Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Therapeutic Properties of PDMS Nanoparticles: A Promising New Drug Delivery Vehicle against Inflammatory Conditions

Author(s): Aiswarya Anilkumar Ajitha, Sri Siva Kumar, Gayathri Viswanathan, Sabulal Baby and Prabath Gopalakrishnan Biju*

Volume 25, Issue 10, 2022

Published on: 10 February, 2021

Page: [1672 - 1681] Pages: 10

DOI: 10.2174/1386207324666210210112843

Price: $65

Abstract

Background: Over the last few decades, there has been a stupendous change in the area of drug delivery using particulate delivery systems, with increasing focus on nanoparticles in recent times. Nanoparticles help to improve and alter the pharmacodynamic properties and pharmacokinetics of various types of drug molecules. These features help to protect the drug entity in the systemic circulation, access of the drug to the chosen sites, and to deliver the drug in a controlled and sustained rate at the site of action.

Objective: Nanoparticle based targeted delivery of anti-inflammatory drugs/signal modulatory agents to the cytoplasm or nuclei of the targeted cell can significantly enhance the precision and efficacy of intended therapeutic activity. To this end, we report ligand free, enhanced intra-nuclear delivery model of anti-inflammatory therapeutics via PDMS nanoparticles.

Methods: PDMS nanoparticles were prepared by sacrificial silica template-based approach and details of their characterization for suitability as a nanoparticle-based delivery material are detailed herein.

Results: Biological evaluation for compatibility was carried out and the results showed that the PDMS nanoparticle has no toxicity on RAW 264.7 cells in the concentration range of 10, 20, 40, 60, 80, 100 and 120 μg/mL in culture. Biocompatibility and absence of toxicity were determined by morphological examination and cell viability assays. Drug loading and release kinetics were carried out with the anti-inflammatory drug Diclofenac.

Conclusion: In this paper, we clearly demonstrate the various aspects of nanoparticle articulation, characterization, effect of their characteristics and their applications as a non-toxic drug delivery molecule for its potential applications in therapeutic delivery of drugs for sustained release.

Keywords: Nanoparticle, PDMS, anti-inflammatory, drug delivery, toxicity, biocompatibility.

Graphical Abstract

[1]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev., 2001, 53(2), 283-318.
[PMID: 11356986]
[2]
Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev., 2003, 55(3), 329-347.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[3]
Soroory, H.; Mashak, A.; Rahimi, A. Application of PDMS-based coating in drug delivery systems using PVP as channeling agent. Iran. Polym. J., 2013, 22(11), 791-797.
[http://dx.doi.org/10.1007/s13726-013-0178-7]
[4]
Park, J.H.; Park, K.D.; Bae, Y.H. PDMS-based polyurethanes with MPEG grafts: synthesis, characterization and platelet adhesion study. Biomaterials, 1999, 20(10), 943-953.
[http://dx.doi.org/10.1016/S0142-9612(98)00250-6] [PMID: 10353648]
[5]
Goda, T.; Ishihara, K. Soft contact lens biomaterials from bioinspired phospholipid polymers. Expert Rev. Med. Devices, 2006, 3(2), 167-174.
[http://dx.doi.org/10.1586/17434440.3.2.167] [PMID: 16515383]
[6]
Simmons, A.; Padsalgikar, A.D.; Ferris, L.M.; Poole-Warren, L.A. Biostability and biological performance of a PDMS-based polyurethane for controlled drug release. Biomaterials, 2008, 29(20), 2987-2995.
[http://dx.doi.org/10.1016/j.biomaterials.2008.04.007] [PMID: 18436300]
[7]
Zullo, M.A.; Plotti, F.; Bellati, F.; Muzii, L.; Angioli, R.; Panici, P.B. Transurethral polydimethylsiloxane implantation: a valid option for the treatment of stress urinary incontinence due to intrinsic sphincter deficiency without urethral hypermobility. J. Urol., 2005, 173(3), 898-902.
[http://dx.doi.org/10.1097/01.ju.0000152568.40199.a8] [PMID: 15711314]
[8]
Chu, M.K.; Gordijo, C.R.; Li, J.; Abbasi, A.Z.; Giacca, A.; Plettenburg, O.; Wu, X.Y. In vivo performance and biocompatibility of a subcutaneous implant for real-time glucose-responsive insulin delivery. Diabetes Technol. Ther., 2015, 17(4), 255-267.
[http://dx.doi.org/10.1089/dia.2014.0229] [PMID: 25671341]
[9]
Guy, R.H.; Hadgraft, J. Transdermal drug delivery: a perspective. J. Control. Release, 1987, 4(4), 237-251.
[http://dx.doi.org/10.1016/0168-3659(87)90016-2]
[10]
Mishra, G.; Bhattacharyya, S.; Bhatia, V.; Ateeq, B.; Sharma, A.; Sivakumar, S. Direct intranuclear anticancer drug delivery via polydimethylsiloxane nanoparticles: in vitro and in vivo xenograft studies. ACS Appl. Mater. Interfaces, 2017, 9(40), 34625-34633.
[http://dx.doi.org/10.1021/acsami.7b08806] [PMID: 28902490]
[11]
Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release, 2001, 70(1-2), 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[12]
Labhasetwar, V.; Song, C.; Levy, R.J. Nanoparticle drug delivery system for restenosis. Adv. Drug Deliv. Rev., 1997, 24(1), 63-85.
[http://dx.doi.org/10.1016/S0169-409X(96)00483-8]
[13]
Victor, S-U.; Roberto, V-B.J. Silver Nanoparticles and PDMS Hybrid Nanostructure for Medical Applications.Silver Nanoparticles: Fabrication; Characterization and Applications, 2018, p. 147.
[http://dx.doi.org/10.5772/intechopen.74372]
[14]
Zhu, X-M.; Wang, Y.X.; Leung, K.C.; Lee, S.F.; Zhao, F.; Wang, D.W.; Lai, J.M.; Wan, C.; Cheng, C.H.; Ahuja, A.T. Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines. Int. J. Nanomedicine, 2012, 7, 953-964.
[PMID: 22393292]
[15]
Xu, P.; Van Kirk, E.A.; Zhan, Y.; Murdoch, W.J.; Radosz, M.; Shen, Y. Targeted charge-reversal nanoparticles for nuclear drug delivery. Angew. Chem. Int. Ed. Engl., 2007, 46(26), 4999-5002.
[http://dx.doi.org/10.1002/anie.200605254] [PMID: 17526044]
[16]
Ghosh, P.; Han, G.; De, M.; Kim, C.K.; Rotello, V.M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev., 2008, 60(11), 1307-1315.
[http://dx.doi.org/10.1016/j.addr.2008.03.016] [PMID: 18555555]
[17]
Paleos, C.M.; Tsiourvas, D.; Sideratou, Z.; Tziveleka, L. Acid- and salt-triggered multifunctional poly(propylene imine) dendrimer as a prospective drug delivery system. Biomacromolecules, 2004, 5(2), 524-529.
[http://dx.doi.org/10.1021/bm030068h] [PMID: 15003016]
[18]
Kisak, E.T.; Coldren, B.; Evans, C.A.; Boyer, C.; Zasadzinski, J.A. The vesosome- a multicompartment drug delivery vehicle. Curr. Med. Chem., 2004, 11(2), 199-219.
[http://dx.doi.org/10.2174/0929867043456197] [PMID: 14754417]
[19]
Wu, W.; Wieckowski, S.; Pastorin, G.; Benincasa, M.; Klumpp, C.; Briand, J.P.; Gennaro, R.; Prato, M.; Bianco, A. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed. Engl., 2005, 44(39), 6358-6362.
[http://dx.doi.org/10.1002/anie.200501613] [PMID: 16138384]
[20]
Salem, A.K.; Searson, P.C.; Leong, K.W. Multifunctional nanorods for gene delivery. Nat. Mater., 2003, 2(10), 668-671.
[http://dx.doi.org/10.1038/nmat974] [PMID: 12970757]
[21]
Bhatia, S. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. Natural polymer drug delivery systems; Springer, 2016, pp. 33-93.
[http://dx.doi.org/10.1007/978-3-319-41129-3_2]
[22]
Blanco Andujar, C. Sodium carbonate mediated synthesis of iron oxide nanoparticles to improve magnetic hyperthermia efficiency and induce apoptosis; University College London; (University of London), 2014.
[23]
Sichina, W. Characterization of polymers using TGA., http://depts. washington. edu/mseuser/Equipment/RefNotes/TGA_Notes. Pdf2000.
[24]
Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10(27), 12871-12934.
[http://dx.doi.org/10.1039/C8NR02278J] [PMID: 29926865]
[25]
Upadhyay, S.; Parekh, K.; Pandey, B. Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles. J. Alloys Compd., 2016, 678, 478-485.
[http://dx.doi.org/10.1016/j.jallcom.2016.03.279]
[26]
Weng, J.; Tong, H.H.Y.; Chow, S.F. In Vitro release study of the polymeric drug nanoparticles: Development and validation of a novel method. Pharmaceutics, 2020, 12(8), 732.
[http://dx.doi.org/10.3390/pharmaceutics12080732] [PMID: 32759786]
[27]
Natrajan, D. Formulation of essential oil-loaded chitosan–alginate nanocapsules. J. Food Drug Anal., 2015, 23(3), 560-568.
[28]
Heo, S-J.; Yoon, W.J.; Kim, K.N.; Ahn, G.N.; Kang, S.M.; Kang, D.H.; Affan, A.; Oh, C.; Jung, W.K.; Jeon, Y.J. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem. Toxicol., 2010, 48(8-9), 2045-2051.
[http://dx.doi.org/10.1016/j.fct.2010.05.003] [PMID: 20457205]
[29]
Adjei, I.M.; Sharma, B.; Labhasetwar, V. Nanoparticles: cellular uptake and cytotoxicity; Nanomaterial, 2014, pp. 73-91.
[http://dx.doi.org/10.1007/978-94-017-8739-0_5]
[30]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[31]
Edziri, H. Toxic and mutagenic properties of extracts from Tunisian traditional medicinal plants investigated by the neutral red uptake, VITOTOX and alkaline comet assays. S. Afr. J. Bot., 2011, 77(3), 703-710.
[http://dx.doi.org/10.1016/j.sajb.2011.03.007]
[32]
Büchel, G. A novel pathway for synthesis of submicrometer‐size solid core/mesoporous shell silica spheres. Adv. Mater., 1998, 10(13), 1036-1038.
[http://dx.doi.org/10.1002/(SICI)1521-4095(199809)10:13<1036:AID-ADMA1036>3.0.CO;2-Z]
[33]
Binks, B.P. Particles as surfactants—similarities and differences. Curr. Opin. Colloid Interface Sci., 2002, 7(1-2), 21-41.
[http://dx.doi.org/10.1016/S1359-0294(02)00008-0]
[34]
Ravera, F. Measurement of the partition coefficient of surfactants in water/oil systems. Langmuir, 1997, 13(18), 4817-4820.
[http://dx.doi.org/10.1021/la962096+]
[35]
Hu, P-Y.; Hsieh, Y.H.; Chen, J.C.; Chang, C.Y. Characteristics of manganese-coated sand using SEM and EDAX analysis. J. Colloid Interface Sci., 2004, 272(2), 308-313.
[http://dx.doi.org/10.1016/j.jcis.2003.12.058] [PMID: 15028491]
[36]
Service, R.F. American chemical society meeting. Nanomaterials show signs of toxicity. Science, 2003, 300(5617), 243.
[http://dx.doi.org/10.1126/science.300.5617.243a] [PMID: 12690169]
[37]
Hoet, P.H.; Brüske-Hohlfeld, I.; Salata, O.V. Nanoparticles - known and unknown health risks. J. Nanobiotechnology, 2004, 2(1), 12.
[http://dx.doi.org/10.1186/1477-3155-2-12] [PMID: 15588280]
[38]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[39]
Braydich-Stolle, L.; Hussain, S.; Schlager, J.J.; Hofmann, M.C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci., 2005, 88(2), 412-419.
[http://dx.doi.org/10.1093/toxsci/kfi256] [PMID: 16014736]
[40]
Fu, Y.; Kao, W.J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv., 2010, 7(4), 429-444.
[http://dx.doi.org/10.1517/17425241003602259] [PMID: 20331353]
[41]
Gupta, A.K.; Wells, S. Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans. Nanobiosci., 2004, 3(1), 66-73.
[http://dx.doi.org/10.1109/TNB.2003.820277] [PMID: 15382647]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy