Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Enhancing the Li+ Diffusion in Li3VO4 by Coupling with Reduced Graphene Oxide for Lithium-Ion Batteries

Author(s): Mingxuan Guo and Haibo Li*

Volume 18, Issue 1, 2022

Published on: 02 February, 2021

Page: [61 - 67] Pages: 7

DOI: 10.2174/1573413717666210202115508

Price: $65

Abstract

Background: Owing to the excellent theoretical specific capacity and safety intercalation potential, Li3VO4 (LVO) has been proposed as an advanced anode material for lithium ions batteries (LIBs). However, the LVO suffers from low electronic conductivity that limits its commercialization.

Objective: The reduced graphene oxide (rGO) is recommended to couple with micro-LVO particles aiming to enhance the conductivity of composite electrodes.

Method: The LVO@rGO composite is synthesized by a facile hydrothermal method. The morphology, crystallinity, valance state and electrochemical behavior of LVO@rGO are characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and electrochemical workstation, respectively. Further, the LIBs’ performance is explored by making a coins-type half-cell LIBs battery via battery system.

Results: The Li+ diffusion rate of the optimized LVO@rGO electrode is 7.67×10-23 cm2/s, which improves two orders of magnitudes of pure LVO electrode. As a result, the LVO@rGO anode delivers a reversible capacity of 190.1 mAh/g at 0.1 A/g after 100 cycles, which is even twice higher than that of pure LVO anode (90.6 mAh/g). Besides, it exhibits superior rate capability, i.e. a reversible capability of 285.0, 220.2, 158.7, 105.2 and 71.7 mAh/g at 0.05, 0.1, 0.2, 0.5 and 1.0 A/g, respectively.

Conclusion: The high conductivity and flexible texture enable rGO an idea building block to enhance the Li ion diffusion of whole electrode. On the other hand, it is instrumental in alleviating the aggregation of host materials, leading to high specific surface and specific capacity.

Keywords: Lithium-ion battery, Li3VO4, graphene, Li ion diffusion, hydrothermal, electrochemistry

Graphical Abstract

[1]
Turkyilmazoglu, M. Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models. Comput. Methods Programs Biomed., 2019, 179104997
[http://dx.doi.org/10.1016/j.cmpb.2019.104997] [PMID: 31443853]
[2]
Turkyilmazoglu, M. Nanoliquid film flow due to a moving substrate and heat transfer. Eur. Phys. J. Plus, 2020, 135, 781.
[http://dx.doi.org/10.1140/epjp/s13360-020-00812-y]
[3]
Xu, X.N.; Niu, F.E.; Wang, C.S.; Li, Y.L.; Zhao, C.L.; Yang, J.; Qian, Y.T. Li3VO4 nanoparticles in N-doped carbon with porous structure as an advanced anode material for lithium-ion batteries. Chem. Eng. J., 2019, 370, 606-613.
[http://dx.doi.org/10.1016/j.cej.2019.03.167]
[4]
Zhang, Z.; Du, Y.; Li, H. Engineering of a bowl-like Si@rGO architecture for an improved lithium ion battery via a synergistic effect. Nanotechnology, 2020, 31(9)095402
[http://dx.doi.org/10.1088/1361-6528/ab5699] [PMID: 31715593]
[5]
Turkyilmazoglu, M. Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis. Comput. Methods Programs Biomed., 2020, 187105171
[http://dx.doi.org/10.1016/j.cmpb.2019.105171] [PMID: 31785535]
[6]
Li, J.F.; Han, L.; Zhang, X.J.; Zhu, G.; Chen, T.Q.; Lu, T.; Pan, L.K. Sb2O5/Co-containing carbon polyhedra as anode material for high-performance lithium-ion batteries. Chem. Eng. J., 2019, 370, 800-809.
[http://dx.doi.org/10.1016/j.cej.2019.03.244]
[7]
Zhou, L.L.; Shen, S.Y.; Peng, X.X.; Wu, L.N.; Wang, Q.; Shen, C.H.; Tu, T.T.; Huang, L.; Li, J.T.; Sun, S.G. New insights into the structure changes and interface properties of Li3VO4 anode for lithium-ion batteries during the initial cycle by in-situ techniques. ACS Appl. Mater. Interfaces, 2016, 8(36), 23739-23745.
[http://dx.doi.org/10.1021/acsami.6b07811] [PMID: 27556414]
[8]
Liu, T.; Yao, T.; Li, L.; Zhu, L.; Wang, J.; Li, F.; Wang, H. Embedding amorphous lithium vanadate into carbon nanofibers by electrospinning as a high-performance anode material for lithium-ion batteries. J. Colloid Interface Sci., 2020, 580, 21-29.
[http://dx.doi.org/10.1016/j.jcis.2020.06.111] [PMID: 32679364]
[9]
Ni, S.B.; Lv, X.H.; Zhang, J.C.; Ma, J.J.; Yang, X.L.; Zhang, L.L. The electrochemical performance of lithium vanadate/natural graphite composite material as anode for lithium ion batteries. Electrochim. Acta, 2014, 145, 327-334.
[http://dx.doi.org/10.1016/j.electacta.2014.09.018]
[10]
Elena Arroyo-de Dompablo, M.; Tartaj, P.; Manuel Amarilla, J. Amador, Ulises. Computational Investigation of Li Insertion in Li3VO4. Chem. Mater., 2016, 28, 5643-5651.
[http://dx.doi.org/10.1021/acs.chemmater.6b01519]
[11]
Ni, S.B.; Liu, J.L.; Chao, D.L.; Mai, L.Q. Vanadate-based materials for li-ion batteries: the search for anodes for practical applications. Adv. Energy Mater., 2019, 91803324
[http://dx.doi.org/10.1002/aenm.201803324]
[12]
Shen, L.F.; Chen, S.Q.; Maier, J.; Yu, Y. Carbon-coated Li3VO4 spheres as constituents of an advanced anode material for high-rate long-life lithium-ion batteries. Adv. Mater., 2017, 291701571
[http://dx.doi.org/10.1002/adma.201701571]
[13]
Dong, Y.Z.; Zhao, Y.M.; Duan, H.; Singh, P.; Kuang, Q.; Peng, H.J. Li2.97Mg0.03VO4: High rate capability and cyclability performances anode material for rechargeable Li-ion batteries. J. Power Sources, 2016, 319, 104-110.
[http://dx.doi.org/10.1016/j.jpowsour.2016.04.048]
[14]
Zhou, J.; Zhao, B.; Song, J.; Chen, B.; Ma, X.; Dai, J.; Zhu, X.; Sun, Y. Optimization of rate capability and cyclability performance in Li3VO4 anode material through Ca doping. Chemistry, 2017, 23(64), 16338-16345.
[http://dx.doi.org/10.1002/chem.201703405] [PMID: 28850752]
[15]
Wang, K.; Fu, H.Y.; Li, Z.Y.; Xia, M.Y.; Liang, X.Q.; Qi, R.J.; Cao, G.Z.; Lu, X.M. Enhancing the rate performance of a Li3VO4 anode through Cu doping. ChemElectroChem, 2018, 5, 478-482.
[http://dx.doi.org/10.1002/celc.201701172]
[16]
Jian, Z.; Zheng, M.; Liang, Y.; Zhang, X.; Gheytani, S.; Lan, Y.; Shi, Y.; Yao, Y. Li3VO4 anchored graphene nanosheets for long-life and high-rate lithium-ion batteries. Chem. Commun. (Camb.), 2015, 51(1), 229-231.
[http://dx.doi.org/10.1039/C4CC07444K] [PMID: 25406736]
[17]
Hu, S.; Song, Y.F.; Yuan, S.Y.; Liu, H.M.; Xu, Q.J.; Wang, Y.G.; Wang, C.X.; Xia, Y.Y. A hierarchical structure of carbon-coated Li3VO4 nanoparticles embedded in expanded graphite for high performance lithium ion battery. J. Power Sources, 2016, 303, 333-339.
[http://dx.doi.org/10.1016/j.jpowsour.2015.11.015]
[18]
Shao, G.Q.; Gan, L.; Ma, Y.; Li, H.Q.; Zhai, T.Y. Enhancing the performance of Li3VO4 by combining nanotechnology and surface carbon coating for lithium ion batteries. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 11253-11260.
[http://dx.doi.org/10.1039/C5TA02094H]
[19]
Li, H.B.; Pan, L.K.; Nie, C.Y.; Liu, Y.; Sun, Z. Reduced graphene oxide and activated carbon composites for capacitive deionization. J. Mater. Chem., 2012, 31, 15556-15561.
[http://dx.doi.org/10.1039/c2jm32207b]
[20]
Zhou, R.J.; Li, J.X.; Wei, W.H.; Li, X.M.; Luo, M. Atomic substituents effect on boosting desalination performances of Zn-doped NaxCoO2. Desalination, 2020, 495114695
[http://dx.doi.org/10.1016/j.desal.2020.114695]
[21]
He, Z.K.; Kamali, A.R.; Wang, Z.R.; Sun, Q.; Shi, Z.N.; Wang, D.X. Rapid preparation and characterization of oxygen-deficient SnO2 nanobelts with enhanced Li diffusion kinetics. J. Electroanal. Chem. (Lausanne Switz.), 2020, 871114276
[http://dx.doi.org/10.1016/j.jelechem.2020.114276]
[22]
Liang, Z.Y.; Lin, Z.P.; Zhao, Y.M.; Dong, Y.Z.; Kuang, Q.X.; Lin, H.; Liu, X.D.; Yan, D.L. New understanding of Li3VO4/C as potential anode for Li-ion batteries: Preparation, structure characterization and lithium insertion mechanism. J. Power Sources, 2015, 274, 345-354.
[http://dx.doi.org/10.1016/j.jpowsour.2014.10.024]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy