Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Bi Metal–Organic Framework (Ce/Ni–BTC) as Heterogeneous Catalyst for the Green Synthesis of Substituted Chromeno[4, 3–b]quinolone under Solvent Free Condition

Author(s): Mohammad Hosein Sayahi*, Mahtab Yadollahi, Samir M. Hamad, Mohammad Reza Ganjali, Mustafa Aghazadeh, Mohammad Mahdavi and Saeed Bahadorikhalili*

Volume 18, Issue 5, 2021

Published on: 22 January, 2021

Page: [475 - 482] Pages: 8

DOI: 10.2174/1570179418666210122100240

Price: $65

Abstract

Aims: Novel bi metal organic framework (b–MOF) is synthesized and used as a heterogeneous catalyst for the synthesis of chromeno[4, 3–b]quinolone derivatives via one-pot and solvent-free, four-component reaction of dimedone, aromatic aldehydes, 4–hydroxycoumarin and ammonium acetate at 110°C.

Background: b–MOFs can be used as a heterogeneous catalyst in the synthesis of many organic compounds. The active and multi-purpose sites in b–MOFs provide a varied function in their catalytic applications. In this paper, reductive CES method is applied for the synthesis of Ce0.47/Ni0.53–BTC b–MOF. The resulting b–MOF was used as a heterogeneous catalyst for the synthesis of chromeno[4, 3–b]quinolone via one-pot and solvent-free, fourcomponent reaction of dimedone, aromatic aldehyde, 4–hydroxycoumarin and ammonium acetate at 110 °C.

Method: Ce0.47/Ni0.53–BTC was synthesized in an electrochemical cell composed of a stainless steel foil with a size of 5cm×5cm centered between two 5cm×5cm sized graphite plates as the anodes by the cathodic current density of 0.2 A/dm2 and placed in a solution of cerium nitrate (0.3 g), nickel nitrate (0.3 g), H3BTC (0.2 g) and NaNO3 (0.1 g) in ethanol (500 mL). Ce0.47/Ni0.53–BTC (10 mg) was added to a mixture of dimedone (1 mmol), aromatic aldehyde (1 mmol), hydroxycoumarin (1 mmol) and ammonium acetate (1.5 mmol) and stirred at 110 °C under solvent-free conditions for 45 min. The reaction evolution was controlled by the TLC (hexane:ethyl acetate, 4:1). Then, boiling ethanol was added to the reaction mixture and stirred at room temperature for 15 min. After the reaction completion, the catalyst was separated by centrifuge. Finally, the reaction mixture was placed in an ice bath, which resulted in a white solid product and recrystallized from ethanol to give the pure product.

Result: The b–MOF catalyst showed very good efficiency in the synthesis of the desired compounds and can be easily recovered by centrifuge and reused at least five times without a decrease in catalytic activity.

Conclusion: In this report, a novel bi metal-organic framework (Ce0.47/Ni0.53–BTC) is synthesized via the cathodic electrosynthesis method. The synthesized b–MOF is fully characterized by several characterization methods. The catalytic activity of Ce0.47/Ni0.53–BTC is investigated in the synthesis of chromeno[4, 3–b]quinolone derivatives via one-pot four-component reaction of dimedone, aromatic aldehyde, 4–hydroxycoumarin and ammonium acetate. The reaction optimization results showed that the highest isolated yield was obtained when the reaction was performed in solvent-free conditions at 110 °C. The catalyst showed to be highly efficient in the synthesis of the desired compounds and performing the reaction utilizing various starting materials gave the products in good isolated yields, which proves the generality and the scope of the method. The catalyst could easily be recovered by centrifuge and reused at least five times without a decrease in catalytic activity.

Keywords: Metal-organic framework, heterogeneous catalyst, chromenoquinolone, multicomponent reactions, cathodic electrosynthesis method, aromatic aldehydes.

Graphical Abstract

[1]
Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P. Stable metal–organic frameworks: design, synthesis, and Applications. Adv. Mater., 2018, 301704303
[http://dx.doi.org/10.1002/adma.201704303]
[2]
Zhang, L.; Liand, F.; Luo, L. IOP Conference Series: Earth and Environmental Science, 2018, 108, 042104.
[3]
Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev., 2012, 112(2), 933-969.
[http://dx.doi.org/10.1021/cr200304e] [PMID: 22098087]
[4]
Zhao, X.; Pattengale, B.; Fan, D.; Zou, Z.; Zhao, Y.; Du, J.; Huang, J.; Xu, C. Mixed-node metal–organic frameworks as efficient electrocatalysts for oxygen evolution reaction. ACS Energy Lett., 2018, 3, 2520.
[http://dx.doi.org/10.1021/acsenergylett.8b01540]
[5]
Dhakshinamoorthy, A.; Li, Z.; Garcia, H. Catalysis and photocatalysis by metal organic frameworks. Chem. Soc. Rev., 2018, 47(22), 8134-8172.
[http://dx.doi.org/10.1039/C8CS00256H] [PMID: 30003212]
[6]
Yang, X.; Xu, Q. Bimetallic metal–organic frameworks for gas storage and separation. Cryst. Growth Des., 2017, 17, 1450.
[http://dx.doi.org/10.1021/acs.cgd.7b00166]
[7]
Fang, X.; Zong, B.; Mao, S. Metal–organic framework-based sensors for environmental contaminant sensing. Nano-Micro Lett., 2018, 10, 64.
[http://dx.doi.org/10.1007/s40820-018-0218-0]
[8]
Vikrant, K.; Kumar, V.; Ok, Y.S.; Kim, K-H.; Deep, A. Metal-organic framework (MOF)-based advanced sensing platforms for the detection of hydrogen sulfide. Trends Analyt. Chem., 2018, 105, 263-281.
[9]
Xiang, L.; Jingyan, W.; Qingyuan, L.; Jiang, S.; Zhang, T.; Shengfu, J.I. Synthesis of rare earth metal-organic frameworks (Ln-MOFs) and their properties of adsorption desulfurization. J. Rare Earths, 2014, 32, 189-194.
[http://dx.doi.org/10.1016/S1002-0721(14)60050-8]
[10]
Huang, Y.; Tao, C-a.; Chen, R.; Sheng, L. Wang. J. Nanomaterials (Basel), 2018, 8, 676.
[http://dx.doi.org/10.3390/nano8090676]
[11]
Wang, L.; Zheng, M.; Xie, Z. Nanoscale metal-organic frameworks for drug delivery: a conventional platform with new promise. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(5), 707-717.
[http://dx.doi.org/10.1039/C7TB02970E] [PMID: 32254257]
[12]
Wu, M.X.; Yang, Y.W. Comparison of fabrication methods of metal-organic framework optical thin films. Adv. Mater., 2017, 291606134
[http://dx.doi.org/10.1002/adma.201606134]
[13]
Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H. Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts. Catal. Sci. Technol., 2016, 6, 5238.
[http://dx.doi.org/10.1039/C6CY00695G]
[14]
Fu, Y.; Xu, L.; Shen, H.; Yang, H.; Zhang, F.; Zhu, W.; Fan, M. Tunable catalytic properties of multi-metal–organic frameworks for aerobic styrene oxidation. Chem. Eng. J., 2016, 299, 135.
[http://dx.doi.org/10.1016/j.cej.2016.04.102]
[15]
Lee, Y.; Kim, S.; Kang, J.K.; Cohen, S.M. Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light irradiation. Chem. Commun. (Camb.), 2015, 51(26), 5735-5738.
[http://dx.doi.org/10.1039/C5CC00686D] [PMID: 25719864]
[16]
Sun, R.; Liu, B.; Li, B.G.; Jie, S. Palladium(II)@zirconium-based mixed-linker metal–organic frameworks as highly efficient and recyclable catalysts for suzuki and heck cross-coupling reaction. ChemCatChem, 2016, 8, 3261.
[http://dx.doi.org/10.1002/cctc.201600774]
[17]
Almasi, M.; Zelenak, V.; Opanasenko, M.; Cisarova, I. Ce(III) and Lu(III) metal–organic frameworks with Lewis acid metal sites: Preparation, sorption properties and catalytic activity in Knoevenagel condensation. Catal. Today, 2015, 243, 184.
[http://dx.doi.org/10.1016/j.cattod.2014.07.028]
[18]
Yadollahi, M.; Hamadi, H.; Nobakht, V. Tandem magnetization and post-synthetic metal ion exchange of metal–organic framework: Synthesis, characterization and catalytic study. Appl. Organomet. Chem., 2019.e4819
[http://dx.doi.org/10.1002/aoc.4819]
[19]
Sun, D.; Sun, F.; Deng, X.; Li, Z. Mixed-metal strategy on metal-organic frameworks (MOFs) for functionalities expansion: Co substitution induces aerobic oxidation of cyclohexene over inactive Ni-MOF-74. Inorg. Chem., 2015, 54(17), 8639-8643.
[http://dx.doi.org/10.1021/acs.inorgchem.5b01278] [PMID: 26288128]
[20]
Krap, C.P.; Newby, R.; Dhakshinamoorthy, A.; García, H.; Cebula, I.; Easun, T.L.; Savage, M.; Eyley, J.E.; Gao, S.; Blake, A.J.; Lewis, W.; Beton, P.H.; Warren, M.R.; Allan, D.R.; Frogley, M.D.; Tang, C.C.; Cinque, G.; Yang, S.; Schröder, M. Enhancement of CO2 adsorption and catalytic properties by Fe-Doping of [Ga2(OH)2(L)] (H4L = Biphenyl-3,3′,5,5′-tetracarboxylic Acid), MFM-300(Ga2). Inorg. Chem., 2016, 55(3), 1076-1088.
[http://dx.doi.org/10.1021/acs.inorgchem.5b02108] [PMID: 26757137]
[21]
Cui, Y.; Xu, H.; Yue, Y.; Guo, Z.; Yu, J.; Chen, Z.; Gao, J.; Yang, Y.; Qian, G.; Chen, B. A luminescent mixed-lanthanide metal-organic framework thermometer. J. Am. Chem. Soc., 2012, 134(9), 3979-3982.
[http://dx.doi.org/10.1021/ja2108036] [PMID: 22352469]
[22]
Kurisingal, J.F.; Babu, R.; Kim, S-H.; Li, Y.X.; Chang, J-S.; Cho, S.J.; Park, D-W. Microwave-induced synthesis of a bimetallic charge-transfer metal organic framework: A promising host for the chemical fixation of CO2. Catal. Sci. Technol., 2018, 8, 591.
[http://dx.doi.org/10.1039/C7CY02063E]
[23]
Tranchemontagne, D.J.; Hunt, J.R.; Yaghi, O.M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron, 2008, 64, 8553.
[http://dx.doi.org/10.1016/j.tet.2008.06.036]
[24]
Li, W-J.; Tu, M.; Cao, R.; Fischer, R.A. Metal–organic framework thin films: Electrochemical fabrication techniques and corresponding applications & perspectives. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4, 12356.
[http://dx.doi.org/10.1039/C6TA02118B]
[25]
Al–Kutubi, H.; Gascon, J.; Sudhölter, E.J.; Rassaei, L. Electrosynthesis of metal–organic frameworks: challenges and opportunities. ChemElectroChem, 2015, 2, 462.
[http://dx.doi.org/10.1002/celc.201402429]
[26]
Campagnol, N.; Souza, E.R.; De Vos, D.E.; Binnemans, K.; Fransaer, J. Luminescent terbium-containing metal-organic framework films: new approaches for the electrochemical synthesis and application as detectors for explosives. Chem. Commun. (Camb.), 2014, 50(83), 12545-12547.
[http://dx.doi.org/10.1039/C4CC05742B] [PMID: 25196133]
[27]
Martinez Joaristi, A.; Juan–Alcañiz, J.; Serra–Crespo, P.; Kapteijn, F.; Gascon, J. Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Cryst. Growth Des., 2012, 12, 3489.
[http://dx.doi.org/10.1021/cg300552w]
[28]
Ozer, R.; Hinestroza, J. One-step growth of isoreticular luminescent metal–organic frameworks on cotton fibers. RSC Advances, 2015, 5, 15198.
[29]
Wang, F.; Deng, K.; Wu, G.; Liao, H.; Liao, H.; Zhang, L.; Lan, S.; Zhang, J.; Song, X.; Wen, L. Facile and large-scale syntheses of nanocrystal rare earth metal–organic frameworks at room temperature and their photoluminescence properties. J. Inorg. Organomet. Polym. Mater., 2012, 22, 680.
[http://dx.doi.org/10.1007/s10904-011-9498-2]
[30]
Ahmed, N.; Babu, B.V.; Singh, S. An efficient one-pot three-component synthesis of highly functionalized coumarin fused indenodihydropyridine and chromeno[4,3-b]quinoline derivatives. Heterocycles, 2012, 85, 1629.
[31]
Yahya–Meymandi, A.; Nikookar, H.; Moghimi, S.; Mahdavi, M.; Firoozpour, L.; Asadipour, A.; Ranjbar, P.R.; Foroumadi, A. An efficient four-component reaction for the synthesis of chromeno[4,3-b]quinolone derivatives. J. Iran. Chem. Soc., 2017, 14, 771.
[http://dx.doi.org/10.1007/s13738-016-1027-3]
[32]
Paul, S.; Das, A.R. An efficient green protocol for the synthesis of coumarin fused highly decorated indenodihydropyridyl and dihydropyridyl derivatives. Tetrahedron Lett., 2012, 53, 2206.
[http://dx.doi.org/10.1016/j.tetlet.2012.02.077]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy