Abstract
Background: Ferric carboxymaltose (FCM) formulation consists of iron-carbohydrate nanoparticles where iron-oxyhydroxide as a core is covered by a carbohydrate shell. The present work provides an improved synthesis process of FCM as an intravenous iron, active pharmaceutical ingredient.
Methods: Water-soluble FCM complex was prepared from the reaction of ferric hydroxide precipitation with an aqueous solution of oxidized maltodextrin (MD) at optimum temperature and pH conditions. A systematic approach was followed to obtain the optimal weight ratio of the maltodextrin/ ferric chloride for FCM synthesis process with suitable-sized nanoparticles. Physical characterization of newly synthesized ferric carboxymaltose (FCM-NP) was performed to establish its equivalency with the reference product (Ferinject).
Results: The size distribution of the whole nanoparticles determined by dynamic light scattering (DLS) was in the range of 15-40 nm with an average particle size of 26 ± 6.6 and 25.8 ± 4.9 for FCM-NP and Ferinject, respectively. X-ray diffraction (XRD) results of FCM-NP and Ferinject indicated the Akaganeite structure of iron-oxyhydroxide. The iron content of particles (cores) measured by Atomic absorption spectroscopy (AAS) was almost equal for the two formulations. The Fourier transform infrared (FTIR) spectra of Ferinject and FCM-NP were approximately similar.
Conclusion: Various analytical methods, including FTIR spectroscopy, XRD analysis, DLS technique, TEM, and AAS were employed. It was observed that the specifications of FCM-NP obtained by these analyses were almost identical to those of Ferinject. Accordingly, the two formulations were considered comparable.
Keywords: Ferric carboxymaltose, maltodextrin, synthesis, ferinject, pharmaceutic, carbohydrate.
Graphical Abstract
Pharmaceutical Nanotechnology
Title:An Optimized Process for the Preparation of Aqueous Ferric Carboxymaltose: Synthesis and Structural Characterization
Volume: 9 Issue: 2
Author(s): Ozra Tabasi*, Mahdi Roohi Razlighi and Mohammad Ali Darbandi
Affiliation:
- Research and Development unit, Nafas Zist Pharmed Pharmaceutical Company, Science and Technology Park of Islamic Azad University, Tehran,Iran
Keywords: Ferric carboxymaltose, maltodextrin, synthesis, ferinject, pharmaceutic, carbohydrate.
Abstract: Background: Ferric carboxymaltose (FCM) formulation consists of iron-carbohydrate nanoparticles where iron-oxyhydroxide as a core is covered by a carbohydrate shell. The present work provides an improved synthesis process of FCM as an intravenous iron, active pharmaceutical ingredient.
Methods: Water-soluble FCM complex was prepared from the reaction of ferric hydroxide precipitation with an aqueous solution of oxidized maltodextrin (MD) at optimum temperature and pH conditions. A systematic approach was followed to obtain the optimal weight ratio of the maltodextrin/ ferric chloride for FCM synthesis process with suitable-sized nanoparticles. Physical characterization of newly synthesized ferric carboxymaltose (FCM-NP) was performed to establish its equivalency with the reference product (Ferinject).
Results: The size distribution of the whole nanoparticles determined by dynamic light scattering (DLS) was in the range of 15-40 nm with an average particle size of 26 ± 6.6 and 25.8 ± 4.9 for FCM-NP and Ferinject, respectively. X-ray diffraction (XRD) results of FCM-NP and Ferinject indicated the Akaganeite structure of iron-oxyhydroxide. The iron content of particles (cores) measured by Atomic absorption spectroscopy (AAS) was almost equal for the two formulations. The Fourier transform infrared (FTIR) spectra of Ferinject and FCM-NP were approximately similar.
Conclusion: Various analytical methods, including FTIR spectroscopy, XRD analysis, DLS technique, TEM, and AAS were employed. It was observed that the specifications of FCM-NP obtained by these analyses were almost identical to those of Ferinject. Accordingly, the two formulations were considered comparable.
Export Options
About this article
Cite this article as:
Tabasi Ozra *, Razlighi Roohi Mahdi and Darbandi Ali Mohammad, An Optimized Process for the Preparation of Aqueous Ferric Carboxymaltose: Synthesis and Structural Characterization, Pharmaceutical Nanotechnology 2021; 9 (2) . https://dx.doi.org/10.2174/2211738509666210114160941
DOI https://dx.doi.org/10.2174/2211738509666210114160941 |
Print ISSN 2211-7385 |
Publisher Name Bentham Science Publisher |
Online ISSN 2211-7393 |

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers