Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Natural Flavans and (Iso)Flavanones with Anticancer Activity: A Review

Author(s): Arindam Gangopadhyay*

Volume 25, Issue 9, 2021

Published on: 26 January, 2021

Page: [1028 - 1046] Pages: 19

DOI: 10.2174/1385272825666210126095118

Price: $65

Abstract

The present review describes 108 new examples of naturally occurring flavans and flavanones having cytotoxic potential, which have been reported during the period of 2005 to mid-2020. These compounds are found either as aglycones or as glycosides, comprising flavans, flavanones, isoflavanones and miscellaneous flavanones (homo- and bi-flavanones). The main topics addressed in this review are source, structure, and cytotoxic activity in detail and the structure-activity relationship.

Keywords: Natural flavans and flavanones, cytotoxicity, anticancer activity, aglycones, glycosides, structure-activity relationship.

Next »
Graphical Abstract

[1]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[2]
Pejin, B.; Iodice, C.; Tommonaro, G.; Bogdanovic, G.; Kojic, V.; De Rosa, S. Further in vitro evaluation of cytotoxicity of the marine natural product derivative 4′-leucine-avarone. Nat. Prod. Res., 2014, 28(5), 347-350.
[http://dx.doi.org/10.1080/14786419.2013.863201] [PMID: 24422776]
[3]
Hua, F.; Shang, S.; Hu, Z-W. Seeking new anti-cancer agents from autophagy-regulating natural products. J. Asian Nat. Prod. Res., 2017, 19(4), 305-313.
[http://dx.doi.org/10.1080/10286020.2017.1304385] [PMID: 28347180]
[4]
Eid, S.Y.; El-Readi, M.Z.; Fatani, S.H.; Nour Eldin, E.E.M.; Wink, M. Natural products modulate the multifactorial multidrug resistance of cancer. Pharmacol. Pharm., 2015, 6(3), 146-176.
[http://dx.doi.org/10.4236/pp.2015.63017]
[5]
Cort, A.; Ozben, T. Natural product modulators to overcome multidrug resistance in cancer. Nutr. Cancer, 2015, 67(3), 411-423.
[http://dx.doi.org/10.1080/01635581.2015.1002624] [PMID: 25649862]
[6]
David, B.; Wolfender, J-L.; Dias, D.A. The pharmaceutical industry and natural products: historical status and new trends. Phytochem. Rev., 2015, 14, 299-315.
[http://dx.doi.org/10.1007/s11101-014-9367-z]
[7]
de Moraes, J.; de Oliveira, R.N.; Costa, J.P.; Junior, A.L.G.; de Sousa, D.P.; Freitas, R.M.; Allegretti, S.M.; Pinto, P.L.S. Phytol, a diterpene alcohol from chlorophyll, as a drug against neglected tropical disease Schistosomiasis mansoni. PLoS Negl. Trop. Dis., 2014, 8(1), e2617.
[http://dx.doi.org/10.1371/journal.pntd.0002617] [PMID: 24392173]
[8]
Mignet, N.; Seguin, J.; Ramos Romano, M.; Brullé, L.; Touil, Y.S.; Scherman, D.; Bessodes, M.; Chabot, G.G. Development of a liposomal formulation of the natural flavonoid fisetin. Int. J. Pharm., 2012, 423(1), 69-76.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.066] [PMID: 21571054]
[9]
Ying, T.H.; Yang, S.F.; Tsai, S.J.; Hsieh, S.C.; Huang, Y.C.; Bau, D.T.; Hsieh, Y.H. Fisetin induces apoptosis in human cervical cancer HeLa cells through ERK1/2-mediated activation of caspase-8-/caspase-3-dependent pathway. Arch. Toxicol., 2012, 86(2), 263-273.
[http://dx.doi.org/10.1007/s00204-011-0754-6] [PMID: 21964635]
[10]
Szliszka, E.; Helewski, K.J.; Mizgala, E.; Krol, W. The dietary flavonol fisetin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells. Int. J. Oncol., 2011, 39(4), 771-779.
[PMID: 21743964]
[11]
Seguin, J.; Brullé, L.; Boyer, R.; Lu, Y.M.; Ramos Romano, M.; Touil, Y.S.; Scherman, D.; Bessodes, M.; Mignet, N.; Chabot, G.G. Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy. Int. J. Pharm., 2013, 444(1-2), 146-154.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.050] [PMID: 23380621]
[12]
Tolomeo, M.; Grimaudo, S.; Di Cristina, A.; Pipitone, R.M.; Dusonchet, L.; Meli, M.; Crosta, L.; Gebbia, N.; Invidiata, F.P.; Titone, L.; Simoni, D. Galangin increases the cytotoxic activity of imatinib mesylate in imatinib-sensitive and imatinib-resistant Bcr-Abl expressing leukemia cells. Cancer Lett., 2008, 265(2), 289-297.
[http://dx.doi.org/10.1016/j.canlet.2008.02.025] [PMID: 18374481]
[13]
Duan, Y.D.; Jiang, Y.Y.; Guo, F.X.; Chen, L.X.; Xu, L.L.; Zhang, W.; Liu, B. The antitumor activity of naturally occurring chromones: a review. Fitoterapia, 2019, 135, 114-129.
[http://dx.doi.org/10.1016/j.fitote.2019.04.012] [PMID: 31029639]
[14]
Tsolmon, S.; Han, J.; Isoda, H. Inhibition of cell growth by Stellera chamaejasme extract is associated with induction of autophagy and differentiation in chronic leukemia K562 cells. J. Biosci. Bioeng., 2010, 110(2), 262-268.
[http://dx.doi.org/10.1016/j.jbiosc.2010.02.006] [PMID: 20547324]
[15]
Liu, X.; Zhu, X. Stellera chamaejasme L. extract induces apoptosis of human lung cancer cells via activation of the death receptor-dependent pathway. Exp. Ther. Med., 2012, 4(4), 605-610.
[http://dx.doi.org/10.3892/etm.2012.643] [PMID: 23170112]
[16]
Pejin, B.; Savic, A.; Sokovic, M.; Glamoclija, J.; Ciric, A.; Nikolic, M.; Radotic, K.; Mojovic, M. Further in vitro evaluation of antiradical and antimicrobial activities of phytol. Nat. Prod. Res., 2014, 28(6), 372-376.
[http://dx.doi.org/10.1080/14786419.2013.869692] [PMID: 24422895]
[17]
Brahmachari, G.; Gorai, D. Progress in the research on naturally occurring flavones and flavonols: an overview. Curr. Org. Chem., 2006, 10(8), 873-898.
[http://dx.doi.org/10.2174/138527206776894438]
[18]
Lucas, I.K.; Kolodziej, H. Trans-resveratrol induces apoptosis through ROS-triggered mitochondria-dependent pathways in A549 human lung adenocarcinoma epithelial cells. Planta Med., 2015, 81(12-13), 1038-1044.
[http://dx.doi.org/10.1055/s-0035-1546129] [PMID: 26085046]
[19]
Sak, K.; Everaus, H. Role of flavonoids in future anticancer therapy by eliminating the cancer stem cells. Curr. Stem Cell Res. Ther., 2015, 10(3), 271-282.
[http://dx.doi.org/10.2174/1574888X10666141126122316] [PMID: 25429700]
[20]
Ramos, S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J. Nutr. Biochem., 2007, 18(7), 427-442.
[http://dx.doi.org/10.1016/j.jnutbio.2006.11.004] [PMID: 17321735]
[21]
Zemanova, L.; Hofman, J.; Novotna, E.; Musilek, K.; Lundova, T.; Havrankova, J.; Hostalkova, A.; Chlebek, J.; Cahlikova, L.; Wsol, V. Flavones inhibit the activity of AKR1B10, a promising therapeutic target for cancer treatment. J. Nat. Prod., 2015, 78(11), 2666-2674.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00616] [PMID: 26529431]
[22]
Peng, W.; Yang, C.; Zhan, R.; Chen, Y. Two new flavans from the trunk and leaves of Horsfieldia glabra. Nat. Prod. Res., 2016, 30(20), 2350-2355.
[http://dx.doi.org/10.1080/14786419.2016.1185719] [PMID: 27238085]
[23]
Gutierrez, R-M.; Garcia, B-E. Citotoxic activity of isoflavan-cinnamylphenols from Dalbergia congestiflora on HeLa cells. J. Med. Plants Res., 2013, 7(40), 2992-2998.
[24]
Rajkapoor, B.; Murugesh, N.; Rama Krishna, D. Cytotoxic activity of a flavanone from the stem of Bauhinia variegata Linn. Nat. Prod. Res., 2009, 23(15), 1384-1389.
[http://dx.doi.org/10.1080/14786410802553752] [PMID: 19809910]
[25]
Tuan, N.Q.; Lee, W.; Oh, J.; Kulkarni, R.R.; Gény, C.; Jung, B.; Kang, H.; Bae, J-S.; Na, M. Flavanones and chromones from Salicornia herbacea mitigate septic lethality via restoring vascular barrier integrity. J. Agric. Food Chem., 2015, 63(46), 10121-10130.
[http://dx.doi.org/10.1021/acs.jafc.5b04069] [PMID: 26522440]
[26]
Yan, J.; Sun, L.R.; Zhou, Z.Y.; Chen, Y.C.; Zhang, W.M.; Dai, H.F.; Tan, J.W. Homoisoflavonoids from the medicinal plant Portulaca oleracea. Phytochemistry, 2012, 80, 37-41.
[http://dx.doi.org/10.1016/j.phytochem.2012.05.014] [PMID: 22683318]
[27]
Nguyen, A.T.; Fontaine, J.; Malonne, H.; Duez, P. Homoisoflavanones from Disporopsis aspera. Phytochemistry, 2006, 67(19), 2159-2163.
[http://dx.doi.org/10.1016/j.phytochem.2006.06.021] [PMID: 16899264]
[28]
Hafez Ghoran, S.; Saeidnia, S.; Babaei, E.; Kiuchi, F.; Dusek, M.; Eigner, V.; Dehno Khalaji, A.; Soltani, A.; Ebrahimi, P.; Mighani, H. Biochemical and biophysical properties of a novel homoisoflavonoid extracted from Scilla persica HAUSSKN. Bioorg. Chem., 2014, 57, 51-56.
[http://dx.doi.org/10.1016/j.bioorg.2014.08.001] [PMID: 25181677]
[29]
Festjens, N.; Vanden Berghe, T.; Vandenabeele, P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim. Biophys. Acta, 2006, 1757(9-10), 1371-1387.
[http://dx.doi.org/10.1016/j.bbabio.2006.06.014] [PMID: 16950166]
[30]
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[31]
Taylor, R.C.; Cullen, S.P.; Martin, S.J. Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol., 2008, 9(3), 231-241.
[http://dx.doi.org/10.1038/nrm2312] [PMID: 18073771]
[32]
Chen, D.; Daniel, K.G.; Chen, M.S.; Kuhn, D.J.; Landis-Piwowar, K.R.; Dou, Q.P. Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem. Pharmacol., 2005, 69(10), 1421-1432.
[http://dx.doi.org/10.1016/j.bcp.2005.02.022] [PMID: 15857606]
[33]
Pradhan, D.; Pradhan, R.K.; Tripathy, G.; Pradhan, S. Inhibition of proteasome activity by the dietary flavonoid Quercetin associated with growth inhibition in cultured breast cancer cells and xenografts. J. Young Pharmacists., 2015, 7(3), 225-233.
[http://dx.doi.org/10.5530/jyp.2015.3.13]
[34]
Brusselmans, K.; Vrolix, R.; Verhoeven, G.; Swinnen, J.V. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J. Biol. Chem., 2005, 280(7), 5636-5645.
[http://dx.doi.org/10.1074/jbc.M408177200] [PMID: 15533929]
[35]
Oh, J.; Liu, H.; Park, H.B.; Ferreira, D.; Jeong, G-S.; Hamann, M.T.; Doerksen, R.J.; Na, M. In silico investigation of lavandulyl flavonoids for the development of potent fatty acid synthase-inhibitory prototypes. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(1 Pt A), 3180-3188.
[http://dx.doi.org/10.1016/j.bbagen.2016.08.001] [PMID: 27531709]
[36]
Silva, G.; Fachin, A.L.; Beleboni, R.O.; França, S.C.; Marins, M. In vitro action of flavonoids in the canine malignant histiocytic cell line DH82. Molecules, 2013, 18(12), 15448-15463.
[http://dx.doi.org/10.3390/molecules181215448] [PMID: 24352006]
[37]
Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer, 2009, 9(5), 338-350.
[http://dx.doi.org/10.1038/nrc2607] [PMID: 19377506]
[38]
Kong, D.; Zhang, Y.; Yamori, T.; Duan, H.; Jin, M. Inhibitory activity of flavonoids against class I phosphatidylinositol 3-kinase isoforms. Molecules, 2011, 16(6), 5159-5167.
[http://dx.doi.org/10.3390/molecules16065159] [PMID: 21694679]
[39]
Kong, D.; Yamazaki, K.; Yamori, T. Discovery of phosphatidylinositol 3-kinase inhibitory compounds from the Screening Committee of Anticancer Drugs (SCADS) library. Biol. Pharm. Bull., 2010, 33(9), 1600-1604.
[http://dx.doi.org/10.1248/bpb.33.1600] [PMID: 20823581]
[40]
Zhao, Y.; Wu, F.; Wang, Y.; Chen, S.; Han, G.; Liu, M.; Jin, D. Inhibitory action of chamaejasmin A against human HEP-2 epithelial cells: effect on tubulin protein. Mol. Biol. Rep., 2012, 39(12), 11105-11112.
[http://dx.doi.org/10.1007/s11033-012-2016-y] [PMID: 23053997]
[41]
Zhang, T.; Yu, H.; Dong, G.; Cai, L.; Bai, Y. Chamaejasmine arrests cell cycle, induces apoptosis and inhibits nuclear NF-κB translocation in the human breast cancer cell line MDA-MB-231. Molecules, 2013, 18(1), 845-858.
[http://dx.doi.org/10.3390/molecules18010845] [PMID: 23344197]
[42]
Zhang, C.; Zhou, S.S.; Feng, L.Y.; Zhang, D.Y.; Lin, N.M.; Zhang, L.H.; Pan, J.P.; Wang, J.B.; Li, J. In vitro anti-cancer activity of chamaejasmenin B and neochamaejasmin C isolated from the root of Stellera chamaejasme L. Acta Pharmacol. Sin., 2013, 34(2), 262-270.
[http://dx.doi.org/10.1038/aps.2012.158] [PMID: 23222270]
[43]
Liu, R.; Ji, P.; Liu, B.; Qiao, H.; Wang, X.; Zhou, L.; Deng, T.; Ba, Y. Apigenin enhances the cisplatin cytotoxic effect through p53-modulated apoptosis. Oncol. Lett., 2017, 13(2), 1024-1030.
[http://dx.doi.org/10.3892/ol.2016.5495] [PMID: 28356995]
[44]
Ferraz da Costa, D.C.; Fialho, E.; Silva, J.L. Cancer chemoprevention by resveratrol: the p53 tumor suppressor protein as a promising molecular target. Molecules, 2017, 22(6), 1014-1037.
[http://dx.doi.org/10.3390/molecules22061014] [PMID: 28629161]
[45]
Molcanova, L.; Janosıkova, D.; Acqua, S.D.; Smejkal, K. C-prenylated flavonoids with potential cytotoxic activity against solid tumor cell lines. Phytochem. Rev., 2019, 18(4), 1051-1100.
[http://dx.doi.org/10.1007/s11101-019-09641-z]
[46]
Assirey, E.; Alsaggaf, A.; Naqvi, A.; Moussa, Z.; Okasha, R.M.; Afifi, T.H.; Abd-El-Aziz, A.S. Synthesis, biological assessment, and structure activity relationship studies of new flavanones embodying chromene moieties. Molecules, 2020, 25(3), 544-568.
[http://dx.doi.org/10.3390/molecules25030544] [PMID: 32012737]
[47]
Chen, C-N.; Hsiao, C-J.; Lee, S-S.; Guh, J-H.; Chiang, P-C.; Huang, C-C.; Huang, W-J. Chemical modification and anticancer effect of prenylated flavanones from Taiwanese propolis. Nat. Prod. Res., 2012, 26(2), 116-124.
[http://dx.doi.org/10.1080/14786419.2010.535146] [PMID: 21790499]
[48]
Yang, L.; Wang, E.; Fan, Y.; Yang, J.; Luo, Z.; Wang, Y.; Peng, M.; Deng, T.; Yang, X. One-pot synthesis of (E)-3-benzylideneflavanones from 2 hydroxyacetophenones and aromatic aldehydes. Tetrahedron Lett., 2019, 61(15)151180
[http://dx.doi.org/10.1016/j.tetlet.2019.151180]
[49]
Murti, Y.; Mishra, P. Synthesis and evaluation of flavanones as anticancer agents. Indian J. Pharm. Sci., 2014, 76(2), 163-166.
[PMID: 24843190]
[50]
Andrade-Carrera, B.; Clares, B.; Noé, V.; Mallandrich, M.; Calpena, A.C.; García, M.L.; Garduño-Ramírez, M.L. Mallandrich, M.; Calpena, A.C.; Garcia, M.L. Cytotoxic evaluation of (2S)-5,7-dihydroxy-6-prenylflavanone derivatives loaded PLGA nanoparticles against MiaPaCa-2 cells. Molecules, 2017, 22(9), 1553-1573.
[http://dx.doi.org/10.3390/molecules22091553] [PMID: 28914822]
[51]
Rao, G.V.; Swamy, B.N.; Chandregowda, V.; Reddy, G.C. Synthesis of (+/-)Abyssinone I and related compounds: their anti-oxidant and cytotoxic activities. Eur. J. Med. Chem., 2009, 44(5), 2239-2245.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.032] [PMID: 18603336]
[52]
Menezes, J.C.; Orlikova, B.; Morceau, F.; Diederich, M. Natural and synthetic flavonoids: structure-activity relationship and chemotherapeutic potential for the treatment of leukemia. Crit. Rev. Food Sci. Nutr., 2016, 56(Suppl. 1), S4-S28.
[http://dx.doi.org/10.1080/10408398.2015.1074532] [PMID: 26463658]
[53]
Li, Y.; Leung, K.T.; Yao, F.; Ooi, L.S.M.; Ooi, V.E.C. Antiviral flavans from the leaves of Pithecellobium clypearia. J. Nat. Prod., 2006, 69(5), 833-835.
[http://dx.doi.org/10.1021/np050498o] [PMID: 16724853]
[54]
Takashima, J.; Komiyama, K.; Ishiyama, H.; Kobayashi, J.; Ohsaki, A. Brosimacutins J-M, four new flavonoids from Brosimum acutifolium and their cytotoxic activity. Planta Med., 2005, 71(7), 654-658.
[http://dx.doi.org/10.1055/s-2005-871272] [PMID: 16041652]
[55]
Jiang, Z-Y.; Bai, X-S.; Liang, H.; Wang, C.; Li, W-J.; Guo, J.M.; Huang, X.Z. Cytotoxic flavanes from Uraria clarkei. J. Asian Nat. Prod. Res., 2013, 15(9), 979-984.
[http://dx.doi.org/10.1080/10286020.2013.822368] [PMID: 23909281]
[56]
Moosophon, P.; Kanokmedhakul, S.; Kanokmedhakul, K.; Buayairaksa, M.; Noichan, J.; Poopasit, K. Antiplasmodial and cytotoxic flavans and diarylpropanes from the stems of Combretum griffithii. J. Nat. Prod., 2013, 76(7), 1298-1302.
[http://dx.doi.org/10.1021/np400266h] [PMID: 23795891]
[57]
Rajachan, O-A.; Hongtanee, L.; Chalermsaen, K.; Kanokmedhakul, K.; Kanokmedhakul, S. Bioactive galloyl flavans from the stems of Helixanthera parasitica. J. Asian Nat. Prod. Res., 2020, 22(5), 405-412.
[http://dx.doi.org/10.1080/10286020.2019.1592165] [PMID: 30945943]
[58]
Tang, B-Q.; Huang, S-S.; Liang, Y-E.; Sun, J-B.; Ma, Y.; Zeng, B.; Lee, S.M-Y.; Lu, J-L. Two new flavans from the roots of Dianella ensifolia (L.) DC. Nat. Prod. Res., 2017, 31(13), 1561-1565.
[http://dx.doi.org/10.1080/14786419.2017.1283501] [PMID: 28135850]
[59]
Sun, Q.; Shang, X-Y.; Wang, Y-X.; Yao, G-D.; Li, F-F.; Li, L-Z.; Zhang, Y.; Huang, X-X.; Song, S-J. Prenylated flavans from Daphne giraldii and their cytotoxic activities. Fitoterapia, 2019, 132, 68-74.
[http://dx.doi.org/10.1016/j.fitote.2018.11.011] [PMID: 30496811]
[60]
Luo, Y.; Wang, H.; Zhao, Y-X.; Zeng, Y-B.; Shen, H-Y.; Dai, H-F.; Mei, W-L. Cytotoxic and antibacterial flavonoids from dragon’s blood of Dracaena cambodiana. Planta Med., 2011, 77(18), 2053-2056.
[http://dx.doi.org/10.1055/s-0031-1280086] [PMID: 21800280]
[61]
Hu, X-Q.; Han, W.; Han, Z-Z.; Liu, Q-X.; Xu, X-K.; Fu, P.; Li, H-L. A new macrocyclic lactone and a new quinoflavan from Celastrus hindsii. Phytochem. Lett., 2014, 7, 169-172.
[http://dx.doi.org/10.1016/j.phytol.2013.11.015]
[62]
Yu, J.; Xian, Y.; Li, G.; Wang, D.; Zhou, H.; Wang, X. One new flavanocoumarin from the thorns of Gleditsia sinensis. Nat. Prod. Res., 2017, 31(3), 275-280.
[http://dx.doi.org/10.1080/14786419.2016.1233406] [PMID: 27690627]
[63]
Fotso, G.W.; Kamga, J.; Ngameni, B.; Uesugi, S.; Ohno, M.; Kimura, K-I.; Momma, H.; Kwon, E.; Furuno, H.; Shiono, Y.; Ingrid, S.K.; Yeboah, S.O.; Ngadjui, B.T. Secondary metabolites with antiproliferative effects from Albizia glaberrima var glabrescens Oliv. (Mimosoideae). Nat. Prod. Res., 2017, 31(17), 1981-1987.
[http://dx.doi.org/10.1080/14786419.2016.1269097] [PMID: 28103742]
[64]
Zhao, Z.; Ruan, J.; Jin, J.; Zou, J.; Zhou, D.; Fang, W.; Zeng, F. Flavan-4-ol glycosides from the rhizomes of Abacopteris penangiana. J. Nat. Prod., 2006, 69(2), 265-268.
[http://dx.doi.org/10.1021/np050191p] [PMID: 16499328]
[65]
Ganapaty, S.; Pannakal, S.T.; Srilakshmi, G.V.K.; Lakshmi, P.; Waterman, P.G.; Brun, R. Pumilanol, an antiprotozoal isoflavanol from Tephrosia pumila. Phytochem. Lett., 2008, 1, 175-178.
[http://dx.doi.org/10.1016/j.phytol.2008.09.006]
[66]
Li, K.; Ji, S.; Song, W.; Kuang, Y.; Lin, Y.; Tang, S.; Cui, Z.; Qiao, X.; Yu, S.; Ye, M. Glycybridins A-K, bioactive phenolic compounds from Glycyrrhiza glabra. J. Nat. Prod., 2017, 80(2), 334-346.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00783] [PMID: 28140583]
[67]
Kaennakam, S.; Siripong, P.; Tip-Pyang, S. Cytotoxicities of two new isoflavanes from the roots of Dalbergia velutina. J. Nat. Med., 2017, 71(1), 310-314.
[http://dx.doi.org/10.1007/s11418-016-1039-4] [PMID: 27604296]
[68]
Shen, C.C.; Lin, T.W.; Huang, Y.L.; Wan, S.T.; Shien, B.J.; Chen, C.C. Phenolic constituents of the roots of Sophora flavescens. J. Nat. Prod., 2006, 69(8), 1237-1240.
[http://dx.doi.org/10.1021/np060189d] [PMID: 16933887]
[69]
Murphy, B.T.; Cao, S.; Norris, A.; Miller, J.S.; Ratovoson, F.; Andriantsiferana, R.; Rasamison, V.E.; Kingston, D.G.I. Cytotoxic flavanones of Schizolaena hystrix from the Madagascar rainforest. J. Nat. Prod., 2005, 68(3), 417-419.
[http://dx.doi.org/10.1021/np049639x] [PMID: 15787448]
[70]
Chen, J.J.; Lee, H.H.; Duh, C.Y.; Chen, I.S. Cytotoxic chalcones and flavonoids from the leaves of Muntingia calabura. Planta Med., 2005, 71(10), 970-973.
[http://dx.doi.org/10.1055/s-2005-871223] [PMID: 16254834]
[71]
Usman, H.; Hakim, E.H.; Harlim, T.; Jalaluddin, M.N.; Syah, Y.M.; Achmad, S.A.; Takayama, H. Cytotoxic chalcones and flavanones from the tree bark of Cryptocarya costata. Z. Natforsch. C J. Biosci., 2006, 61(3-4), 184-188.
[http://dx.doi.org/10.1515/znc-2006-3-405] [PMID: 16729574]
[72]
Pailee, P.; Mahidol, C.; Ruchirawat, S.; Prachyawarakorn, V. Diverse flavonoids from the roots of Millettia brandisiana. Phytochemistry, 2019, 162, 157-164.
[http://dx.doi.org/10.1016/j.phytochem.2019.03.013] [PMID: 30925376]
[73]
Liu, D.; Lan, R.; Xin, X.L.; Wang, X.J.; Su, D.H.; Yang, G.W. A new lavandulyl flavonoid from Sorphora flavescens Ait. Chin. Chem. Lett., 2008, 19, 1453-1455.
[http://dx.doi.org/10.1016/j.cclet.2008.09.044]
[74]
Hsu, C-L.; Shyu, M-H.; Lin, J-A.; Yen, G-C.; Fang, S-C. Cytotoxic effects of geranyl flavonoid derivatives from the fruit of Artocarpus communis in SK-Hep-1 human hepatocellular carcinoma cells. Food Chem., 2011, 127, 127-134.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.100]
[75]
Yang, D-S.; Peng, W-B.; Yang, Y-P.; Liu, K-C.; Li, X-L.; Xiao, W-L. Cytotoxic prenylated flavonoids from Macaranga indica. Fitoterapia, 2015, 103, 187-191.
[http://dx.doi.org/10.1016/j.fitote.2015.04.002] [PMID: 25861749]
[76]
Innok, P.; Rukachaisirikul, T.; Suksamrarn, A. Flavanoids and pterocarpans from the bark of Erythrina fusca. Chem. Pharm. Bull. (Tokyo), 2009, 57(9), 993-996.
[http://dx.doi.org/10.1248/cpb.57.993] [PMID: 19721263]
[77]
Awantu, A.F.; Lenta, B.N.; Donfack, E.V.; Wansi, J.D.; Neumann, B.; Stammler, H-G.; Noungoue, D.T.; Tsamo, E.; Sewald, N. Flavonoids and other constituents of Hymenostegia afzelii (Caesalpiniaceae). Phytochem. Lett., 2011, 4(3), 315-319.
[http://dx.doi.org/10.1016/j.phytol.2011.06.002]
[78]
Li, X.; Wang, D.; Xia, M.Y.; Wang, Z.H.; Wang, W.N.; Cui, Z. Cytotoxic prenylated flavonoids from the stem bark of Maackia amurensis. Chem. Pharm. Bull. (Tokyo), 2009, 57(3), 302-306.
[http://dx.doi.org/10.1248/cpb.57.302] [PMID: 19252325]
[79]
Passreiter, C.M.; Suckow-Schnitker, A-K.; Kulawik, A.; Addae-Kyereme, J.; Wright, C.W.; Wätjen, W. Prenylated flavanone derivatives isolated from Erythrina addisoniae are potent inducers of apoptotic cell death. Phytochemistry, 2015, 117, 237-244.
[http://dx.doi.org/10.1016/j.phytochem.2015.04.002] [PMID: 26101145]
[80]
Sutthivaiyakit, S.; Thongnak, O.; Lhinhatrakool, T.; Yodchun, O.; Srimark, R.; Dowtaisong, P.; Chuankamnerdkarn, M. Cytotoxic and antimycobacterial prenylated flavonoids from the roots of Eriosema chinense. J. Nat. Prod., 2009, 72(6), 1092-1096.
[http://dx.doi.org/10.1021/np900021h] [PMID: 19555123]
[81]
Ti, H.; Wu, P.; Lin, L.; Wei, X. Stilbenes and flavonoids from Artocarpus nitidus subsp. lingnanensis. Fitoterapia, 2011, 82(4), 662-665.
[http://dx.doi.org/10.1016/j.fitote.2011.02.001] [PMID: 21316425]
[82]
Rosselli, S.; Bruno, M.; Maggio, A.; Raccuglia, R.A.; Safder, M.; Lai, C-Y.; Bastow, K.F.; Lee, K-H. Cytotoxic geranylflavonoids from Bonannia graeca. Phytochemistry, 2011, 72(9), 942-945.
[http://dx.doi.org/10.1016/j.phytochem.2011.03.005] [PMID: 21459391]
[83]
Huang, S.Q.; Tian, Y-Q.; Wei, X.Y.; Xu, H-H. Flavonoids from Pronephrium megacuspe. J. Asian Nat. Prod. Res., 2016, 18(2), 125-133.
[http://dx.doi.org/10.1080/10286020.2015.1090984] [PMID: 26479429]
[84]
Phommart, S.; Sutthivaiyakit, P.; Chimnoi, N.; Ruchirawat, S.; Sutthivaiyakit, S. Constituents of the leaves of Macaranga tanarius. J. Nat. Prod., 2005, 68(6), 927-930.
[http://dx.doi.org/10.1021/np0500272] [PMID: 15974621]
[85]
Kawakami, S.; Harinantenaina, L.; Matsunami, K.; Otsuka, H.; Shinzato, T.; Takeda, Y. Macaflavanones A-G, prenylated flavanones from the leaves of Macaranga tanarius. J. Nat. Prod., 2008, 71(11), 1872-1876.
[http://dx.doi.org/10.1021/np800380d] [PMID: 18844422]
[86]
Zou, Z.; Xu, K.; Xu, P.; Li, X.; Cheng, F.; Li, J.; Yu, X.; Cao, D.; Li, D.; Zeng, W.; Zhang, G.; Tan, G. Seladoeflavones A-F, six novel flavonoids from Selaginella doederleinii. Fitoterapia, 2017, 116, 66-71.
[http://dx.doi.org/10.1016/j.fitote.2016.11.014] [PMID: 27889540]
[87]
Li, F.; He, Y-M.; Awale, S.; Kadota, S.; Tezuka, Y. Two new cytotoxic phenylallylflavanones from Mexican propolis. Chem. Pharm. Bull. (Tokyo), 2011, 59(9), 1194-1196.
[http://dx.doi.org/10.1248/cpb.59.1194] [PMID: 21881271]
[88]
Sun, Q.; Wang, D.; Li, F-F.; Yao, G-D.; Li, X.; Li, L-Z.; Huang, X-X.; Song, S-J. Cytotoxic prenylated flavones from the stem and root bark of Daphne giraldii. Bioorg. Med. Chem. Lett., 2016, 26(16), 3968-3972.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.002] [PMID: 27400887]
[89]
Xie, G.; Lin, B.; Qin, X.; Wang, G.; Wang, Q.; Yuan, J.; Li, C.; Qin, M. New flavonoids with cytotoxicity from the roots of Flemingia latifolia. Fitoterapia, 2015, 104, 97-101.
[http://dx.doi.org/10.1016/j.fitote.2015.05.015] [PMID: 26025855]
[90]
Hung, T.M.; Cuong, T.D.; Dang, N.H.; Zhu, S.; Long, P.Q.; Komatsu, K.; Min, B.S. Flavonoid glycosides from Chromolaena odorata leaves and their in vitro cytotoxic activity. Chem. Pharm. Bull. (Tokyo), 2011, 59(1), 129-131.
[http://dx.doi.org/10.1248/cpb.59.129] [PMID: 21212562]
[91]
Nouga, A.B.; Ndom, J.C.; Mpondo, E.M.; Nyobe, J.C.N.; Njoya, A.; Meva’a, L.M.; Cranwell, P.B.; Howell, J.A.S.; Harwood, L.M.; Wansi, J.D. New furoquinoline alkaloid and flavanone glycoside derivatives from the leaves of Oricia suaveolens and Oricia renieri (Rutaceae). Nat. Prod. Res., 2016, 30(3), 305-310.
[http://dx.doi.org/10.1080/14786419.2015.1057727] [PMID: 26222678]
[92]
Mi, Z.; Rong-Rong, W.; Man, C.; Han-Qing, Z.; Shi, S.U.N.S.; Lu-Yong, Z. A new flavanone glycoside with anti-proliferation activity from the root bark of Morus alba. Chin. J. Nat. Med., 2009, 7(2), 105-107.
[http://dx.doi.org/10.3724/SP.J.1009.2009.00105]
[93]
Chin, Y.W.; Mdee, L.K.; Mbwambo, Z.H.; Mi, Q.; Chai, H.B.; Cragg, G.M.; Swanson, S.M.; Kinghorn, A.D. Prenylated flavonoids from the root bark of Berchemia discolor, a Tanzanian medicinal plant. J. Nat. Prod., 2006, 69(11), 1649-1652.
[http://dx.doi.org/10.1021/np060418w] [PMID: 17125241]
[94]
Li, Y-P.; Li, Y-K.; Du, G.; Yang, H-Y.; Gao, X-M.; Hu, Q.F. Isoflavanones from Desmodium oxyphyllum and their cytotoxicity. J. Asian Nat. Prod. Res., 2014, 16(7), 735-740.
[http://dx.doi.org/10.1080/10286020.2014.906406] [PMID: 24749537]
[95]
Gumula, I.; Heydenreich, M.; Derese, S.; Ndiege, I.O.; Yenesew, A. Four isoflavanones from the stem bark of Platycelphium voense. Phytochem. Lett., 2012, 5(1), 150-154.
[http://dx.doi.org/10.1016/j.phytol.2011.11.012]
[96]
Feng, S.; Hao, J.; Xu, Z.; Chen, T.; Qiu, S.X. Polyprenylated isoflavanone and isoflavonoids from Ormosia henryi and their cytotoxicity and anti-oxidation activity. Fitoterapia, 2012, 83(1), 161-165.
[http://dx.doi.org/10.1016/j.fitote.2011.10.007] [PMID: 22037567]
[97]
Dai, Y.; Harinantenaina, L.; Brodie, P.J.; Goetz, M.; Shen, Y.; TenDyke, K.; Kingston, D.G.I. Antiproliferative homoisoflavonoids and bufatrienolides from Urginea depressa. J. Nat. Prod., 2013, 76(5), 865-872.
[http://dx.doi.org/10.1021/np300900a] [PMID: 23659371]
[98]
Nchiozem-Ngnitedem, V-A.; Omosa, L.K.; Derese, S.; Tane, P.; Heydenreich, M.; Spiteller, M.; Seo, E-J.; Efferth, T. Two new flavonoids from Dracaena usambarensis. Engl. Phytochem. Lett., 2020, 36, 80-85.
[http://dx.doi.org/10.1016/j.phytol.2020.01.001]
[99]
Hu, X-R.; Chou, G-X.; Zhang, C-G. Flavonoids, alkaloids from the seeds of Crotalaria pallida and their cytotoxicity and anti-inflammatory activities. Phytochemistry, 2017, 143, 64-71.
[http://dx.doi.org/10.1016/j.phytochem.2017.07.010] [PMID: 28777979]
[100]
El-Elimat, T.; Rivera-Chávez, J.; Burdette, J.E.; Czarnecki, A.; Alhawarri, M.B.; Al-Gharaibeh, M.; Alali, F.; Oberlies, N.H. Cytotoxic homoisoflavonoids from the bulbs of Bellevalia flexuosa. Fitoterapia, 2018, 127, 201-206.
[http://dx.doi.org/10.1016/j.fitote.2018.02.022] [PMID: 29471027]
[101]
Alali, F.; El-Elimat, T.; Albataineh, H.; Al-Balas, Q.; Al-Gharaibeh, M.; Falkinham, J.O.; Chen, W-L.; Swanson, S.M.; Oberlies, N.H. Cytotoxic homoisoflavones from the Bulbs of Bellevalia eigii. J. Nat. Prod., 2015, 78(7), 1708-1715.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00357] [PMID: 26147490]
[102]
Hafez Ghoran, S.; Saeidnia, S.; Babaei, E.; Kiuchi, F.; Hussain, H. Scillapersicene: a new homoisoflavonoid with cytotoxic activity from the bulbs of Scilla persica HAUSSKN. Nat. Prod. Res., 2016, 30(11), 1309-1314.
[http://dx.doi.org/10.1080/14786419.2015.1054286] [PMID: 26140544]
[103]
Said, A.; Aboutabl, E.A.; Melek, F.R.; Jaleel, G.A.R.A.; Raslan, M. Steroidal saponins and homoisoflavanone from the aerial parts of Sansevieria cylindrica Bojer ex. Hook. Phytochem. Lett., 2015, 12, 113-118.
[http://dx.doi.org/10.1016/j.phytol.2015.03.006]
[104]
Liu, J.; Mei, W-L.; Wu, J.; Zhao, Y-X.; Peng, M.; Dai, H-F. A new cytotoxic homoisoflavonoid from Dracaena cambodiana. J. Asian Nat. Prod. Res., 2009, 11(2), 192-195.
[http://dx.doi.org/10.1080/10286020802674962] [PMID: 19219735]
[105]
Freitas, G.C.; Batista, J.M., Jr; Franchi, G.C., Jr; Nowill, A.E.; Yamaguchi, L.F.; Vilcachagua, J.D.; Favaro, D.C.; Furlan, M.; Guimarães, E.F.; Jeffrey, C.S.; Kato, M.J. Cytotoxic non-aromatic B-ring flavanones from Piper carniconnectivum C. DC. Phytochemistry, 2014, 97, 81-87.
[http://dx.doi.org/10.1016/j.phytochem.2013.10.012] [PMID: 24252268]
[106]
Li, J.; Zhang, J-J.; Pang, X-X. ZhengChen, X.L.; Gan, L-S. Biflavanones with anti-proliferative activity against eight human solid tumor cell lines from Stellera chamaejasme. Fitoterapia, 2014, 93, 163-167.
[http://dx.doi.org/10.1016/j.fitote.2014.01.002] [PMID: 24444895]
[107]
Wang, Z-X.; Cheng, M-C.; Zhang, X-Z.; Hong, Z.L.; Gao, M-Z.; Kan, X.X.; Li, Q.; Wang, Y.J.; Zhu, X.X.; Xiao, H.B. Cytotoxic biflavones from Stellera chamaejasme. Fitoterapia, 2014, 99, 334-340.
[http://dx.doi.org/10.1016/j.fitote.2014.10.002] [PMID: 25313014]
[108]
Bajgai, S.P.; Prachyawarakorn, V.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. Hybrid flavan-chalcones, aromatase and lipoxygenase inhibitors, from Desmos cochinchinensis. Phytochemistry, 2011, 72(16), 2062-2067.
[http://dx.doi.org/10.1016/j.phytochem.2011.07.002] [PMID: 21802698]
[109]
Ravishankar, D.; Rajora, A.K.; Greco, F.; Osborn, H.M.I. Flavonoids as prospective compounds for anti-cancer therapy. Int. J. Biochem. Cell Biol., 2013, 45(12), 2821-2831.
[http://dx.doi.org/10.1016/j.biocel.2013.10.004] [PMID: 24128857]
[110]
Tuñón, M.J.; García-Mediavilla, M.V.; Sánchez-Campos, S.; González-Gallego, J. Potential of flavonoids as anti-inflammatory agents: modulation of pro-inflammatory gene expression and signal transduction pathways. Curr. Drug Metab., 2009, 10(3), 256-271.
[http://dx.doi.org/10.2174/138920009787846369] [PMID: 19442088]
[111]
Li, F.; Awale, S.; Tezuka, Y.; Kadota, S. Cytotoxic constituents of propolis from Myanmar and their structure-activity relationship. Biol. Pharm. Bull., 2009, 32(12), 2075-2078.
[http://dx.doi.org/10.1248/bpb.32.2075] [PMID: 19952433]
[112]
Wätjen, W.; Weber, N.; Lou, Y.J.; Wang, Z.Q.; Chovolou, Y.; Kampkötter, A.; Kahl, R.; Proksch, P. Prenylation enhances cytotoxicity of apigenin and liquiritigenin in rat H4IIE hepatoma and C6 glioma cells. Food Chem. Toxicol., 2007, 45(1), 119-124.
[http://dx.doi.org/10.1016/j.fct.2006.08.008] [PMID: 17045382]
[113]
Plochmann, K.; Korte, G.; Koutsilieri, E.; Richling, E.; Riederer, P.; Rethwilm, A.; Schreier, P.; Scheller, C. Structure-activity relationships of flavonoid-induced cytotoxicity on human leukemia cells. Arch. Biochem. Biophys., 2007, 460(1), 1-9.
[http://dx.doi.org/10.1016/j.abb.2007.02.003] [PMID: 17353006]
[114]
Smejkal, K.; Svacinová, J.; Slapetová, T.; Schneiderová, K.; Dall’acqua, S.; Innocenti, G.; Závalová, V.; Kollár, P.; Chudík, S.; Marek, R.; Julínek, O.; Urbanová, M.; Kartal, M.; Csöllei, M.; Dolezal, K. Cytotoxic activities of several geranyl-substituted flavanones. J. Nat. Prod., 2010, 73(4), 568-572.
[http://dx.doi.org/10.1021/np900681y] [PMID: 20192247]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy