Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Formulation, Characterisation and In vitro Cytotoxic Effect of Lens culinaris Medikus Seeds Extract Loaded Chitosan Microspheres

Author(s): Kripi Vohra, Meenu Mehta, Vandana Garg, Kamal Dua* and Harish Dureja*

Volume 14, Issue 3, 2021

Published on: 10 February, 2021

Page: [448 - 457] Pages: 10

DOI: 10.2174/1874467214666210210124739

Price: $65

Abstract

Objective: The aim of present study was to formulate chitosan microspheres loaded with ethanolic extract of Lens culinaris Medikus (L.culinaris) seeds (ME) and to explore its anticancer potential against lung cancer (A549) cell line.

Methods: Central composite design was applied to prepare and optimise the chitosan microspheres. The prepared microspheres were evaluated for its physicochemical characterisation, in vitro drug release and anti-cancer potential in vitro.

Results: L.culinaris loaded chitosan microspheres were prepared successfully with suitable particle size, entrapment efficiency and drug release. The developed ME were spherical shaped with the particle size of 2.08 μm. The drug entrapment efficiency and cumulative drug release was found 1.58±0.02% and 81.95±0.35%, respectively. Differential scanning calorimetry studies revealed no interaction between drugs and polymers used. The cytotoxic effect of the optimised formulation revealed a significant response as compared to the ethanolic extract of L.culinaris seeds (IC50: 22.56 μg/ml vs. 63.58 μg/ml), which was comparable to that of reference drug, doxorubicin (22 μg/ml). These observations demonstrate that the optimised microspheres are effective against lung cancer (A549) cells.

Conclusion: The significant cytotoxic response of the developed microspheres may be attributed due to its low particle size, high entrapment efficiency and prolonged drug release profile.

Keywords: Lens culinaris, microspheres, chitosan, cytotoxic, ethanol extract, central composite design.

Graphical Abstract

[1]
WHO. Cancer, 2019. Available at: https://www.who.int/news-room/fact-sheets/detail/cancer (Accessed on August 1, 2020).
[2]
WHO. Cancer Factsheet World Health Organization. 2018. Available at: http://www.who.int/mediacentre/factsheets/fs297/en/ (Accessed on August 1, 2020).
[3]
Mallath, M.K.; Taylor, D.G.; Badwe, R.A.; Rath, G.K.; Shanta, V.; Pramesh, C.S.; Digumarti, R.; Sebastian, P.; Borthakur, B.B.; Kalwar, A.; Kapoor, S.; Kumar, S.; Gill, J.L.; Kuriakose, M.A.; Malhotra, H.; Sharma, S.C.; Shukla, S.; Viswanath, L.; Chacko, R.T.; Pautu, J.L.; Reddy, K.S.; Sharma, K.S.; Purushotham, A.D.; Sullivan, R. The growing burden of cancer in India: epidemiology and social context. Lancet Oncol., 2014, 15(6), e205-e212.
[http://dx.doi.org/10.1016/S1470-2045(14)70115-9] [PMID: 24731885]
[4]
ICMR. Over 17 lakh new cancer cases in India by 2020. 2016. Available at: http://icmr.nic.in/icmrsql/archive/2016/7.pdf (Accessed on August 1, 2020).
[5]
Gupta, G; Chellappan, D; Mishra, A; Malipeddi, H A clinical update on metformin and lung cancer in diabetic patients. 2018, 60(2), 70-75.
[6]
Sharma, P; Mehta, M; Dhanjal, DS; Kaur, S; Gupta, G; Singh, H Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. 2019, 309, 108720.
[http://dx.doi.org/10.1016/j.cbi.2019.06.033]
[7]
AA Aljabali, A; A Bakshi, H; L Hakkim, F; Haggag, YA; M Al- Batanyeh, S; S Al Zoubi, M Albumin nano-encapsulation of piceatannol enhances its anticancer potential in colon cancer via downregulation of nuclear p65 and HIF-1α. 2020, 12(1), 113.
[8]
Mehta, M.; Dhanjal, D.S.; Paudel, K.R.; Singh, B.; Gupta, G.; Rajeshkumar, S.; Thangavelu, L.; Tambuwala, M.M.; Bakshi, H.A.; Chellappan, D.K.; Pandey, P.; Dureja, H.; Charbe, N.B.; Singh, S.K.; Shukla, S.D.; Nammi, S.; Aljabali, A.A.; Wich, P.R.; Hansbro, P.M.; Satija, S.; Dua, K. Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update. Inflammopharmacology, 2020, 28(4), 795-817.
[http://dx.doi.org/10.1007/s10787-020-00698-3] [PMID: 32189104]
[9]
Hinge, N.; Pandey, M.M.; Singhvi, G.; Gupta, G.; Mehta, M.; Satija, S. Nanomedicine advances in cancer therapy. Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering; Elsevier, 2020, pp. 219-253.
[http://dx.doi.org/10.1016/B978-0-12-818471-4.00008-X]
[10]
Garg, M.; Lata, K.; Satija, S. Cytotoxic potential of few Indian fruit peels through 3-(4,5-dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide assay on HepG2 cells. Indian J. Pharmacol., 2016, 48(1), 64-68.
[http://dx.doi.org/10.4103/0253-7613.174552] [PMID: 26997725]
[11]
Vohra, K.; Garg, V.; Dureja, H. Ethnopharmacology, phytochemistry and pharmacology of lens culinaris medikus seeds: An update. Curr. Nutr. Food Sci., 2019, 15(2), 1-9.
[http://dx.doi.org/10.2174/1573401313666170925155508]
[12]
Aglan, H.A.; Ahmed, H.H.; El-Toumy, S.A.; Mahmoud, N.S. Gallic acid against hepatocellular carcinoma: An integrated scheme of the potential mechanisms of action from in vivo study. Tumour Biol., 2017, 39(6), 1010428317699127.
[http://dx.doi.org/10.1177/1010428317699127] [PMID: 28618930]
[13]
Chan, Y.S.; Yu, H.; Xia, L.; Ng, T.B. Lectin from green speckled lentil seeds (Lens culinaris) triggered apoptosis in nasopharyngeal carcinoma cell lines. Chin. Med., 2015, 10(1), 25.
[http://dx.doi.org/10.1186/s13020-015-0057-6] [PMID: 26357525]
[14]
Wang, D.; Bao, B. Gallic Acid Impedes Non-Small Cell Lung Cancer Progression via Suppression of EGFR-Dependent CARM1-PELP1 Complex. Drug Des. Devel. Ther., 2020, 14, 1583-1592.
[http://dx.doi.org/10.2147/DDDT.S228123] [PMID: 32425504]
[15]
Mehta, M.; Satija, S.; Nanda, A.; Garg, M. Nanotechnologies for boswellic acids. American J. Drug Discov. Dev, 2014, 4, 1-11.
[http://dx.doi.org/10.3923/ajdd.2014.1.11]
[16]
Wadhwa, R.; Pandey, P.; Gupta, G.; Aggarwal, T.; Kumar, N.; Mehta, M.; Satija, S.; Gulati, M.; Madan, J.R.; Dureja, H.; Balusamy, S.R.; Perumalsamy, H.; Maurya, P.K.; Collet, T.; Tambuwala, M.M.; Hansbro, P.M.; Chellappan, D.K.; Dua, K. Emerging complexity and the need for advanced drug delivery in targeting Candida species. Curr. Top. Med. Chem., 2019, 19(28), 2593-2609.
[http://dx.doi.org/10.2174/1568026619666191026105308] [PMID: 31746290]
[17]
Rajput, M.S.; Agrawal, P. Microspheres in cancer therapy. Indian J. Cancer, 2010, 47(4), 458-468.
[http://dx.doi.org/10.4103/0019-509X.73547] [PMID: 21131762]
[18]
Madan, J.; Kadam, V.; Bandavane, S. Formulation and evaluation of microspheres containing ropinirole hydrochloride using biodegradable polymers. Asian J. Phar, 2013, 7(4), 184.
[http://dx.doi.org/10.4103/0973-8398.128887]
[19]
Illum, L. Chitosan and its use as a pharmaceutical excipient. Pharm. Res., 1998, 15(9), 1326-1331.
[http://dx.doi.org/10.1023/A:1011929016601] [PMID: 9755881]
[20]
Dua, K.; Bebawy, M.; Awasthi, R.; Tekade, R.K.; Tekade, M.; Gupta, G.; De Jesus Andreoli Pinto, T.; Hansbro, P.M. Application of chitosan and its derivatives in nanocarrier based pulmonary drug delivery systems . Pharm. Nanotechnol., 2017, 5(4), 243-249.
[PMID: 28786352]
[21]
Chellappan, D.K.; Yee, N.J.; Kaur Ambar Jeet Singh, B.J.; Panneerselvam, J.; Madheswaran, T.; Chellian, J.; Satija, S.; Mehta, M.; Gulati, M.; Gupta, G.; Dua, K. Formulation and characterization of glibenclamide and quercetin-loaded chitosan nanogels targeting skin permeation. Ther. Deliv., 2019, 10(5), 281-293.
[http://dx.doi.org/10.4155/tde-2019-0019] [PMID: 31094299]
[22]
Şanlı, O.; Karaca, İ.; Işıklan, N. Preparation, characterization, and salicylic acid release behavior of chitosan/poly (vinyl alcohol) blend microspheres. J. Appl. Polym. Sci., 2009, 111(6), 2731-2740.
[http://dx.doi.org/10.1002/app.29319]
[23]
Hardwick, J.; Taylor, J.; Mehta, M.; Satija, S.; Paudel, K.R.; Hansbro, P.M.; Chellappan, D.K.; Bebawy, M.; Dua, K. Targeting cancer using curcumin encapsulated vesicular drug delivery systems. Curr. Pharm. Des., 2021, 27(1), 2-14.
[http://dx.doi.org/10.2174/1381612826666200728151610] [PMID: 32723255]
[24]
Atmakuri, L.R.; Dathi, S. Current trends in herbal medicines. J. Pharm. Res., 2010, 3, 109-113.
[25]
Prasher, P.; Sharma, M.; Mehta, M.; Paudel, K.R.; Satija, S.; Chellappan, D.K.; Dureja, H.; Gupta, G.; Tambuwala, M.M.; Negi, P.; Wich, P.R.; Hansbro, N.G.; Hansbro, P.M.; Dua, K. Plants derived therapeutic strategies targeting chronic respiratory diseases: Chemical and immunological perspective. Chem. Biol. Interact., 2020, 325, 109125.
[http://dx.doi.org/10.1016/j.cbi.2020.109125] [PMID: 32376238]
[26]
Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants (Basel), 2017, 6(4), E42.
[http://dx.doi.org/10.3390/plants6040042] [PMID: 28937585]
[27]
Mitra, A.; Dey, B. Chitosan microspheres in novel drug delivery systems. Indian J. Pharm. Sci., 2011, 73(4), 355-366.
[PMID: 22707817]
[28]
Villicaña-Molina, E.; Pacheco-Contreras, E.; Aguilar-Reyes, E.A.; León-Patiño, C.A. Pectin and chitosan microsphere preparation via a water/oil emulsion and solvent evaporation method for drug delivery. Int. J. Polym. Mater., 2019, •••, 1-9.
[29]
Ravi, S.; Peh, K.K.; Darwis, Y.; Murthy, B.K.; Singh, T.R.; Mallikarjun, C. Development and characterization of polymeric microspheres for controlled release protein loaded drug delivery system. Indian J. Pharm. Sci., 2008, 70(3), 303-309.
[http://dx.doi.org/10.4103/0250-474X.42978] [PMID: 20046737]
[30]
Maravajhala, V.; Dasari, N.; Sepuri, A.; Joginapalli, S. Design and evaluation of niacin microspheres. Indian J. Pharm. Sci., 2009, 71(6), 663-669.
[http://dx.doi.org/10.4103/0250-474X.59549] [PMID: 20376220]
[31]
Agbor, G.A.; Vinson, J.A. Folin-Ciocalteau reagent for polyphenolic assay. Nutr. Diet., 2014, 3(8), 147-156.
[32]
Maurya, D.K.; Nandakumar, N.; Devasagayam, T.P.A. Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms. J. Clin. Biochem. Nutr., 2011, 48(1), 85-90.
[http://dx.doi.org/10.3164/jcbn.11-004FR] [PMID: 21297918]
[33]
Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc., 2007, 2(4), 875-877.
[http://dx.doi.org/10.1038/nprot.2007.102] [PMID: 17446889]
[34]
Bell, E.C.; John, M.; Hughes, R.J.; Pham, T. Ultra-performance liquid chromatographic determination of tocopherols and retinol in human plasma. J. Chromatogr. Sci., 2014, 52(9), 1065-1070.
[http://dx.doi.org/10.1093/chromsci/bmt161] [PMID: 24170122]
[35]
Dewan, I.; Islam, S.; Rana, M.S. Characterization and Compatibility Studies of Different Rate Retardant Polymer Loaded Microspheres by Solvent Evaporation Technique: In Vitro-In Vivo Study of Vildagliptin as a Model Drug. J. Drug Deliv., 2015, 2015, 496807.
[http://dx.doi.org/10.1155/2015/496807] [PMID: 26640713]
[36]
Reddy, L.H.; Murthy, R.S. Etoposide-loaded nanoparticles made from glyceride lipids: formulation, characterization, in vitro drug release, and stability evaluation. AAPS PharmSciTech, 2005, 6(2), E158-E166.
[http://dx.doi.org/10.1208/pt060224] [PMID: 16353973]
[37]
Mehta, M.; Dureja, H. Development and optimization of boswellic acid-loaded proniosomal gel. 2016, 23(8), 3072-3081.
[38]
Chan, Y.; Ng, S.W.; Chellappan, D.K.; Madheswaran, T.; Zeeshan, F.; Kumar, P. Celastrol-loaded liquid crystalline nanoparticles as an anti-inflammatory intervention for the treatment of asthma. Int. J. Polymer. Mater. Polymer. Biomater., 2020, 1-10.
[http://dx.doi.org/10.1080/00914037.2020.1765350]
[39]
Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods, 1986, 89(2), 271-277.
[http://dx.doi.org/10.1016/0022-1759(86)90368-6] [PMID: 3486233]
[40]
Ganguly, K.; Kulkarni, A.R.; Aminabhavi, T.M. In vitro cytotoxicity and in vivo efficacy of 5-fluorouracil-loaded enteric-coated PEG-cross-linked chitosan microspheres in colorectal cancer therapy in rats. Drug Deliv., 2016, 23(8), 2838-2851.
[http://dx.doi.org/10.3109/10717544.2015.1105324] [PMID: 26530807]
[41]
Patel, K.S.; Patel, M.B. Preparation and evaluation of chitosan microspheres containing nicorandil. Int. J. Pharm. Investig., 2014, 4(1), 32-37.
[http://dx.doi.org/10.4103/2230-973X.127738] [PMID: 24678460]
[42]
Jelvehgari, M.; Nokhodchi, A.; Rezapour, M.; Valizadeh, H. Effect of formulation and processing variables on the characteristics of tolmetin microspheres prepared by double emulsion solvent diffusion method. Indian J. Pharm. Sci., 2010, 72(1), 72-78.
[http://dx.doi.org/10.4103/0250-474X.62251] [PMID: 20582193]
[43]
Lengyel, M.; Kállai-Szabó, N.; Antal, V.; Laki, A.J.; Antal, I. Microparticles, Microspheres, and Microcapsules for Advanced Drug Delivery. Sci. Pharm., 2019, 87(3), 20.
[http://dx.doi.org/10.3390/scipharm87030020]
[44]
Gui, S.Y.; Wu, L.; Peng, D.Y.; Liu, Q.Y.; Yin, B.P.; Shen, J.Z. Preparation and evaluation of a microemulsion for oral delivery of berberine. Pharmazie, 2008, 63(7), 516-519.
[PMID: 18717486]
[45]
Le Visage, C.; Rioux-Leclercq, N.; Haller, M.; Breton, P.; Malavaud, B.; Leong, K. Efficacy of paclitaxel released from bio-adhesive polymer microspheres on model superficial bladder cancer. J. Urol., 2004, 171(3), 1324-1329.
[http://dx.doi.org/10.1097/01.ju.0000103922.12319.59] [PMID: 14767342]
[46]
Kumar, K.; Rai, A.K. Evaluation of ant-inflammatory and anti-arthritic activities of floating microsphere of herbal drug. IRJP, 2012, 3(1), 186-193.
[47]
Panapisal, V.; Charoensri, S.; Tantituvanont, A. Formulation of microemulsion systems for dermal delivery of silymarin. AAPS PharmSciTech, 2012, 13(2), 389-399.
[http://dx.doi.org/10.1208/s12249-012-9762-y] [PMID: 22350738]
[48]
Gui, S.; Wu, L.; Pan, J.; Wen, Z.; Kai, W.; Wang, J. [Study on preparation of berberine microemulsion and its absorption in intestine]. Zhongguo Zhongyao Zazhi, 2009, 34(4), 398-401. [Study on preparation of berberine microemulsion and its absorption in intestine].
[PMID: 19459298]
[49]
Machida, Y.; Onishi, H.; Kurita, A.; Hata, H.; Morikawa, A.; Machida, Y. Pharmacokinetics of prolonged-release CPT-11-loaded microspheres in rats. J. Control. Release, 2000, 66(2-3), 159-175.
[http://dx.doi.org/10.1016/S0168-3659(99)00267-9] [PMID: 10742577]
[50]
Tong, W.; Wang, L.; D’Souza, M.J. Evaluation of PLGA microspheres as delivery system for antitumor agent-camptothecin. Drug Dev. Ind. Pharm., 2003, 29(7), 745-756.
[http://dx.doi.org/10.1081/DDC-120021774] [PMID: 12906332]
[51]
Xiao, X.; Liu, F.; Shi, C.; Li, L.; Qin, S.; Qiao, C. RAPD polymorphism and authentication of medicainal plants from turmeric (curcuma L.) in China. Chin. Tradit. Herbal Drugs, 2000, 31(3), 209-212.
[52]
De, S.; Miller, D.W.; Robinson, D.H. Effect of particle size of nanospheres and microspheres on the cellular-association and cytotoxicity of paclitaxel in 4T1 cells. Pharm. Res., 2005, 22(5), 766-775.
[http://dx.doi.org/10.1007/s11095-005-2593-8] [PMID: 15906172]
[53]
Salami, A.; Seydi, E.; Pourahmad, J. Use of nutraceuticals for prevention and treatment of cancer. Iran. J. Pharm. Res., 2013, 12(3), 219-220.
[PMID: 24250626]
[54]
Badria, F.A. Anticancer activity of plant-derived proteins against human tumor cell lines. J. Drug Discov. Therap., 2014, 2(13), 60-69.
[55]
Shomaf, M.S.; Takruri, H.R. Lentils (Lens culinaris, L.) Attenuate Colonic Lesions and Neoplasms in Fischer 344 Rats. J. Med. J., 2012, 45(3), 231-238.
[56]
Faris, M.A.; Takruri, H.R.; Shomaf, M.S.; Bustanji, Y.K. Chemopreventive effect of raw and cooked lentils (Lens culinaris L) and soybeans (Glycine max) against azoxymethane-induced aberrant crypt foci. Nutr. Res., 2009, 29(5), 355-362.
[http://dx.doi.org/10.1016/j.nutres.2009.05.005] [PMID: 19555818]
[57]
Chao, P.; Deshmukh, M.; Kutscher, H.L.; Gao, D.; Rajan, S.S.; Hu, P.; Laskin, D.L.; Stein, S.; Sinko, P.J. Pulmonary targeting microparticulate camptothecin delivery system: anticancer evaluation in a rat orthotopic lung cancer model. Anticancer Drugs, 2010, 21(1), 65-76.
[http://dx.doi.org/10.1097/CAD.0b013e328332a322] [PMID: 19966540]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy