Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

MGMT 表观遗传学:基因体甲基化的影响和从各种癌症类型的综合甲基化、转录组学和染色质分析得出的其他见解

卷 21, 期 4, 2021

发表于: 02 February, 2021

页: [360 - 374] 页: 15

弟呕挨: 10.2174/1568009621666210203111620

价格: $65

摘要

背景:MGMT(O6-甲基鸟嘌呤-DNA 甲基转移酶)主要负责限制一些广泛使用的化疗药物的活性,包括替莫唑胺 (TMZ) 和卡莫司汀 (BCNU)。编码该蛋白的基因受表观遗传调控,其启动子区域的甲基化评估用于预测神经胶质瘤患者对 TMZ 的反应。 方法:在本报告中,我们采用生物信息学方法来阐明 MGMT 的表观遗传调控。用于分析的集成了 > 8,600 个人类组织(代表 31 种不同的癌症类型)和 500 个人类癌细胞系样本的全基因组甲基化和转录数据集。对结果解释也至关重要的是来自 ENCODE 项目的公开数据:组蛋白修饰轨迹(通过 ChIP-seq)和 DNase I 超敏反应(通过 DNaseseq),以及代表性细胞系(HeLa-S3)的甲基化和转录数据, HMEC, K562)。 结果和讨论:我们能够验证(或许更全面)CpG 甲基化在启动子区域和基因体对 MGMT 转录的对比影响。虽然 MGMT 启动子由甲基化水平显示与 MGMT mRNA 计数呈高度负相关 (R) 的 CpG 位点填充,但基因体包含表现出高正 R 值的 CpG 位点。在癌症类型中具有非常高负 R 的启动子 CpG 位点包括 cg12981137、cg12434587 和 cg00618725。值得注意的基因体 CpG 位点(跨癌症类型的高阳性 R)包括 cg00198994(内含子 1)、cg04473030(内含子 2)和 cg07367735(内含子 4)。对于某些癌症类型,例如黑色素瘤,基因体甲基化似乎是 MGMT 转录的更好预测因子(与启动子甲基化相比)。通常,相对于组织,细胞系中 CpG 甲基化与 MGMT 表达的 R 值更高。此外,这些相关性在某些癌症类型中明显更为突出,例如结直肠癌、肾上腺皮质癌、食道癌、皮肤癌、头颈癌以及胶质母细胞瘤。正如预期的那样,启动子区域的低甲基化与更开放的染色质相关,组蛋白的富集标志着 H3K4m1、H3K4m2、H3K4m3 和 H3K9ac。 结论:总的来说,我们的分析说明了启动子和基因体甲基化对 MGMT 表达的对比影响。这些观察结果可能有助于改进 MGMT 的诊断分析。

关键词: MGMT、表观遗传学、甲基化、TCGA、编码、癌症。

« Previous
图形摘要

[1]
Pegg, A.E. Properties of mammalian O6-alkylguanine-DNA transferases. Mutat. Res., 1990, 233(1-2), 165-175.
[http://dx.doi.org/10.1016/0027-5107(90)90160-6] [PMID: 2233798]
[2]
Fahrer, J.; Kaina, B. O6-methylguanine-DNA methyltransferase in the defense against N-nitroso compounds and colorectal cancer. Carcinogenesis, 2013, 34(11), 2435-2442.
[http://dx.doi.org/10.1093/carcin/bgt275] [PMID: 23929436]
[3]
Kaina, B.; Christmann, M.; Naumann, S.; Roos, W.P. MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst.), 2007, 6(8), 1079-1099.
[http://dx.doi.org/10.1016/j.dnarep.2007.03.008] [PMID: 17485253]
[4]
Dolan, M.E.; Pegg, A.E. O6-benzylguanine and its role in chemotherapy. Clin. Cancer Res., 1997, 3(6), 837-847.
[PMID: 9815757]
[5]
Venur, V.A.; Peereboom, D.M.; Ahluwalia, M.S. Current medical treatment of glioblastoma. Cancer Treat. Res., 2015, 163, 103-115.
[http://dx.doi.org/10.1007/978-3-319-12048-5_7] [PMID: 25468228]
[6]
Kuruvilla, J. Standard therapy of advanced Hodgkin lymphoma. Hematology (Am. Soc. Hematol. Educ. Program), 2009, 497-506.
[http://dx.doi.org/10.1182/asheducation-2009.1.497] [PMID: 20008235]
[7]
Harries, M.; Malvehy, J.; Lebbe, C.; Heron, L.; Amelio, J.; Szabo, Z.; Schadendorf, D. Treatment patterns of advanced malignant melanoma (stage III-IV) - A review of current standards in Europe. Eur. J. Cancer, 2016, 60, 179-189.
[http://dx.doi.org/10.1016/j.ejca.2016.01.011] [PMID: 27118416]
[8]
Bacolod, M.D.; Johnson, S.P.; Ali-Osman, F.; Modrich, P.; Bullock, N.S.; Colvin, O.M.; Bigner, D.D.; Friedman, H.S. Mechanisms of resistance to 1,3-bis(2-chloroethyl)-1-nitrosourea in human medulloblastoma and rhabdomyosarcoma. Mol. Cancer Ther., 2002, 1(9), 727-736.
[PMID: 12479369]
[9]
Bacolod, M.D.; Johnson, S.P.; Pegg, A.E.; Dolan, M.E.; Moschel, R.C.; Bullock, N.S.; Fang, Q.; Colvin, O.M.; Modrich, P.; Bigner, D.D.; Friedman, H.S. Brain tumor cell lines resistant to O6-benzylguanine/1,3-bis(2-chloroethyl)-1-nitrosourea chemotherapy have O6-alkylguanine-DNA alkyltransferase mutations. Mol. Cancer Ther., 2004, 3(9), 1127-1135.
[PMID: 15367707]
[10]
von Bueren, A.O.; Bacolod, M.D.; Hagel, C.; Heinimann, K.; Fedier, A.; Kordes, U.; Pietsch, T.; Koster, J.; Grotzer, M.A.; Friedman, H.S.; Marra, G.; Kool, M.; Rutkowski, S. Mismatch repair deficiency: a temozolomide resistance factor in medulloblastoma cell lines that is uncommon in primary medulloblastoma tumours. Br. J. Cancer, 2012, 107(8), 1399-1408.
[http://dx.doi.org/10.1038/bjc.2012.403] [PMID: 22976800]
[11]
Mansouri, A.; Hachem, L.D.; Mansouri, S.; Nassiri, F.; Laperriere, N.J.; Xia, D.; Lindeman, N.I.; Wen, P.Y.; Chakravarti, A.; Mehta, M.P.; Hegi, M.E.; Stupp, R.; Aldape, K.D.; Zadeh, G. MGMT promoter methylation status testing to guide therapy for glioblastoma: refining the approach based on emerging evidence and current challenges. Neuro-oncol., 2019, 21(2), 167-178.
[http://dx.doi.org/10.1093/neuonc/noy132] [PMID: 30189035]
[12]
Cankovic, M.; Nikiforova, M.N.; Snuderl, M.; Adesina, A.M.; Lindeman, N.; Wen, P.Y.; Lee, E.Q. The role of MGMT testing in clinical practice: a report of the association for molecular pathology. J. Mol. Diagn., 2013, 15(5), 539-555.
[http://dx.doi.org/10.1016/j.jmoldx.2013.05.011] [PMID: 23871769]
[13]
Cabrini, G.; Fabbri, E.; Lo Nigro, C.; Dechecchi, M.C.; Gambari, R. Regulation of expression of O6-methylguanine-DNA methyltransferase and the treatment of glioblastoma (Review). Int. J. Oncol., 2015, 47(2), 417-428.
[http://dx.doi.org/10.3892/ijo.2015.3026] [PMID: 26035292]
[14]
Christmann, M.; Kaina, B. Epigenetic regulation of DNA repair genes and implications for tumor therapy. Mutat. Res., 2019, 780, 15-28.
[http://dx.doi.org/10.1016/j.mrrev.2017.10.001] [PMID: 31395346]
[15]
Costello, J.F.; Futscher, B.W.; Tano, K.; Graunke, D.M.; Pieper, R.O. Graded methylation in the promoter and body of the O6-methylguanine DNA methyltransferase (MGMT) gene correlates with MGMT expression in human glioma cells. J. Biol. Chem., 1994, 269(25), 17228-17237.
[PMID: 8006031]
[16]
Harris, L.C.; Remack, J.S.; Brent, T.P. In vitro methylation of the human O6-methylguanine-DNA methyltransferase promoter reduces transcription. Biochim. Biophys. Acta, 1994, 1217(2), 141-146.
[http://dx.doi.org/10.1016/0167-4781(94)90027-2] [PMID: 8110828]
[17]
Zhang, J.; Yang, J.H.; Quan, J.; Kang, X.; Wang, H.J.; Dai, P.G. Identification of MGMT promoter methylation sites correlating with gene expression and IDH1 mutation in gliomas. Tumour Biol., 2016, 37(10), 13571-13579.
[http://dx.doi.org/10.1007/s13277-016-5153-4] [PMID: 27468718]
[18]
Bhat, A.A.; Wani, H.A.; Waza, A.A.; Malik, R.A.; Masood, A.; Jeelani, S.; Kadla, S.; Majid, S. Diminished expression of MGMT & RASSF1A genes in gastric cancer in ethnic population of Kashmir. J. Gastrointest. Oncol., 2016, 7(6), 989-995.
[http://dx.doi.org/10.21037/jgo.2016.06.07] [PMID: 28078123]
[19]
Asiaf, A.; Ahmad, S.T.; Malik, A.A.; Aziz, S.A.; Rasool, Z.; Masood, A.; Zargar, M.A. Protein expression and methylation of MGMT, a DNA repair gene and their correlation with clinicopathological parameters in invasive ductal carcinoma of the breast. Tumour Biol., 2015, 36(8), 6485-6496.
[http://dx.doi.org/10.1007/s13277-015-3339-9] [PMID: 25820821]
[20]
Toffolatti, L.; Scquizzato, E.; Cavallin, S.; Canal, F.; Scarpa, M.; Stefani, P.M.; Gherlinzoni, F.; Dei Tos, A.P. MGMT promoter methylation and correlation with protein expression in primary central nervous system lymphoma. Virchows Arch., 2014, 465(5), 579-586.
[http://dx.doi.org/10.1007/s00428-014-1622-6] [PMID: 25031012]
[21]
Ishiguro, K.; Shyam, K.; Penketh, P.G.; Baumann, R.P.; Sartorelli, A.C.; Rutherford, T.J.; Ratner, E.S. Expression of O6-Methylguanine-DNA Methyltransferase Examined by Alkyl-transfer assays, methylation-specific PCR and western blots in tumors and matched normal tissue. J. Cancer Ther., 2013, 4(4), 919-931.
[http://dx.doi.org/10.4236/jct.2013.44103] [PMID: 23946891]
[22]
Tang, K.; Jin, Q.; Yan, W.; Zhang, W.; You, G.; Liu, Y.; Jiang, T. Clinical correlation of MGMT protein expression and promoter methylation in Chinese glioblastoma patients. Med. Oncol., 2012, 29(2), 1292-1296.
[http://dx.doi.org/10.1007/s12032-011-9901-4] [PMID: 21394635]
[23]
Kishida, Y.; Natsume, A.; Toda, H.; Toi, Y.; Motomura, K.; Koyama, H.; Matsuda, K.; Nakayama, O.; Sato, M.; Suzuki, M.; Kondo, Y.; Wakabayashi, T. Correlation between quantified promoter methylation and enzymatic activity of O6-methylguanine-DNA methyltransferase in glioblastomas. Tumour Biol., 2012, 33(2), 373-381.
[http://dx.doi.org/10.1007/s13277-012-0319-1] [PMID: 22274924]
[24]
Uno, M.; Oba-Shinjo, S.M.; Camargo, A.A.; Moura, R.P.; Aguiar, P.H.; Cabrera, H.N.; Begnami, M.; Rosemberg, S.; Teixeira, M.J.; Marie, S.K. Correlation of MGMT promoter methylation status with gene and protein expression levels in glioblastoma. Clinics (São Paulo), 2011, 66(10), 1747-1755.
[http://dx.doi.org/10.1590/S1807-59322011001000013] [PMID: 22012047]
[25]
Malley, D.S.; Hamoudi, R.A.; Kocialkowski, S.; Pearson, D.M.; Collins, V.P.; Ichimura, K. A distinct region of the MGMT CpG island critical for transcriptional regulation is preferentially methylated in glioblastoma cells and xenografts. Acta Neuropathol., 2011, 121(5), 651-661.
[http://dx.doi.org/10.1007/s00401-011-0803-5] [PMID: 21287394]
[26]
Shah, N.; Lin, B.; Sibenaller, Z.; Ryken, T.; Lee, H.; Yoon, J.G.; Rostad, S.; Foltz, G. Comprehensive analysis of MGMT promoter methylation: correlation with MGMT expression and clinical response in GBM. PLoS One, 2011, 6(1)
[http://dx.doi.org/10.1371/journal.pone.0016146] [PMID: 21249131]
[27]
Jha, P.; Suri, V.; Jain, A.; Sharma, M.C.; Pathak, P.; Jha, P.; Srivastava, A.; Suri, A.; Gupta, D.; Chosdol, K.; Chattopadhyay, P.; Sarkar, C. O6-methylguanine DNA methyltransferase gene promoter methylation status in gliomas and its correlation with other molecular alterations: first Indian report with review of challenges for use in customized treatment. Neurosurgery, 2010, 67(6), 1681-1691.
[http://dx.doi.org/10.1227/NEU.0b013e3181f743f5] [PMID: 21107199]
[28]
Esteller, M.; Hamilton, S.R.; Burger, P.C.; Baylin, S.B.; Herman, J.G. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res., 1999, 59(4), 793-797.
[PMID: 10029064]
[29]
Qian, X.C.; Brent, T.P. Methylation hot spots in the 5′ flanking region denote silencing of the O6-methylguanine-DNA methyltransferase gene. Cancer Res., 1997, 57(17), 3672-3677.
[PMID: 9288770]
[30]
Qian, X.; von Wronski, M.A.; Brent, T.P. Localization of methylation sites in the human O6-methylguanine-DNA methyltransferase promoter: correlation with gene suppression. Carcinogenesis, 1995, 16(6), 1385-1390.
[http://dx.doi.org/10.1093/carcin/16.6.1385] [PMID: 7788859]
[31]
Christmann, M.; Pick, M.; Lage, H.; Schadendorf, D.; Kaina, B. Acquired resistance of melanoma cells to the antineoplastic agent fotemustine is caused by reactivation of the DNA repair gene MGMT. Int. J. Cancer, 2001, 92(1), 123-129.
[http://dx.doi.org/10.1002/1097-0215(200102)9999:9999<::AID-IJC1160>3.0.CO;2-V] [PMID: 11279615]
[32]
Wang, Y.; Kato, T.; Ayaki, H.; Ishizaki, K.; Tano, K.; Mitra, S.; Ikenaga, M. Correlation between DNA methylation and expression of O6-methylguanine-DNA methyltransferase gene in cultured human tumor cells. Mutat. Res., 1992, 273(2), 221-230.
[http://dx.doi.org/10.1016/0921-8777(92)90083-F] [PMID: 1372105]
[33]
Bearzatto, A.; Szadkowski, M.; Macpherson, P.; Jiricny, J.; Karran, P. Epigenetic regulation of the MGMT and hMSH6 DNA repair genes in cells resistant to methylating agents. Cancer Res., 2000, 60(12), 3262-3270.
[PMID: 10866320]
[34]
Moen, E.L.; Stark, A.L.; Zhang, W.; Dolan, M.E.; Godley, L.A. The role of gene body cytosine modifications in MGMT expression and sensitivity to temozolomide. Mol. Cancer Ther., 2014, 13(5), 1334-1344.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0924] [PMID: 24568970]
[35]
Nakagawachi, T.; Soejima, H.; Urano, T.; Zhao, W.; Higashimoto, K.; Satoh, Y.; Matsukura, S.; Kudo, S.; Kitajima, Y.; Harada, H.; Furukawa, K.; Matsuzaki, H.; Emi, M.; Nakabeppu, Y.; Miyazaki, K.; Sekiguchi, M.; Mukai, T. Silencing effect of CpG island hypermethylation and histone modifications on O6-methylguanine-DNA methyltransferase (MGMT) gene expression in human cancer. Oncogene, 2003, 22(55), 8835-8844.
[http://dx.doi.org/10.1038/sj.onc.1207183] [PMID: 14647440]
[36]
Danam, R.P.; Howell, S.R.; Brent, T.P.; Harris, L.C. Epigenetic regulation of O6-methylguanine-DNA methyltransferase gene expression by histone acetylation and methyl-CpG binding proteins. Mol. Cancer Ther., 2005, 4(1), 61-69.
[PMID: 15657354]
[37]
Zhao, W.; Soejima, H.; Higashimoto, K.; Nakagawachi, T.; Urano, T.; Kudo, S.; Matsukura, S.; Matsuo, S.; Joh, K.; Mukai, T. The essential role of histone H3 Lys9 di-methylation and MeCP2 binding in MGMT silencing with poor DNA methylation of the promoter CpG island. J. Biochem., 2005, 137(3), 431-440.
[http://dx.doi.org/10.1093/jb/mvi048] [PMID: 15809347]
[38]
Meng, C.F.; Zhu, X.J.; Peng, G.; Dai, D.Q. Role of histone modifications and DNA methylation in the regulation of O6-methylguanine-DNA methyltransferase gene expression in human stomach cancer cells. Cancer Invest., 2010, 28(4), 331-339.
[http://dx.doi.org/10.1080/07357900903179633] [PMID: 19857042]
[39]
Kitange, G.J.; Mladek, A.C.; Carlson, B.L.; Schroeder, M.A.; Pokorny, J.L.; Cen, L.; Decker, P.A.; Wu, W.; Lomberk, G.A.; Gupta, S.K.; Urrutia, R.A.; Sarkaria, J.N. Inhibition of histone deacetylation potentiates the evolution of acquired temozolomide resistance linked to MGMT upregulation in glioblastoma xenografts. Clin. Cancer Res., 2012, 18(15), 4070-4079.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0560] [PMID: 22675172]
[40]
Choi, E.J.; Cho, B.J.; Lee, D.J.; Hwang, Y.H.; Chun, S.H.; Kim, H.H.; Kim, I.A. Enhanced cytotoxic effect of radiation and temozolomide in malignant glioma cells: targeting PI3K-AKT-mTOR signaling, HSP90 and histone deacetylases. BMC Cancer, 2014, 14, 17.
[http://dx.doi.org/10.1186/1471-2407-14-17] [PMID: 24418474]
[41]
ENCODE_Project_Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science, 2004, 306, 636-640.
[http://dx.doi.org/10.1126/science.1105136]
[42]
Kaiser, J. National Institutes of Health. NCI gears up for cancer genome project. Science, 2005, 307(5713), 1182.
[http://dx.doi.org/10.1126/science.307.5713.1182a] [PMID: 15731412]
[43]
Zhu, J.; Sanborn, J.Z.; Benz, S.; Szeto, C.; Hsu, F.; Kuhn, R.M.; Karolchik, D.; Archie, J.; Lenburg, M.E.; Esserman, L.J.; Kent, W.J.; Haussler, D.; Wang, T. The UCSC cancer genomics browser. Nat. Methods, 2009, 6(4), 239-240.
[http://dx.doi.org/10.1038/nmeth0409-239] [PMID: 19333237]
[44]
Goldman, M.; Craft, B.; Swatloski, T.; Ellrott, K.; Cline, M.; Diekhans, M.; Ma, S.; Wilks, C.; Stuart, J.; Haussler, D.; Zhu, J. The UCSC cancer genomics browser: update 2013. Nucleic Acids Res., 2013, 41(Database issue), D949-D954.
[http://dx.doi.org/10.1093/nar/gks1008] [PMID: 23109555]
[45]
Iorio, F.; Knijnenburg, T.A.; Vis, D.J.; Bignell, G.R.; Menden, M.P.; Schubert, M.; Aben, N.; Gonçalves, E.; Barthorpe, S.; Lightfoot, H.; Cokelaer, T.; Greninger, P.; van Dyk, E.; Chang, H.; de Silva, H.; Heyn, H.; Deng, X.; Egan, R.K.; Liu, Q.; Mironenko, T.; Mitropoulos, X.; Richardson, L.; Wang, J.; Zhang, T.; Moran, S.; Sayols, S.; Soleimani, M.; Tamborero, D.; Lopez-Bigas, N.; Ross-Macdonald, P.; Esteller, M.; Gray, N.S.; Haber, D.A.; Stratton, M.R.; Benes, C.H.; Wessels, L.F.A.; Saez-Rodriguez, J.; McDermott, U.; Garnett, M.J. A landscape of pharmacogenomic interactions in cancer. Cell, 2016, 166(3), 740-754.
[http://dx.doi.org/10.1016/j.cell.2016.06.017] [PMID: 27397505]
[46]
Bacolod, M.D.; Das, S.K.; Sokhi, U.K.; Bradley, S.; Fenstermacher, D.A.; Pellecchia, M.; Emdad, L.; Sarkar, D.; Fisher, P.B. Examination of epigenetic and other molecular factors associated with mda-9/syntenin dysregulation in cancer through integrated analyses of public genomic datasets. Adv. Cancer Res., 2015, 127, 49-121.
[http://dx.doi.org/10.1016/bs.acr.2015.04.006] [PMID: 26093898]
[47]
Bernstein, B.E.; Kamal, M.; Lindblad-Toh, K.; Bekiranov, S.; Bailey, D.K.; Huebert, D.J.; McMahon, S.; Karlsson, E.K.; Kulbokas, E.J., III; Gingeras, T.R.; Schreiber, S.L.; Lander, E.S. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell, 2005, 120(2), 169-181.
[http://dx.doi.org/10.1016/j.cell.2005.01.001] [PMID: 15680324]
[48]
Boyle, A.P.; Davis, S.; Shulha, H.P.; Meltzer, P.; Margulies, E.H.; Weng, Z.; Furey, T.S.; Crawford, G.E. High-resolution mapping and characterization of open chromatin across the genome. Cell, 2008, 132(2), 311-322.
[http://dx.doi.org/10.1016/j.cell.2007.12.014] [PMID: 18243105]
[49]
Sandoval, J.; Heyn, H.; Moran, S.; Serra-Musach, J.; Pujana, M.A.; Bibikova, M.; Esteller, M. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics, 2011, 6(6), 692-702.
[http://dx.doi.org/10.4161/epi.6.6.16196] [PMID: 21593595]
[50]
Fishilevich, S; Nudel, R; Rappaport, N; Hadar, R; Plaschkes, I; Iny Stein, T; Rosen, N; Kohn, A; Twik, M; Safran, M; Lancet, D; Cohen, D. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford), 2017.
[http://dx.doi.org/10.1093/database/bax028]
[51]
Gay, L.; Baker, A.M.; Graham, T.A. Tumour Cell Heterogeneity. F1000 Res., 2016, 5, 5.
[http://dx.doi.org/10.12688/f1000research.7210.1] [PMID: 26973786]
[52]
Bacolod, M.D.; Barany, F.; Pilones, K.; Fisher, P.B.; de Castro, R.J. Pathways- and epigenetic-based assessment of relative immune infiltration in various types of solid tumors. Adv. Cancer Res., 2018, •••, 142.
[PMID: 30885360]
[53]
Ghirlando, R.; Giles, K.; Gowher, H.; Xiao, T.; Xu, Z.; Yao, H.; Felsenfeld, G. Chromatin domains, insulators, and the regulation of gene expression. Biochim. Biophys. Acta, 2012, 1819(7), 644-651.
[http://dx.doi.org/10.1016/j.bbagrm.2012.01.016] [PMID: 22326678]
[54]
Ernst, J.; Kheradpour, P.; Mikkelsen, T.S.; Shoresh, N.; Ward, L.D.; Epstein, C.B.; Zhang, X.; Wang, L.; Issner, R.; Coyne, M.; Ku, M.; Durham, T.; Kellis, M.; Bernstein, B.E. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature, 2011, 473(7345), 43-49.
[http://dx.doi.org/10.1038/nature09906] [PMID: 21441907]
[55]
Campbell, M.J.; Turner, B.M. Altered histone modifications in cancer. Adv. Exp. Med. Biol., 2013, 754, 81-107.
[http://dx.doi.org/10.1007/978-1-4419-9967-2_4] [PMID: 22956497]
[56]
Kondo, Y.; Shen, L.; Issa, J.P. Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol. Cell. Biol., 2003, 23(1), 206-215.
[http://dx.doi.org/10.1128/MCB.23.1.206-215.2003] [PMID: 12482974]
[57]
Watts, G.S.; Pieper, R.O.; Costello, J.F.; Peng, Y.M.; Dalton, W.S.; Futscher, B.W. Methylation of discrete regions of the O6-methylguanine DNA methyltransferase (MGMT) CpG island is associated with heterochromatinization of the MGMT transcription start site and silencing of the gene. Mol. Cell. Biol., 1997, 17(9), 5612-5619.
[http://dx.doi.org/10.1128/MCB.17.9.5612] [PMID: 9271436]
[58]
Yang, X.; Han, H.; De Carvalho, D.D.; Lay, F.D.; Jones, P.A.; Liang, G. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell, 2014, 26(4), 577-590.
[http://dx.doi.org/10.1016/j.ccr.2014.07.028] [PMID: 25263941]
[59]
Gonçalves, C.S.; Xavier-Magalhães, A.; Martins, E.P.; Pinto, A.A.; Pires, M.M.; Pinheiro, C.; Reis, R.M.; Sousa, N.; Costa, B.M. A novel molecular link between HOXA9 and WNT6 in glioblastoma identifies a subgroup of patients with particular poor prognosis. Mol. Oncol., 2020, 14(6), 1224-1241.
[http://dx.doi.org/10.1002/1878-0261.12633] [PMID: 31923345]
[60]
Holderried, T.A.W.; de Vos, L.; Bawden, E.G.; Vogt, T.J.; Dietrich, J.; Zarbl, R.; Bootz, F.; Kristiansen, G.; Brossart, P.; Landsberg, J.; Dietrich, D. Molecular and immune correlates of TIM-3 (HAVCR2) and galectin 9 (LGALS9) mRNA expression and DNA methylation in melanoma. Clin. Epigenetics, 2019, 11(1), 161.
[http://dx.doi.org/10.1186/s13148-019-0752-8] [PMID: 31747929]
[61]
Wang, Y.; Zhu, W.; Chen, X.; Wei, G.; Jiang, G.; Zhang, G. Selenium-binding protein 1 transcriptionally activates p21 expression via p53-independent mechanism and its frequent reduction associates with poor prognosis in bladder cancer. J. Transl. Med., 2020, 18(1), 17.
[http://dx.doi.org/10.1186/s12967-020-02211-4] [PMID: 31918717]
[62]
Rondelet, G.; Wouters, J. Human DNA (cytosine-5)-methyltransferases: a functional and structural perspective for epigenetic cancer therapy. Biochimie, 2017, 139, 137-147.
[http://dx.doi.org/10.1016/j.biochi.2017.06.003] [PMID: 28600135]
[63]
Costello, J.F.; Futscher, B.W.; Kroes, R.A.; Pieper, R.O. Methylation-related chromatin structure is associated with exclusion of transcription factors from and suppressed expression of the O-6-methylguanine DNA methyltransferase gene in human glioma cell lines. Mol. Cell. Biol., 1994, 14(10), 6515-6521.
[http://dx.doi.org/10.1128/MCB.14.10.6515] [PMID: 7523853]
[64]
Lavon, I.; Fuchs, D.; Zrihan, D.; Efroni, G.; Zelikovitch, B.; Fellig, Y.; Siegal, T. Novel mechanism whereby nuclear factor kappaB mediates DNA damage repair through regulation of O(6)-methylguanine-DNA-methyltransferase. Cancer Res., 2007, 67(18), 8952-8959.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3820] [PMID: 17875738]
[65]
Bhakat, K.K.; Mitra, S. Regulation of the human O(6)-methylguanine-DNA methyltransferase gene by transcriptional coactivators cAMP response element-binding protein-binding protein and p300. J. Biol. Chem., 2000, 275(44), 34197-34204.
[http://dx.doi.org/10.1074/jbc.M005447200] [PMID: 10942771]
[66]
Boldogh, I.; Ramana, C.V.; Chen, Z.; Biswas, T.; Hazra, T.K.; Grösch, S.; Grombacher, T.; Mitra, S.; Kaina, B. Regulation of expression of the DNA repair gene O6-methylguanine-DNA methyltransferase via protein kinase C-mediated signaling. Cancer Res., 1998, 58(17), 3950-3956.
[PMID: 9731508]
[67]
Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; Hau, P.; Brandes, A.A.; Gijtenbeek, J.; Marosi, C.; Vecht, C.J.; Mokhtari, K.; Wesseling, P.; Villa, S.; Eisenhauer, E.; Gorlia, T.; Weller, M.; Lacombe, D.; Cairncross, J.G.; Mirimanoff, R.O. European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups; National Cancer Institute of Canada Clinical Trials Group. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol., 2009, 10(5), 459-466.
[http://dx.doi.org/10.1016/S1470-2045(09)70025-7] [PMID: 19269895]
[68]
Amatu, A.; Sartore-Bianchi, A.; Moutinho, C.; Belotti, A.; Bencardino, K.; Chirico, G.; Cassingena, A.; Rusconi, F.; Esposito, A.; Nichelatti, M.; Esteller, M.; Siena, S. Promoter CpG island hypermethylation of the DNA repair enzyme MGMT predicts clinical response to dacarbazine in a phase II study for metastatic colorectal cancer. Clin. Cancer Res., 2013, 19(8), 2265-2272.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3518] [PMID: 23422094]
[69]
Schraml, P.; von Teichman, A.; Mihic-Probst, D.; Simcock, M.; Ochsenbein, A.; Dummer, R.; Michielin, O.; Seifert, B.; Schläppi, M.; Moch, H.; von Moos, R. Predictive value of the MGMT promoter methylation status in metastatic melanoma patients receiving first-line temozolomide plus bevacizumab in the trial SAKK 50/07. Oncol. Rep., 2012, 28(2), 654-658.
[http://dx.doi.org/10.3892/or.2012.1826] [PMID: 22614944]
[70]
Gallitto, M.; Cheng He, R.; Inocencio, J.F.; Wang, H.; Zhang, Y.; Deikus, G.; Wasserman, I.; Strahl, M.; Smith, M.; Sebra, R.; Yong, R.L. Epigenetic preconditioning with decitabine sensitizes glioblastoma to temozolomide via induction of MLH1. J. Neurooncol., 2020, 147(3), 557-566.
[http://dx.doi.org/10.1007/s11060-020-03461-4] [PMID: 32193690]
[71]
Marchesi, F.; Turriziani, M.; Tortorelli, G.; Avvisati, G.; Torino, F.; De Vecchis, L. Triazene compounds: mechanism of action and related DNA repair systems. Pharmacol. Res., 2007, 56(4), 275-287.
[http://dx.doi.org/10.1016/j.phrs.2007.08.003] [PMID: 17897837]
[72]
Tawbi, H.A.; Beumer, J.H.; Tarhini, A.A.; Moschos, S.; Buch, S.C.; Egorin, M.J.; Lin, Y.; Christner, S.; Kirkwood, J.M. Safety and efficacy of decitabine in combination with temozolomide in metastatic melanoma: a phase I/II study and pharmacokinetic analysis. Ann. Oncol., 2013, 24(4), 1112-1119.
[http://dx.doi.org/10.1093/annonc/mds591] [PMID: 23172636]
[73]
Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol., 2018, 15(2), 81-94.
[http://dx.doi.org/10.1038/nrclinonc.2017.166] [PMID: 29115304]
[74]
Verhaak, R.G.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P.; Alexe, G.; Lawrence, M.; O’Kelly, M.; Tamayo, P.; Weir, B.A.; Gabriel, S.; Winckler, W.; Gupta, S.; Jakkula, L.; Feiler, H.S.; Hodgson, J.G.; James, C.D.; Sarkaria, J.N.; Brennan, C.; Kahn, A.; Spellman, P.T.; Wilson, R.K.; Speed, T.P.; Gray, J.W.; Meyerson, M.; Getz, G.; Perou, C.M.; Hayes, D.N. Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 2010, 17(1), 98-110.
[http://dx.doi.org/10.1016/j.ccr.2009.12.020] [PMID: 20129251]
[75]
Noushmehr, H.; Weisenberger, D.J.; Diefes, K.; Phillips, H.S.; Pujara, K.; Berman, B.P.; Pan, F.; Pelloski, C.E.; Sulman, E.P.; Bhat, K.P.; Verhaak, R.G.; Hoadley, K.A.; Hayes, D.N.; Perou, C.M.; Schmidt, H.K.; Ding, L.; Wilson, R.K.; Van Den Berg, D.; Shen, H.; Bengtsson, H.; Neuvial, P.; Cope, L.M.; Buckley, J.; Herman, J.G.; Baylin, S.B.; Laird, P.W.; Aldape, K. Cancer Genome Atlas Research Network. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell, 2010, 17(5), 510-522.
[http://dx.doi.org/10.1016/j.ccr.2010.03.017] [PMID: 20399149]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy