Review Article

细胞外基质靶向纳米材料在肿瘤诊疗中的应用及未来展望

卷 22, 期 8, 2021

发表于: 27 January, 2021

页: [913 - 921] 页: 9

弟呕挨: 10.2174/1389450122666210127100430

价格: $65

摘要

全身化疗和放疗已在临床上广泛应用了几十年,但它们的全身细胞毒性和严重副作用等缺点是发挥最大疗效的最大障碍。 近年来,细胞外基质成分对肿瘤进展的影响引起了研究人员的关注,随着纳米材料的快速发展,以细胞外基质为靶点的纳米材料已成为肿瘤治疗学中一种很有前景的策略。 在这篇综述中,我们将概述应用于肿瘤治疗和成像的各种肿瘤细胞外基质靶向纳米材料的最新和相关例子。 我们将讨论纳米材料在未来肿瘤治疗中的挑战和前景。

关键词: 纳米材料、抗肿瘤、细胞外基质、微球、胶束、纳米棒。

图形摘要

[1]
World Health Organization. WHO report on cancer: setting priorities, investing wisely and providing care for all. World Health Organization 2020.https://apps.who.int/iris/handle/10665/330745
[2]
Grimaldi N, Andrade F, Segovia N, et al. Lipid-based nanovesicles for nanomedicine. Chem Soc Rev 2016; 45(23): 6520-45.
[http://dx.doi.org/10.1039/C6CS00409A] [PMID: 27722570]
[3]
Chauhan AS. Dendrimers for drug delivery. Molecules 2018; 23(4): 938.
[http://dx.doi.org/10.3390/molecules23040938] [PMID: 29670005]
[4]
Li Z, Tan S, Li S, Shen Q, Wang K. Cancer drug delivery in the nano era: An overview and perspectives (Review). Oncol Rep 2017; 38(2): 611-24.
[http://dx.doi.org/10.3892/or.2017.5718] [PMID: 28627697]
[5]
Chen Q, Liu G, Liu S, et al. Remodeling the tumor microenvironment with emerging nanotherapeutics. Trends Pharmacol Sci 2018; 39(1): 59-74.
[http://dx.doi.org/10.1016/j.tips.2017.10.009] [PMID: 29153879]
[6]
Schaefer L, Reinhardt DP. Special issue: Extracellular matrix: Therapeutic tools and targets in cancer treatment. Adv Drug Deliv Rev 2016; 97: 1-3.
[http://dx.doi.org/10.1016/j.addr.2016.01.001] [PMID: 26872878]
[7]
Hynes RO. The extracellular matrix: not just pretty fibrils. Science 2009; 326(5957): 1216-9.
[http://dx.doi.org/10.1126/science.1176009] [PMID: 19965464]
[8]
Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014; 15(12): 786-801.
[http://dx.doi.org/10.1038/nrm3904] [PMID: 25415508]
[9]
Halper J, Kjaer M. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. Adv Exp Med Biol 2014; 802: 31-47.
[http://dx.doi.org/10.1007/978-94-007-7893-1_3] [PMID: 24443019]
[10]
Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev 2016; 97: 4-27.
[http://dx.doi.org/10.1016/j.addr.2015.11.001] [PMID: 26562801]
[11]
Multhaupt HA, Leitinger B, Gullberg D, Couchman JR. Extracellular matrix component signaling in cancer. Adv Drug Deliv Rev 2016; 97: 28-40.
[http://dx.doi.org/10.1016/j.addr.2015.10.013] [PMID: 26519775]
[12]
Rawlings ND, Barrett AJ, Bateman A. MEROPS: the peptidase database. Nucleic Acids Res 2010; 38(Database issue): D227-33.
[http://dx.doi.org/10.1093/nar/gkp971] [PMID: 19892822]
[13]
Najafi M, Goradel NH, Farhood B, et al. Tumor microenvironment: Interactions and therapy. J Cell Physiol 2019; 234(5): 5700-21.
[http://dx.doi.org/10.1002/jcp.27425] [PMID: 30378106]
[14]
El-Serag HB. Hepatocellular carcinoma. N Engl J Med 2011; 365(12): 1118-27.
[http://dx.doi.org/10.1056/NEJMra1001683] [PMID: 21992124]
[15]
Boyd NF, Martin LJ, Yaffe MJ, Minkin S. Mammographic density and breast cancer risk: current understanding and future prospects. Breast Cancer Res 2011; 13(6): 223.
[http://dx.doi.org/10.1186/bcr2942] [PMID: 22114898]
[16]
Filliol A, Schwabe RF. Contributions of fibroblasts, extracellular matrix, stiffness, and mechanosensing to hepatocarcinogenesis. Semin Liver Dis 2019; 39(3): 315-33.
[http://dx.doi.org/10.1055/s-0039-1685539] [PMID: 31226725]
[17]
Götte M, Kovalszky I. Extracellular matrix functions in lung cancer. Matrix Biol 2018; 73: 105-21.
[http://dx.doi.org/10.1016/j.matbio.2018.02.018] [PMID: 29499357]
[18]
Insua-Rodríguez J, Oskarsson T. The extracellular matrix in breast cancer. Adv Drug Deliv Rev 2016; 97: 41-55.
[http://dx.doi.org/10.1016/j.addr.2015.12.017] [PMID: 26743193]
[19]
Brauchle E, Kasper J, Daum R, et al. Biomechanical and biomolecular characterization of extracellular matrix structures in human colon carcinomas. Matrix Biol 2018; 68-69: 180-93.
[http://dx.doi.org/10.1016/j.matbio.2018.03.016] [PMID: 29605717]
[20]
Zhang C, Pu K. Molecular and nanoengineering approaches towards activatable cancer immunotherapy. Chem Soc Rev 2020; 49(13): 4234-53.
[http://dx.doi.org/10.1039/C9CS00773C] [PMID: 32452475]
[21]
Yang S, Gao H. Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy. Pharmacol Res 2017; 126: 97-108.
[http://dx.doi.org/10.1016/j.phrs.2017.05.004] [PMID: 28501517]
[22]
Ruszczak Z, Friess W. Collagen as a carrier for on-site delivery of antibacterial drugs. Adv Drug Deliv Rev 2003; 55(12): 1679-98.
[http://dx.doi.org/10.1016/j.addr.2003.08.007] [PMID: 14623407]
[23]
An B, Lin YS, Brodsky B. Collagen interactions: Drug design and delivery. Adv Drug Deliv Rev 2016; 97: 69-84.
[http://dx.doi.org/10.1016/j.addr.2015.11.013] [PMID: 26631222]
[24]
Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol 2011; 3(1): a004978.
[http://dx.doi.org/10.1101/cshperspect.a004978] [PMID: 21421911]
[25]
Gordon MK, Hahn RA. Collagens. Cell Tissue Res 2010; 339(1): 247-57.
[http://dx.doi.org/10.1007/s00441-009-0844-4] [PMID: 19693541]
[26]
Xu S, Xu H, Wang W, et al. The role of collagen in cancer: from bench to bedside. J Transl Med 2019; 17(1): 309.
[http://dx.doi.org/10.1186/s12967-019-2058-1] [PMID: 31521169]
[27]
Paszek MJ, Zahir N, Johnson KR, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 2005; 8(3): 241-54.
[http://dx.doi.org/10.1016/j.ccr.2005.08.010] [PMID: 16169468]
[28]
Erler Janine T, et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 2006; 440: 1222-6.
[29]
Cun X, Ruan S, Chen J, et al. A dual strategy to improve the penetration and treatment of breast cancer by combining shrinking nanoparticles with collagen depletion by losartan. Acta Biomater 2016; 31: 186-96.
[http://dx.doi.org/10.1016/j.actbio.2015.12.002] [PMID: 26675124]
[30]
Yu M, Zhang C, Tang Z, Tang X, Xu H. Intratumoral injection of gels containing losartan microspheres and (PLG-g-mPEG)-cisplatin nanoparticles improves drug penetration, retention and anti-tumor activity. Cancer Lett 2019; 442: 396-408.
[http://dx.doi.org/10.1016/j.canlet.2018.11.011] [PMID: 30439541]
[31]
Shen H, Gao Q, Ye Q, et al. Peritumoral implantation of hydrogel-containing nanoparticles and losartan for enhanced nanoparticle penetration and antitumor effect. Int J Nanomedicine 2018; 13: 7409-26.
[http://dx.doi.org/10.2147/IJN.S178585] [PMID: 30519023]
[32]
Raeesi V, Chan WC. Improving nanoparticle diffusion through tumor collagen matrix by photo-thermal gold nanorods. Nanoscale 2016; 8(25): 12524-30.
[http://dx.doi.org/10.1039/C5NR08463F] [PMID: 26822539]
[33]
Hu K, Miao L, Goodwin TJ, Li J, Liu Q, Huang L. Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles. ACS Nano 2017; 11(5): 4916-25.
[http://dx.doi.org/10.1021/acsnano.7b01522] [PMID: 28414916]
[34]
Xu F, Huang X, Wang Y, Zhou S. A size-changeable collagenase-modified nanoscavenger for increasing penetration and retention of nanomedicine in deep tumor tissue. Adv Mater 2020; 32(16): e1906745.
[http://dx.doi.org/10.1002/adma.201906745] [PMID: 32105374]
[35]
Kaspar M, Zardi L, Neri D. Fibronectin as target for tumor therapy. Int J Cancer 2006; 118(6): 1331-9.
[http://dx.doi.org/10.1002/ijc.21677] [PMID: 16381025]
[36]
Kumra H, Reinhardt DP. Fibronectin-targeted drug delivery in cancer. Adv Drug Deliv Rev 2016; 97: 101-10.
[http://dx.doi.org/10.1016/j.addr.2015.11.014] [PMID: 26639577]
[37]
Kahn P, Shin SI. Cellular tumorigenicity in nude mice. Test of associations among loss of cell-surface fibronectin, anchorage independence, and tumor-forming ability. J Cell Biol 1979; 82(1): 1-16.
[http://dx.doi.org/10.1083/jcb.82.1.1] [PMID: 383723]
[38]
Chen LB, Gallimore PH, McDougall JK. Correlation between tumor induction and the large external transformation sensitive protein on the cell surface. Proc Natl Acad Sci USA 1976; 73(10): 3570-4.
[http://dx.doi.org/10.1073/pnas.73.10.3570] [PMID: 1068469]
[39]
Gallimore PH, McDougall JK, Chen LB. In vitro traits of adenovirus-transformed cell lines and their relevance to tumorigenicity in nude mice. Cell 1977; 10(4): 669-78.
[http://dx.doi.org/10.1016/0092-8674(77)90100-3] [PMID: 862025]
[40]
Lin TC, Yang CH, Cheng LH, Chang WT, Lin YR, Cheng HC. Fibronectin in Cancer: Friend or Foe. Cells 2019; 9(1): 27.
[http://dx.doi.org/10.3390/cells9010027] [PMID: 31861892]
[41]
Jiang K, Song X, Yang L, et al. Enhanced antitumor and anti-metastasis efficacy against aggressive breast cancer with a fibronectin-targeting liposomal doxorubicin. J Control Release 2018; 271: 21-30.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.026] [PMID: 29277681]
[42]
Lee Y, Kischuk E, Crist S, Ratliff TL, Thompson DH. Targeting and internalization of liposomes by bladder tumor cells using a fibronectin attachment protein-derived peptide-lipopolymer conjugate. Bioconjug Chem 2017; 28(5): 1481-90.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00153] [PMID: 28475311]
[43]
Kim H, Lee Y, Lee IH, et al. Synthesis and therapeutic evaluation of an aptide-docetaxel conjugate targeting tumor-associated fibronectin. J Control Release 2014; 178: 118-24.
[http://dx.doi.org/10.1016/j.jconrel.2014.01.015] [PMID: 24462899]
[44]
Park SE, Shamloo K, Kristedja TA, et al. EDB-fn targeted peptide-drug conjugates for use against prostate cancer. Int J Mol Sci 2019; 20(13): 3291.
[http://dx.doi.org/10.3390/ijms20133291] [PMID: 31277465]
[45]
Yao D, Wang Y, Zou R, et al. Molecular engineered squaraine nanoprobe for nir-ii/photoacoustic imaging and photothermal therapy of metastatic breast cancer. ACS Appl Mater Interfaces 2020; 12(4): 4276-84.
[http://dx.doi.org/10.1021/acsami.9b20147] [PMID: 31896256]
[46]
Han Z, Cheng H, Parvani JG, Zhou Z, Lu ZR. Magnetic resonance molecular imaging of metastatic breast cancer by targeting extradomain-B fibronectin in the tumor microenvironment. Magn Reson Med 2018; 79(6): 3135-43.
[http://dx.doi.org/10.1002/mrm.26976] [PMID: 29082597]
[47]
Li Y, Han Z, Roelle S, et al. Synthesis and assessment of peptide gd-dota conjugates targeting extradomain b fibronectin for magnetic resonance molecular imaging of prostate cancer. Mol Pharm 2017; 14(11): 3906-15.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00619] [PMID: 28976766]
[48]
Marsico G, Russo L, Quondamatteo F, Pandit A. Glycosylation and integrin regulation in cancer. Trends Cancer 2018; 4(8): 537-52.
[http://dx.doi.org/10.1016/j.trecan.2018.05.009] [PMID: 30064662]
[49]
Levental KR, Yu H, Kass L, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009; 139(5): 891-906.
[http://dx.doi.org/10.1016/j.cell.2009.10.027] [PMID: 19931152]
[50]
Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2010; 10(1): 9-22.
[http://dx.doi.org/10.1038/nrc2748] [PMID: 20029421]
[51]
Liu Z, Yu L, Wang X, Zhang X, Liu M, Zeng W. Integrin (αvβ3) targeted rgd peptide based probe for cancer optical imaging. Curr Protein Pept Sci 2016; 17(6): 570-81.
[http://dx.doi.org/10.2174/1389203717666160101124015] [PMID: 26721402]
[52]
Arosio D, Casagrande C. Advancement in integrin facilitated drug delivery. Adv Drug Deliv Rev 2016; 97: 111-43.
[http://dx.doi.org/10.1016/j.addr.2015.12.001] [PMID: 26686830]
[53]
Li Y, Xiao Y, Lin HP, et al. In vivo β-catenin attenuation by the integrin α5-targeting nano-delivery strategy suppresses triple negative breast cancer stemness and metastasis. Biomaterials 2019; 188: 160-72.
[http://dx.doi.org/10.1016/j.biomaterials.2018.10.019] [PMID: 30352320]
[54]
Zhang L, Su H, Wang H, et al. Tumor chemo-radiotherapy with rod-shaped and spherical gold nano probes: shape and active targeting both matter. Theranostics 2019; 9(7): 1893-908.
[http://dx.doi.org/10.7150/thno.30523] [PMID: 31037146]
[55]
Ali MRK, Wu Y, Tang Y, et al. Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins. Proc Natl Acad Sci USA 2017; 114(28): E5655-63.
[http://dx.doi.org/10.1073/pnas.1703151114] [PMID: 28652358]
[56]
Chen W, Zou Y, Zhong Z, Haag R. Cyclo(rgd)-decorated reduction-responsive nanogels mediate targeted chemotherapy of integrin overexpressing human glioblastoma in vivo. Small 2017; 13(6): 10.
[http://dx.doi.org/10.1002/smll.201601997] [PMID: 27865044]
[57]
Tao Y, Wang R, Lai Q, et al. Targeting of DDR1 with antibody-drug conjugates has antitumor effects in a mouse model of colon carcinoma. Mol Oncol 2019; 13(9): 1855-73.
[http://dx.doi.org/10.1002/1878-0261.12520] [PMID: 31116512]
[58]
Rammal H, Saby C, Magnien K, et al. Discoidin domain receptors: potential actors and targets in cancer. Front Pharmacol 2016; 7: 55.
[http://dx.doi.org/10.3389/fphar.2016.00055] [PMID: 27014069]
[59]
Moll S, Desmoulière A, Moeller MJ, et al. DDR1 role in fibrosis and its pharmacological targeting. Biochim Biophys Acta Mol Cell Res 2019; 1866(11): 118474.
[http://dx.doi.org/10.1016/j.bbamcr.2019.04.004] [PMID: 30954571]
[60]
Payne LS, Huang PH. Discoidin domain receptor 2 signaling networks and therapy in lung cancer. J Thorac Oncol 2014; 9(6): 900-4.
[http://dx.doi.org/10.1097/JTO.0000000000000164] [PMID: 24828669]
[61]
Zhu D, Huang H, Pinkas DM, et al. 2-amino-2,3-dihydro-1H-indene-5-carboxamide-based discoidin domain receptor 1 (ddr1) inhibitors: design, synthesis, and in vivo antipancreatic cancer efficacy. J Med Chem 2019; 62(16): 7431-44.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00365] [PMID: 31310125]
[62]
Takai K, Drain AP, Lawson DA, et al. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes Dev 2018; 32(3-4): 244-57.
[http://dx.doi.org/10.1101/gad.301366.117] [PMID: 29483153]
[63]
Kim D, Yeom JH, Lee B, Lee K, Bae J, Rhee S. Inhibition of discoidin domain receptor 2-mediated lung cancer cells progression by gold nanoparticle-aptamer-assisted delivery of peptides containing transmembrane-juxtamembrane 1/2 domain. Biochem Biophys Res Commun 2015; 464(2): 392-5.
[http://dx.doi.org/10.1016/j.bbrc.2015.06.044] [PMID: 26067556]
[64]
Martin CE, List K. Cell surface-anchored serine proteases in cancer progression and metastasis. Cancer Metastasis Rev 2019; 38(3): 357-87.
[http://dx.doi.org/10.1007/s10555-019-09811-7] [PMID: 31529338]
[65]
Vizovišek M, Fonović M, Turk B. Cysteine cathepsins in extracellular matrix remodeling: Extracellular matrix degradation and beyond. Matrix Biol 2019; 75-76: 141-59.
[http://dx.doi.org/10.1016/j.matbio.2018.01.024] [PMID: 29409929]
[66]
Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem 2016; 31(1): 177-83.
[67]
Wang HH, Fu ZG, Li W, et al. The synthesis and application of nano doxorubicin- indocyanine green matrix metalloproteinase-responsive hydrogel in chemophototherapy for head and neck squamous cell carcinoma. Int J Nanomedicine 2019; 14: 623-38.
[http://dx.doi.org/10.2147/IJN.S191069] [PMID: 30697046]
[68]
Shi H, Sun Y, Yan R, et al. Magnetic semiconductor gd-doping cus nanoparticles as activatable nanoprobes for bimodal imaging and targeted photothermal therapy of gastric tumors. Nano Lett 2019; 19(2): 937-47.
[http://dx.doi.org/10.1021/acs.nanolett.8b04179] [PMID: 30688465]
[69]
Xia F, Niu J, Hong Y, et al. Matrix metallopeptidase 2 targeted delivery of gold nanostars decorated with IR-780 iodide for dual-modal imaging and enhanced photothermal/photodynamic therapy. Acta Biomater 2019; 89: 289-99.
[http://dx.doi.org/10.1016/j.actbio.2019.03.008] [PMID: 30851455]
[70]
Qian C, Wang J, Qian Y, et al. Tumor-cell-surface adherable peptide-drug conjugate prodrug nanoparticles inhibit tumor metastasis and augment treatment efficacy. Nano Lett 2020; 20(6): 4153-61.
[http://dx.doi.org/10.1021/acs.nanolett.0c00152] [PMID: 32462880]
[71]
Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. FEBS J 2019; 286(15): 2830-69.
[http://dx.doi.org/10.1111/febs.14818] [PMID: 30908868]
[72]
Paris JL, Baeza A, Vallet-Regí M. Overcoming the stability, toxicity, and biodegradation challenges of tumor stimuli-responsive inorganic nanoparticles for delivery of cancer therapeutics. Expert Opin Drug Deliv 2019; 16(10): 1095-112.
[http://dx.doi.org/10.1080/17425247.2019.1662786] [PMID: 31469003]
[73]
Peng TX, Liang DS, Guo F, et al. Enhanced storage stability of solid lipid nanoparticles by surface modification of comb-shaped amphiphilic inulin derivatives. Colloids Surf B Biointerfaces 2019; 181: 369-78.
[http://dx.doi.org/10.1016/j.colsurfb.2019.05.061] [PMID: 31170643]
[74]
Tang Y, Wang X, Li J, et al. Overcoming the reticuloendothelial system barrier to drug delivery with a "don’t-eat-us" strategy. ACS Nano 2019; 13(11): 13015-26.
[http://dx.doi.org/10.1021/acsnano.9b05679] [PMID: 31689086]
[75]
Chen H, Zhang W, Zhu G, Xie J, Chen X. Rethinking cancer nanotheranostics. Nat Rev Mater 2017; 2: 17024.
[http://dx.doi.org/10.1038/natrevmats.2017.24] [PMID: 29075517]
[76]
Teleanu DM, Chircov C, Grumezescu AM, Teleanu RI. Neurotoxicity of nanomaterials: an up-to-date overview. Nanomaterials (Basel) 2019; 9(1): 96.
[http://dx.doi.org/10.3390/nano9010096] [PMID: 30642104]
[77]
Bostan HB, Rezaee R, Valokala MG, et al. Cardiotoxicity of nano-particles. Life Sci 2016; 165: 91-9.
[http://dx.doi.org/10.1016/j.lfs.2016.09.017] [PMID: 27686832]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy