, J. Structural analysis of hydantoins and 2-thiohydantoins in solution using 13C, 1H NMR coupling constants. J. Mol. Struct., 1998, 442, 267-274.
[http://dx.doi.org/10.1016/S0022-2860(97)00357-8]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy