Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Research Article

Optimization of Solid Lipid Nanoparticles and Nanostructured Lipidic Carriers as Promising Delivery for Gefitinib: Characterization and Invitro Evaluation

Author(s): Akshat Shah , Asha Patel* and Abhay Dharamsi

Volume 16, Issue 2, 2021

Published on: 25 January, 2021

Page: [170 - 183] Pages: 14

DOI: 10.2174/1574885516666210125111945

Price: $65

Abstract

Background: Response surface methodology is a unique tool for the optimization of Solid lipid Nanoparticles and Nanostructured lipid carriers by developing the relationship between dependent and independent variables and exploring their interactions.

Methods: Central Composite Design and Box Benkhen Design were used to develop optimized formulations of Gefitinib [GEF] Solid Lipid Nanoparticles [SLN] and Nanostructured Lipidic Carriers [NLC]. In the design matrix, the independent variables chosen were the amount of Solid Lipid, Liquid Lipid, and Surfactant and the dependent variables were Particle Size and Poly Dispersity Index.

Results: The GEF-SLN under optimized conditions gave rise to Particle size (187.9 nm ± 1.15), PDI (0.318 ± 0.006), %EE (95.38%±0.14), Zeta Potential (-8.75 mv ±0.18) and GEF-NLC under optimized conditions gave rise to Particle size (188.6 nm± 1.12), PDI (0.395± 0.004), %EE (97.46%± 0.33), Zeta Potential (-5.72 mv± 0.04) respectively. SEM of the Freeze-dried optimized lipidic carriers showed spherical particles. The in vitro experiments proved that Gefitinib in the lipidic carriers is released gradually throughout 24 h.

Conclusion: This study showed that the response surface methodology could be efficiently applied for the modeling of GEF-SLN & GEF-NLC.

Keywords: Response surface methodology, central composite design, box benkhen design, solid lipid nanoparticles, nanostructured lipid carriers, gefitinib.

Graphical Abstract

[1]
Kola Srinivas NS, Verma R, Pai Kulyadi G, Kumar L. A quality by design approach on polymeric nanocarrier delivery of gefitinib: formulation, in vitro, and in vivo characterization. Int J Nanomedicine 2016; 12: 15-28.
[http://dx.doi.org/10.2147/IJN.S122729] [PMID: 28031710]
[2]
Bakhtiary Z, Barar J, Aghanejad A, et al. Microparticles containing erlotinib-loaded solid lipid nanoparticles for treatment of non-small cell lung cancer. Drug Dev Ind Pharm 2017; 43(8): 1244-53.
[http://dx.doi.org/10.1080/03639045.2017.1310223] [PMID: 28323493]
[3]
Agarwalla P, Mukherjee S, Sreedhar B, Banerjee R. Glucocorticoid receptor-mediated delivery of nano gold-withaferin conjugates for reversal of epithelial-to-mesenchymal transition and tumor regression. Nanomedicine (Lond) 2016; 11(19): 2529-46.
[http://dx.doi.org/10.2217/nnm-2016-0224] [PMID: 27622735]
[4]
Gohil R, Patel A, Pandya T, Dharamsi A. Optimization of brinzolamide loaded microemulsion using formulation by design approach: characterization and in-vitro evaluation. Curr Drug Ther 2019; 15(1): 37-52.
[http://dx.doi.org/10.2174/1574885514666190104115802]
[5]
Liu W, Tian R, Hu W, et al. Preparation and evaluation of self-microemulsifying drug delivery system of baicalein. Fitoterapia 2012; 83(8): 1532-9.
[http://dx.doi.org/10.1016/j.fitote.2012.08.021] [PMID: 22982454]
[6]
Thakkar V, Pandey E, Pandya T, Shah P, Patel A, Trivedi R, et al. Formulation of dry powder inhaler of anti-tuberculous drugs using spray drying technique and optimization using 23 level factorial design approach. Curr Drug Ther 2019; 14(3): 239-60.
[http://dx.doi.org/10.2174/1574885514666190104114209]
[7]
Gandhi M, Pandya T, Gandhi R, et al. Inhalable liposomal dry powder of gemcitabine-HCl: Formulation, in vitro characterization and in vivo studies. Int J Pharm 2015; 496(2): 886-95.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.020] [PMID: 26453787]
[8]
Sultana F, Neog MK, Rasool M. Withaferin-A, a steroidal lactone encapsulated mannose decorated liposomes ameliorates rheumatoid arthritis by intriguing the macrophage repolarization in adjuvant-induced arthritic rats. Colloids Surf B Biointerfaces 2017; 155: 349-65.
[http://dx.doi.org/10.1016/j.colsurfb.2017.04.046] [PMID: 28454064]
[9]
El-Sherbiny IM, El-Baz NM, Yacoub MH. Inhaled nano- and microparticles for drug delivery. Glob Cardiol Sci Pract 2015; 2015: 2.
[http://dx.doi.org/10.5339/gcsp.2015.2] [PMID: 26779496]
[10]
Laquintana V, Trapani A, Denora N, Wang F, Gallo JM, Trapani G. New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv 2009; 6(10): 1017-32.
[http://dx.doi.org/10.1517/17425240903167942] [PMID: 19732031]
[11]
Gidwani B, Vyas A. Preparation, characterization, and optimization of altretamine-loaded solid lipid nanoparticles using Box-Behnken design and response surface methodology. Artif Cells, Nanomedicine, Biotechnol 2016; 1401(44:2): 571-80.
[http://dx.doi.org/10.3109/21691401.2014.971462]
[12]
Bhise K, Kashaw SK, Sau S, Iyer AK. Nanostructured lipid carriers employing polyphenols as promising anticancer agents: Quality by design (QbD) approach. Int J Pharm 2017; 526(1-2): 506-15.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.078] [PMID: 28502895]
[13]
Haringhuizen A, van Tinteren H, Vaessen HFR, Baas P, van Zandwijk N. Gefitinib as a last treatment option for non-small-cell lung cancer: durable disease control in a subset of patients. Ann Oncol 2004; 15(5): 786-92.
[http://dx.doi.org/10.1093/annonc/mdh177] [PMID: 15111348]
[14]
Ni XL, Chen LX, Zhang H, et al. In vitro and in vivo antitumor effect of gefitinib nanoparticles on human lung cancer. Drug Deliv 2017; 24(1): 1501-12.
[http://dx.doi.org/10.1080/10717544.2017.1384862] [PMID: 28961023]
[15]
Chuang CH, Wu PC, Tsai TH, et al. Development of pH-sensitive cationic PEGylated solid lipid nanoparticles for selective cancer-targeted therapy. J Biomed Nanotechnol 2017; 13(2): 192-03.
[http://dx.doi.org/10.1166/jbn.2017.2338] [PMID: 29377649]
[16]
Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res 2010; 62(2): 90-9.
[http://dx.doi.org/10.1016/j.phrs.2010.03.005] [PMID: 20380880]
[17]
Shah NV, Seth AK, Balaraman R, Aundhia CJ, Maheshwari RA, Parmar GR. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: Design and in vivo study. J Adv Res 2016; 7(3): 423-34.
[http://dx.doi.org/10.1016/j.jare.2016.03.002] [PMID: 27222747]
[18]
Pimentel-moral S, Teixeira MC, Fernandes AR, Borrás-linares I, Arráez-román D. Polyphenols-enriched Hibiscus sabdariffa extract-loaded nanostructured lipid carriers (NLC): Optimization by multi-response surface methodology. J Drug Deliv Sci Technol 2019; 49: 660-7.
[http://dx.doi.org/10.1016/j.jddst.2018.12.023]
[19]
Sim EHA, Yang IA, Wood-Baker R, Bowman RV, Fong KM. Gefitinib for advanced non-small cell lung cancer. Cochrane Database Syst Rev 2018; 1(1): CD006847.
[http://dx.doi.org/10.1002/14651858.CD006847.pub2] [PMID: 29336009]
[20]
Satoh H, Inoue A, Kobayashi K, et al. Low-dose gefitinib treatment for patients with advanced non-small cell lung cancer harboring sensitive epidermal growth factor receptor mutations. J Thorac Oncol 2011; 6(8): 1413-7.
[http://dx.doi.org/10.1097/JTO.0b013e31821d43a8] [PMID: 21681118]
[21]
Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010; 362(25): 2380-8.
[http://dx.doi.org/10.1056/NEJMoa0909530] [PMID: 20573926]
[22]
Nurwidya F, Takahashi F, Takahashi K. Gefitinib in the treatment of nonsmall cell lung cancer with activating epidermal growth factor receptor mutation. J Nat Sci Biol Med 2016; 7(2): 119-23.
[http://dx.doi.org/10.4103/0976-9668.184695] [PMID: 27433059]
[23]
Puri A, Loomis K, Smith B, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 2009; 26(6): 523-80.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10] [PMID: 20402623]
[24]
Muralidharan P, Malapit M, Mallory E, Hayes D Jr, Mansour HM. Inhalable nanoparticulate powders for respiratory delivery. Nanomedicine (Lond) 2015; 11(5): 1189-99.
[http://dx.doi.org/10.1016/j.nano.2015.01.007] [PMID: 25659645]
[25]
Dhiman S, Mishra N, Sharma S. Development of PEGylated solid lipid nanoparticles of pentoxifylline for their beneficial pharmacological potential in pathological cardiac hypertrophy. Artif Cells Nanomed Biotechnol 2016; 44(8): 1901-8.
[http://dx.doi.org/10.3109/21691401.2015.1111234] [PMID: 26631531]
[26]
Ezzati Nazhad Dolatabadi J, Hamishehkar H, Valizadeh H. Development of dry powder inhaler formulation loaded with alendronate solid lipid nanoparticles: solid-state characterization and aerosol dispersion performance. Drug Dev Ind Pharm 2015; 41(9): 1431-7.
[http://dx.doi.org/10.3109/03639045.2014.956111] [PMID: 25220930]
[27]
Mosallaei N, Mahmoudi A, Ghandehari H, Yellepeddi VK, Jaafari MR, Malaekeh-Nikouei B. Solid lipid nanoparticles containing 7-ethyl-10-hydroxycamptothecin (SN38): Preparation, characterization, in vitro, and in vivo evaluations. Eur J Pharm Biopharm 2016; 104: 42-50.
[http://dx.doi.org/10.1016/j.ejpb.2016.04.016] [PMID: 27108266]
[28]
Yuan H, Chen CY, Chai GH, Du YZ, Hu FQ. Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles. Mol Pharm 2013; 10(5): 1865-73.
[http://dx.doi.org/10.1021/mp300649z] [PMID: 23495754]
[29]
Shah KA, Date AA, Joshi MD, Patravale VB. Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery. Int J Pharm 2007; 345(1-2): 163-71.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.061] [PMID: 17644288]
[30]
Venkateswarlu V, Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release 2004; 95(3): 627-38.
[http://dx.doi.org/10.1016/j.jconrel.2004.01.005] [PMID: 15023472]
[31]
Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A. Design and characterization of astaxanthin-loaded nanostructured lipid carriers. Innov Food Sci Emerg Technol 2014; 26: 366-74.
[http://dx.doi.org/10.1016/j.ifset.2014.06.012]
[32]
Shete H, Patravale V. Long chain lipid based tamoxifen NLC. Part I: preformulation studies, formulation development and physicochemical characterization. Int J Pharm 2013; 454(1): 573-83.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.034] [PMID: 23535345]
[33]
Joshi M, Patravale V. Formulation and evaluation of Nanostructured Lipid Carrier (NLC)-based gel of Valdecoxib. Drug Dev Ind Pharm 2006; 32(8): 911-8.
[http://dx.doi.org/10.1080/03639040600814676] [PMID: 16954103]
[34]
Zhang X, Liu J, Qiao H, et al. Formulation optimization of dihydroartemisinin nanostructured lipid carrier using response surface methodology. Powder Technol 2010; 197(1–2): 120-8.
[http://dx.doi.org/10.1016/j.powtec.2009.09.004]
[35]
Varshosaz J, Eskandari S, Tabbakhian M. Freeze-drying of nanostructure lipid carriers by different carbohydrate polymers used as cryoprotectants. Carbohydr Polym 2012; 88(4): 1157-63.
[http://dx.doi.org/10.1016/j.carbpol.2012.01.051]
[36]
Kouchakzadeh H, Shojaosadati SA, Maghsoudi A, Vasheghani Farahani E. Optimization of PEGylation conditions for BSA nanoparticles using response surface methodology. AAPS PharmSciTech 2010; 11(3): 1206-11.
[http://dx.doi.org/10.1208/s12249-010-9487-8] [PMID: 20680708]
[37]
Ferreira M, Chaves LL, Lima SA, Reis S. Optimization of nanostructured lipid carriers loaded with methotrexate: A tool for inflammatory and cancer therapy. Int J Pharm 2015; 492(1-2): 65-72.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.013] [PMID: 26169145]
[38]
Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev 2007; 59(6): 491-504.
[http://dx.doi.org/10.1016/j.addr.2007.04.008] [PMID: 17532091]
[39]
Lin C-H, Chen C-H, Lin Z-C, Fang J-Y. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. Yao Wu Shi Pin Fen Xi 2017; 25(2): 219-34.
[http://dx.doi.org/10.1016/j.jfda.2017.02.001] [PMID: 28911663]
[40]
Park J, Fong PM, Lu J, et al. PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomedicine (Lond) 2009; 5(4): 410-8.
[http://dx.doi.org/10.1016/j.nano.2009.02.002] [PMID: 19341815]
[41]
Bastogne T. Quality-by-design of nanopharmaceuticals – a state of the art. Nanomedicine Nanotechnology. Biol Med (Aligarh) 2017; 13(7): 2151-7.
[42]
Chen Y, Yang X, Zhao L, Almásy L, Garamus VM, Willumeit R. Preparation and characterization of a nanostructured lipid carrier for a poorly soluble drug. Colloids Surf A Physicochem Eng Asp 2014; 455(1): 36-43.
[http://dx.doi.org/10.1016/j.colsurfa.2014.04.032]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy