Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Nanotechnology Enabled Solutions to Combat Covid-19: Prevention, Treatment, and Diagnosis

Author(s): Pankaj Musyuni, Manju Nagpal, Manjinder Singh, Ramesh K. Goyal and Geeta Aggarwal*

Volume 23, Issue 1, 2022

Published on: 22 January, 2021

Page: [98 - 111] Pages: 14

DOI: 10.2174/1389201022666210122124311

Price: $65

Abstract

Changes in human lifestyles and environmental deterioration globally cause the emergence of new viruses, posing research challenges. The outburst of COVID-19 (nCoV19) is a recent example, wherein effective management of virus, using the conventional medication and effective diagnostic measures is a challenge. While many ongoing strategies from vaccine development to drug repurposing are currently being investigated, a targeted approach with nanotechnology can be helpful to meet the demand for preventive and diagnostic measures. The significant results of nanotechnology in providing better efficacy of pharmaceutical drugs is expected to combat nCoV19 by using nanotechnology- based solutions, preventive treatment, and diagnosis. This article addresses the dire need for nanotechnology-based solutions in the current pandemic, as well as analyzes the ongoing innovation and existing patents that can be used to provide better solutions. Multiple applications of nanotechnology are considered to be helpful in preventive and diagnostic measures, immune response modulation, and immunity boosters, along with projecting a pathway for industry and academic researchers for addressing such a pandemic.

Keywords: Nanotechnology, anti-viral, nano-coating, coronavirus, COVID-19, preventive measures, research, technology transfer.

Graphical Abstract

[1]
Worldometer. Coronaviruses Cases, . http//www.worldometers. info/coronavirus/#countries
[3]
Parrish, C.R.; Holmes, E.C.; Morens, D.M.; Park, E.C.; Burke, D.S.; Calisher, C.H.; Laughlin, C.A.; Saif, L.J.; Daszak, P. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev., 2008, 72(3), 457-470.
[http://dx.doi.org/10.1128/MMBR.00004-08 ] [PMID: 18772285]
[4]
Fehr, A.R.; Perlman, S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol., 2015, 1282, 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1 ] [PMID: 25720466]
[5]
Question and Answer on Covid-19,, 2020.
[6]
Nishiura, H.; Linton, N.M.; Akhmetzhanov, A.R. Initial cluster of novel coronaviruses (2019-nCoV) infections in Wuhan, China is consistent with substantial human-to-human transmission. J. Clin. Med., 2020, 9, 488.
[http://dx.doi.org/10.3390/jcm9020488]
[7]
Moriyama, M; Hugentobler, WJ; Iwasaki, A Seasonality of respiratory viral infections. Ann Rev Virol, 2020, 7, 2.1-2.19.,
[http://dx.doi.org/10.1146/annurev-virology-012420-022445]
[8]
Suman, R.; Javaid, M.; Haleem, A.; Vaishya, R.; Bahl, S.; Nandan, D. Sustainability of Coronavirus on different surfaces. J. Clin. Exp. Hepatol., 2020, 10(4), 386-390.
[http://dx.doi.org/10.1016/j.jceh.2020.04.020 ] [PMID: 32377058]
[9]
Cascella, M.; Rajnik, M.; Cuomo, A.; Dulebohn, S.C.; Di, N.R. Features, evaluation, and treatment coronavirus (COVID-19); StatPearls, 2020.
[10]
Centers for Disease Control and Prevention,. http//www.cdc.gov/coronavirus/index.html
[11]
Lei, J.; Kusov, Y.; Hilgenfeld, R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res., 2018, 149, 58-74.
[http://dx.doi.org/10.1016/j.antiviral.2017.11.001 ] [PMID: 29128390]
[12]
Song, W.; Gui, M.; Wang, X.; Xiang, Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog., 2018, 14(8)e1007236
[http://dx.doi.org/10.1371/journal.ppat.1007236 ] [PMID: 30102747]
[13]
Angeletti, S.; Benvenuto, D.; Bianchi, M.; Giovanetti, M.; Pascarella, S.; Ciccozzi, M. COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis. J. Med. Virol., 2020, 92(6), 584-588.
[http://dx.doi.org/10.1002/jmv.25719 ] [PMID: 32083328]
[14]
Ciceri, F.; Beretta, L.; Scandroglio, A.M.; Colombo, S.; Landoni, G.; Ruggeri, A.; Peccatori, J.; D’Angelo, A.; De Cobelli, F.; Rovere-Querini, P.; Tresoldi, M.; Dagna, L.; Zangrillo, A. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): An atypical acute respiratory distress syndrome working hypothesis. Crit. Care Resusc., 2020, 22(2), 95-97.
[PMID: 32294809]
[15]
Conti, P.; Ronconi, G.; Caraffa, A.; Gallenga, C.E.; Ross, R.; Frydas, I.; Kritas, S.K. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): Anti-inflammatory strategies. J. Biol. Regul. Homeost. Agents, 2020, 34(2), 327-331.
[PMID: 32171193]
[16]
Tian, S.; Hu, W.; Niu, L.; Liu, H.; Xu, H.; Xiao, S.Y. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol., 2020, 15(5), 700-704.
[http://dx.doi.org/10.1016/j.jtho.2020.02.010 ] [PMID: 32114094]
[17]
Zhang, H.; Zhou, P.; Wei, Y.; Yue, H.; Wang, Y.; Hu, M.; Zhang, S.; Cao, T.; Yang, C.; Li, M.; Guo, G.; Chen, X.; Chen, Y.; Lei, M.; Liu, H.; Zhao, J.; Peng, P.; Wang, C.Y.; Du, R. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann. Intern. Med., 2020, 172(9), 629-632.
[http://dx.doi.org/10.7326/M20-0533 ] [PMID: 32163542]
[18]
The novel coronavirus pneumonia diagnosis and treatment plan (trial version sixth). National Health Commission,, http//en.nhc.gov.cn/index.html
[19]
Hou, H.; Wang, T.; Zhang, B.; Luo, Y.; Mao, L.; Wang, F.; Wu, S.; Sun, Z. Detection of IgM and IgG antibodies in patients with coronavirus disease 2019. Clin. Transl. Immunology, 2020, 9(5)
[http://dx.doi.org/10.1002/cti2.1136 ] [PMID: 32382418]
[22]
Shen, K.; Yang, Y.; Wang, T.; Zhao, D.; Jiang, Y.; Jin, R.; Zheng, Y.; Xu, B.; Xie, Z.; Lin, L.; Shang, Y.; Lu, X.; Shu, S.; Bai, Y.; Deng, J.; Lu, M.; Ye, L.; Wang, X.; Wang, Y.; Gao, L. China National Clinical Research Center for Respiratory Diseases; National Center for Children’s Health, Beijing, China; Group of Respirology, Chinese Pediatric Society, Chinese Medical Association; Chinese Medical Doctor Association Committee on Respirology Pediatrics; China Medicine Education Association Committee on Pediatrics; Chinese Research Hospital Association Committee on Pediatrics; Chinese Non-government Medical Institutions Association Committee on Pediatrics; China Association of Traditional Chinese Medicine, Committee on Children’s Health and Medicine Research; China News of Drug Information Association, Committee on Children’s Safety Medication; Global Pediatric Pulmonology Alliance. Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: experts’ consensus statement. World J. Pediatr., 2020, 16(3), 223-231.
[http://dx.doi.org/10.1007/s12519-020-00343-7 ] [PMID: 32034659]
[23]
Cao, Y.C.; Deng, Q.X.; Dai, S.X. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med. Infect. Dis., 2020, 35.
[http://dx.doi.org/10.1016/j.tmaid.2020.101647 ] [PMID: 32247927]
[24]
Wu, R.; Wang, L.; Kuo, H.D.; Shannar, A.; Peter, R.; Chou, P.J.; Li, S.; Hudlikar, R.; Liu, X.; Liu, Z.; Poiani, G.J.; Amorosa, L.; Brunetti, L.; Kong, A.N. An update on current therapeutic drugs treating COVID-19. Curr. Pharmacol. Rep., 2020, 6, 1-15.
[http://dx.doi.org/10.1007/s40495-020-00216-7 ] [PMID: 32395418]
[25]
Mulangu, S.; Dodd, L.E.; Davey, R.T.J., Jr; Tshiani Mbaya, O.; Proschan, M.; Mukadi, D.; Lusakibanza Manzo, M.; Nzolo, D.; Tshomba Oloma, A.; Ibanda, A.; Ali, R.; Coulibaly, S.; Levine, A.C.; Grais, R.; Diaz, J.; Lane, H.C.; Muyembe-Tamfum, J.J.; Sivahera, B.; Camara, M.; Kojan, R.; Walker, R.; Dighero-Kemp, B.; Cao, H.; Mukumbayi, P.; Mbala-Kingebeni, P.; Ahuka, S.; Albert, S.; Bonnett, T.; Crozier, I.; Duvenhage, M.; Proffitt, C.; Teitelbaum, M.; Moench, T.; Aboulhab, J.; Barrett, K.; Cahill, K.; Cone, K.; Eckes, R.; Hensley, L.; Herpin, B.; Higgs, E.; Ledgerwood, J.; Pierson, J.; Smolskis, M.; Sow, Y.; Tierney, J.; Sivapalasingam, S.; Holman, W.; Gettinger, N.; Vallée, D.; Nordwall, J. PALM Writing Group; PALM Consortium Study Team. PALM Consortium Study Team. A randomized, controlled trial of Ebola virus disease therapeutics. N. Engl. J. Med., 2019, 381(24), 2293-2303.
[http://dx.doi.org/10.1056/NEJMoa1910993 ] [PMID: 31774950]
[26]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0 ] [PMID: 32020029]
[27]
[29]
Tang, Y.W.; Schmitz, J.E.; Persing, D.H.; Stratton, C.W. Yi-WT. laboratory diagnosis of COVID-19: Current issues and challenges. J. Clin. Microbiol., 2020, 58(6), e00512-e00520.
[http://dx.doi.org/10.1128/JCM.00512-20 ] [PMID: 32245835]
[30]
Yang, P.; Wang, X. COVID-19: A new challenge for human beings. Cell. Mol. Immunol., 2020, 17(5), 555-557.
[http://dx.doi.org/10.1038/s41423-020-0407-x ] [PMID: 32235915]
[31]
Maseko, S.B.; Natarajan, S.; Sharma, V.; Bhattacharyya, N.; Govender, T.; Sayed, Y.; Maguire, G.E.; Lin, J.; Kruger, H.G. Purification and characterization of naturally occurring HIV-1 (South African subtype C) protease mutants from inclusion bodies. Protein Expr. Purif., 2016, 122, 90-96.
[http://dx.doi.org/10.1016/j.pep.2016.02.013 ] [PMID: 26917227]
[32]
Hayden, F. Developing new antiviral agents for influenza treatment: what does the future hold? Clin. Infect. Dis., 2009, 48(1)(Suppl. 1), S3-S13.
[http://dx.doi.org/10.1086/591851 ] [PMID: 19067613]
[33]
Cosgrove, S.E. The relationship between antimicrobial resistance and patient outcomes: Mortality, length of hospital stay, and health care costs. Clin. Infect. Dis., 2006, 42(2)(Suppl. 2), S82-S89.
[http://dx.doi.org/10.1086/499406 ] [PMID: 16355321]
[34]
World Health Organization: Section on coronavirus disease (COVID-19) pandemic,. http//www.who.int/emergencies/diseases/novel-coronavirus-2019
[35]
Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowling, B.J.; Yang, B.; Leung, G.M.; Feng, Z. Early transmission dynamics in Wuhan, China, of novel coronavirus infected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207.
[http://dx.doi.org/10.1056/NEJMoa2001316 ] [PMID: 31995857]
[36]
Udugama, B.; Kadhiresan, P.; Kozlowski, H.N.; Malekjahani, A.; Osborne, M.; Li, V.Y.C.; Chen, H.; Mubareka, S.; Gubbay, J.B.; Chan, W.C.W. Diagnosing COVID-19: The disease and tools for detection. ACS Nano, 2020, 14(4), 3822-3835.
[http://dx.doi.org/10.1021/acsnano.0c02624 ] [PMID: 32223179]
[37]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A Trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282 ] [PMID: 32187464]
[38]
Clinical Trials. http//clinicaltrials.gov
[39]
Pereira de Oliveira, M.; Garcion, E.; Venisse, N.; Benoit, J.P.; Couet, W.; Olivier, J.C. Tissue distribution of indinavir administered as solid lipid nanocapsule formulation in mdr1a (+/+) and mdr1a (-/-) CF-1 mice. Pharm. Res., 2005, 22(11), 1898-1905.
[http://dx.doi.org/10.1007/s11095-005-7147-6 ] [PMID: 16132350]
[40]
Hellmuth, J.; Valcour, V.; Spudich, S. CNS reservoirs for HIV: implications for eradication. J. Virus Erad., 2015, 1(2), 67-71.
[http://dx.doi.org/10.1016/S2055-6640(20)30489-1 ] [PMID: 26430703]
[41]
Mahajan, S.D.; Aalinkeel, R.; Law, W.C.; Reynolds, J.L.; Nair, B.B.; Sykes, D.E.; Yong, K.T.; Roy, I.; Prasad, P.N.; Schwartz, S.A. Anti-HIV-1 nanotherapeutics: Promises and challenges for the future. Int. J. Nanomedicine, 2012, 7, 5301-5314.
[http://dx.doi.org/10.2147/IJN.S25871 ] [PMID: 23055735]
[42]
Duan, L.; Yan, Y.; Liu, J.; Wang, B.; Li, P.; Hu, Q.; Chen, W. Target delivery of small interfering RNAs with vitamin E-coupled nanoparticles for treating hepatitis C. Sci. Rep., 2016, 6, 24867.
[http://dx.doi.org/10.1038/srep24867 ] [PMID: 27113197]
[43]
Adesina, S.K.; Akala, E.O. Nanotechnology approaches for the delivery of exogenous siRNA for HIV therapy. Mol. Pharm., 2015, 12(12), 4175-4187.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00335 ] [PMID: 26524196]
[44]
Chen, B.M.; Su, Y.C.; Chang, C.J.; Burnouf, P.A.; Chuang, K.H.; Chen, C.H.; Cheng, T.L.; Chen, Y.T.; Wu, J.Y.; Roffler, S.R. Measurement of pre-existing IgG and IgM antibodies against polyethylene glycol in healthy individuals. Anal. Chem., 2016, 88(21), 10661-10666.
[http://dx.doi.org/10.1021/acs.analchem.6b03109 ] [PMID: 27726379]
[45]
Toub, N.; Malvy, C.; Fattal, E.; Couvreur, P. Innovative nanotechnologies for the delivery of oligonucleotides and siRNA. Biomed. Pharmacother., 2006, 60(9), 607-620.
[http://dx.doi.org/10.1016/j.biopha.2006.07.093 ] [PMID: 16952435]
[46]
Blecher, K.; Nasir, A.; Friedman, A. The growing role of nanotechnology in combating infectious disease. Virulence, 2011, 2(5), 395-401.
[http://dx.doi.org/10.4161/viru.2.5.17035 ] [PMID: 21921677]
[50]
Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol., 2016, 3(1), 237-261.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301 ] [PMID: 27578435]
[51]
Patra, J.K.; Das, G.; Fraceto, L.F. Nano based drug delivery systems: Recent developments and future prospects; J. Nanobiotechnol, 2018, p. 16.
[52]
Nikazar, S.; Sivasankarapillai, V.S.; Rahdar, A.; Gasmi, S.; Anumol, P.S.; Shanavas, M.S. Revisiting the cytotoxicity of quantum dots: An in-depth overview. Biophys. Rev., 2020, 12(3), 703-718.
[http://dx.doi.org/10.1007/s12551-020-00653-0 ] [PMID: 32140918]
[53]
Carter, D.C.; Wright, B.; Gray, W.; Rose, J.P.; Wilson, E.A. A Unique protein self-assembling nanoparticle with significant advantages in vaccine development and production. J. Nanomater., 2020.
[http://dx.doi.org/10.1155/2020/4297937]
[54]
Pillai, A.M.; Sivasankarapillai, V.S.; Rahdar, A. Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J. Mol. Struct., 2020, 1211.
[http://dx.doi.org/10.1016/j.molstruc.2020.128107]
[55]
Singh, L.; Kruger, H.G.; Maguire, G.E.M.; Govender, T.; Parboosing, R. The role of nanotechnology in the treatment of viral infections. Ther. Adv. Infect. Dis., 2017, 4(4), 105-131.
[http://dx.doi.org/10.1177/2049936117713593 ] [PMID: 28748089]
[56]
Zazo, H.; Colino, C.I.; Lanao, J.M. Current applications of nanoparticles in infectious diseases. J. Control. Release, 2016, 224, 86-102.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.008 ] [PMID: 26772877]
[57]
Mora-Huertas, C.E.; Fessi, H.; Elaissari, A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm., 2010, 385(1-2), 113-142.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.018 ] [PMID: 19825408]
[58]
Baram-Pinto, D.; Shukla, S.; Richman, M.; Gedanken, A.; Rahimipour, S.; Sarid, R. Surface-modified protein nanospheres as potential antiviral agents. Chem. Commun. (Camb.), 2012, 48(67), 8359-8361.
[http://dx.doi.org/10.1039/c2cc33448h ] [PMID: 22798998]
[59]
Bergeron, M.G.; Desormeaux, A. Liposomes encapsulating antiviral drugs. US patent 5773027, 2020.
[60]
Dutta, T.; Agashe, H.B.; Garg, M.; Balakrishnan, P.; Kabra, M.; Jain, N.K. Poly (propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro. J. Drug Target., 2007, 15(1), 89-98.
[http://dx.doi.org/10.1080/10611860600965914 ] [PMID: 17365278]
[61]
Giljohann, D.A.; Seferos, D.S.; Daniel, W.L.; Massich, M.D.; Patel, P.C.; Mirkin, C.A. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. Engl., 2010, 49(19), 3280-3294.
[http://dx.doi.org/10.1002/anie.200904359 ] [PMID: 20401880]
[62]
Ochekpe, N.A.; Olorunfemi, P.O.; Ngwuluka, N.C. Nanotechnology and drug delivery part 2: nanostructures for drug delivery. Trop. J. Pharm. Res., 2009, 8(3), 275-287.
[http://dx.doi.org/10.4314/tjpr.v8i3.44547]
[63]
Stevanovic, M.; Uskokovic, D. Poly (lactide-co-glycolide)-based micro and nanoparticles for the controlled drug delivery of vitamins. Curr. Nanosci., 2009, 5(1), 1-14.
[http://dx.doi.org/10.2174/157341309787314566]
[64]
McReynolds, S.; Jiang, S.; Guo, Y.; Celigoy, J.; Schar, C.; Rong, L.; Caffrey, M. Characterization of the prefusion and transition states of severe acute respiratory syndrome coronavirus S2-HR2. Biochemistry, 2008, 47(26), 6802-6808.
[http://dx.doi.org/10.1021/bi800622t ] [PMID: 18540634]
[65]
Pimentel, T.A.P.F.; Yan, Z.; Jeffers, S.A.; Holmes, K.V.; Hodges, R.S.; Burkhard, P. Peptide nanoparticles as novel immunogens: design and analysis of a prototypic severe acute respiratory syndrome vaccine. Chem. Biol. Drug Des., 2009, 73(1), 53-61.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00746.x ] [PMID: 19152635]
[66]
Han, Y.; Král, P. Computational design of ACE2-based peptide inhibitors of SARS-CoV-2. ACS Nano, 2020, 14(4), 5143-5147.
[http://dx.doi.org/10.1021/acsnano.0c02857 ] [PMID: 32286790]
[67]
Mansoor, F.; Earley, B.; Cassidy, J.P.; Markey, B.; Doherty, S.; Welsh, M.D. Comparing the immune response to a novel intranasal nanoparticle PLGA vaccine and a commercial BPI3V vaccine in dairy calves. BMC Vet. Res., 2015, 11(1), 220.
[http://dx.doi.org/10.1186/s12917-015-0481-y ] [PMID: 26293453]
[69]
Rouse, B.T.; Lukacher, A.E. Some unmet challenges in the immunology of viral infections. Discov. Med., 2010, 10(53), 363-370.
[PMID: 21034678]
[70]
Jayaweera, M.; Perera, H.; Gunawardana, B.; Manatunge, J. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environ. Res., 2020, 188.
[http://dx.doi.org/10.1016/j.envres.2020.109819 ] [PMID: 32569870]
[71]
Morawska, L.; Cao, J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int., 2020, 139.
[http://dx.doi.org/10.1016/j.envint.2020.105730 ] [PMID: 32294574]
[72]
Zhang, R.; Li, Y.; Zhang, A.L.; Wang, Y.; Molina, M.J. Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc. Natl. Acad. Sci. USA, 2020, 117(26), 14857-14863.
[http://dx.doi.org/10.1073/pnas.2009637117 ] [PMID: 32527856]
[73]
Nakamura, S.; Sato, M.; Sato, Y.; Ando, N.; Takayama, T.; Fujita, M.; Ishihara, M. Synthesis and application of silver nanoparticles (Ag NPs) for the prevention of infection in healthcare workers. Int. J. Mol. Sci., 2019, 20(15), 3620.
[http://dx.doi.org/10.3390/ijms20153620 ] [PMID: 31344881]
[75]
Han, C.; Romero, N.; Fischer, S.; Dookran, J.; Berger, A.; Doiron, A.L. Recent developments in the use of nanoparticles for treatment of biofilms. Nanotechnol. Rev., 2017, 6(5), 383-404.
[http://dx.doi.org/10.1515/ntrev-2016-0054]
[76]
Nanotechnology enabled N-95 masks. News Article. Statnano.com,, http//statnano.com/news/67490/Nanotechnology-enabled-N95-Masks-Can-Halt-the-Spread-of-Coronavirus
[77]
[78]
COVID-19 Challenge. Made in Canada filtration material for the manufacture of N95 respirators and surgical masks., http//www.ic.gc.ca/eic/site/101.nsf/eg/00102.html
[79]
New mask material can remove virus-size nanoparticles. News Article., , http//phys.org/news/2020-04-mask-material-virus-size-nanoparticles.html
[80]
Nanofiber smart mask. News Article, , http//www.metamasks.com/
[82]
Information Available from. Nanohack, the open source mask, http//copper3d.com/hackthepandemic/
[83]
Information Available from. Face masks, http//verdextech.com/applications/face-masks/
[86]
Gao, S. Nano-sized dust respirator. CN Patent 2013106693,, 2013.
[87]
Tong, K; Wei, Z; Huang, G; Hu, H; Chen, F Rare earth upconversion fluorescent nano test strip for novel coronavirus detection and preparation method thereof. CN Patent 202010109363A,, 2020.
[88]
Shobhana, S; Periasamy, P; Sumin, M; Sudhan, S Raj, VP E-Visor and Electrically Charged Personal Protective Equipment (PPE). IN202041019191A, , 2020.
[89]
Juluri, R R; Sriddar, K; Balasubramani, P Approved anti-viral drugs assisted coating on cotton fabrics for making personal protection equipment e.g. Face masks, PPE kits etc., purpose. IN202041017816A, , 2020.
[90]
Zhang, Y. Medical protective sintering ventilating material manufacturing method with sterilizing passage. CN202010089066A,, 2020.
[91]
Frank, G; Linden, WJJ; Liu, S Mucoadhesive nano-particle delivery system. CN201380040130A,, 2013.
[92]
Georg, S; Alexander, PRM; Pamela, AB; Michael, NS; Robert, L; Omid, FH; Ulrich, BA Nanoparticle-Based Compositions. KR20157028156A, , 2015.
[93]
Smith, G; Liu, Y; Marsal, M Immunogenic respiratory syndrome coronavirus (MERS-CoV) compositions and methods. CN201480051512A,, 2014.
[94]
Mano.. A moxa cancer tablet and nano active carbon distribution blood injection agent. CN201610307134A,, 2016.
[95]
Jack, TS; Nilgal, B; James, M; Xiang, J; Beu, D Virus RNA segments as immunomodulators and vaccine components. CN201580057876A,, 2015.
[96]
Gou, J.W.; Shi, L.H.; Yen, T.T. Detection of viral diseases using a biochip that contains gold nanoparticles. U.S. Patent 20150369806A1,, 2015.
[97]
Cui, S; Qin, T. A dual-nanometer PCR test method of identifying CCoVI and CCoVII. CN Patent 201810569666A,, 2018.
[98]
Shan, B; Cao, J; Shan, AN; Zhu, L; Du, X Suspended particle spray for resisting microbiological aerosol and virus-infected droplet and preparation method thereof. CN Patent 202010109748A,, 2020.
[99]
Joanna, E.; Benjamin, H.; Donald, E.I.; Michael, S.; Tak, S. Slippery liquid-infused porous surfaces and biological applications thereof. K.R. Patent 20137021610A,, 2013.
[100]
Daye, O.A.; Collins, J.J.; Gottenberg, J. Zhang, F.; Land, E.S. Diagnosis based on CRISPR effect system. CN Patent 201780086203A,, 2017.
[101]
A lamp for purifying air. CN201810740400A,, 2018.
[102]
Chitosan nanoparticles suitable for aerosol treatment of COVID-19 patients. News Article,. http//www.ondrugdelivery.com/chitosan-nanoparticles-suitable-for-aerosol-treatment-of-covid-19-patients/
[103]
Wang, F.; Kream, R.M.; Stefano, G.B. An evidence based perspective on mRNA-SARS-CoV-2 vaccine development. Med. Sci. Monit., 2020, 26, e924700-e924701.
[PMID: 32366816]
[106]
Chan, WCW Nano Research for COVID-19. ACS Nano, 2020.
[107]
Musyuni, P.; Aggarwal, G.; Nagpal, M.; Goyal, R.K. A case study: Analysis of patents of coronaviruses and covid-19 for technology assesment and future research. Curr. Pharm. Des., 2020, 27(3), 423-439.
[http://dx.doi.org/10.2174/1381612826666200720233947 ] [PMID: 32693757]
[109]
[113]
Latest update. Indian Institute of Technology Jodhpur. Information,. http//iitj.ac.in/events/index.php?id=568&title=568&event=latest@iit_jodhpur
[115]
DERBI foundation News Article.. http//derbifoundation.com/category/derbi-blog/
[116]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy