Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Review Article

Proteomic Technologies and their Application for Ensuring Meat Quality, Safety and Authenticity

Author(s): Rituparna Banerjee, Naveena Basappa Maheswarappa*, Kiran Mohan, Subhasish Biswas and Subhasish Batabyal

Volume 19, Issue 2, 2022

Page: [128 - 141] Pages: 14

DOI: 10.2174/1570164618666210114113306

Price: $65

Abstract

Proteomic tools were extensively used to understand the relationship between muscle proteome and conversion of muscle to meat, post-mortem proteolysis, meat texture, and variation in meat color. Developments in proteomic tools have also resulted in their application for addressing the safety and authenticity issues including meat species identification, detection of animal byproducts, non-meat ingredients and tissues in meat products, traceability, identification of genetically modified ingredients, chemical residues and other harmful substances. Proteomic tools are also being used in some of the potential areas like understanding the effect of animal transportation, stunning, slaughter stress, halal authentication and issues related to animal welfare. Emerging advances in proteomic and peptidomic technologies and their application in traceability, meat microbiology, safety and authentication are taking a major stride as an interesting and complementary alternative to DNA-based methods currently in use. Future research in meat science need to be linked to emerging metabolomic, lipidomic and other omic technologies for ensuring integrated meat quality and safety management. In this paper, a comprehensive overview of the use of proteomics for the assessment of quality and safety in the meat value chain and their potential application is discussed.

Keywords: Omic technologies, meat quality, traceability, safety, authentication, integrated omics.

Graphical Abstract

[1]
Wilkins, M.R.; Pasquali, C.; Appel, R.D.; Ou, K.; Golaz, O.; Sanchez, J.C.; Yan, J.X.; Gooley, A.A.; Hughes, G.; Humphery- Smith, I.; Williams, K.L.; Hochstrasser, D.F.; Rabilloud, T.; Simpson, R.J.; Weiss, W.; Dunn, M.J. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (N. Y.), 1996, 14(1), 61-65.
[PMID: 9636313]
[2]
Khoury, G.A.; Baliban, R.C.; Floudas, C.A. Proteome-wide post- translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci. Rep., 2011, 1(90), 1-5.
[http://dx.doi.org/10.1038/srep00090] [PMID: 22034591]
[3]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[4]
Görg, A.; Obermaier, C.; Boguth, G.; Harder, A.; Scheibe, B.; Wildgruber, R.; Weiss, W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 2000, 21(6), 1037-1053.
[http://dx.doi.org/10.1002/(SICI)1522-2683(20000401)21:6<1037::AID-ELPS1037>3.0.CO;2-V] [PMID: 10786879]
[5]
Jensen, O.N.; Larsen, M.R.; Roepstorff, P. Mass spectrometric identification and microcharacterization of proteins from electrophoretic gels: strategies and applications. Proteins, 1998, 2(Suppl. 2), 74-89.
[http://dx.doi.org/10.1002/(SICI)1097-0134(1998)33:2+<74::AID-PROT9>3.0.CO;2-B] [PMID: 9849912]
[6]
Lametsch, R.; Karlsson, A.; Rosenvold, K.; Andersen, H.J.; Roepstorff, P.; Bendixen, E. Postmortem proteome changes of porcine muscle related to tenderness. J. Agric. Food Chem., 2003, 51(24), 6992-6997.
[http://dx.doi.org/10.1021/jf034083p] [PMID: 14611160]
[7]
Pedersen, S.K.; Harry, J.L.; Sebastian, L.; Baker, J.; Traini, M.D.; McCarthy, J.T.; Manoharan, A.; Wilkins, M.R.; Gooley, A.A.; Righetti, P.G.; Packer, N.H.; Williams, K.L.; Herbert, B.R. Unseen proteome: mining below the tip of the iceberg to find low abundance and membrane proteins. J. Proteome Res., 2003, 2(3), 303-311.
[http://dx.doi.org/10.1021/pr025588i] [PMID: 12814269]
[8]
Haynes, P.A.; Yates, J.R., III Proteome profiling-pitfalls and progress. Yeast, 2000, 17(2), 81-87.
[http://dx.doi.org/10.1002/1097-0061(20000630)17:2<81::AID-YEA22>3.0.CO;2-Z] [PMID: 10900454]
[9]
Hillenkamp, F.; Karas, M.; Beavis, R.C.; Chait, B.T. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal. Chem., 1991, 63(24), 1193A-1203A.
[http://dx.doi.org/10.1021/ac00024a716] [PMID: 1789447]
[10]
Fenn, J.B.; Mann, M.; Meng, C.K.; Wong, S.F.; Whitehouse, C.M. Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989, 246(4926), 64-71.
[http://dx.doi.org/10.1126/science.2675315] [PMID: 2675315]
[11]
Domon, B.; Aebersold, R. Mass spectrometry and protein analysis. Science, 2006, 312(5771), 212-217.
[http://dx.doi.org/10.1126/science.1124619] [PMID: 16614208]
[12]
Meyer, B.; Papasotiriou, D.G.; Karas, M. 100% protein sequence coverage: a modern form of surrealism in proteomics. Amino Acids, 2011, 41(2), 291-310.
[http://dx.doi.org/10.1007/s00726-010-0680-6] [PMID: 20625782]
[13]
Pan, S.; Aebersold, R.; Chen, R.; Rush, J.; Goodlett, D.R.; McIntosh, M.W.; Zhang, J.; Brentnall, T.A. Mass spectrometry based targeted protein quantification: methods and applications. J. Proteome Res., 2009, 8(2), 787-797.
[http://dx.doi.org/10.1021/pr800538n] [PMID: 19105742]
[14]
Calvo, E.; Camafeita, E.; Fernández-Gutiérrez, B.; López, J.A. Applying selected reaction monitoring to targeted proteomics. Expert Rev. Proteomics, 2011, 8(2), 165-173.
[http://dx.doi.org/10.1586/epr.11.11] [PMID: 21501010]
[15]
Hüttenhain, R.; Malmström, J.; Picotti, P.; Aebersold, R. Perspectives of targeted mass spectrometry for protein biomarker verification. Curr. Opin. Chem. Biol., 2009, 13(5-6), 518-525.
[http://dx.doi.org/10.1016/j.cbpa.2009.09.014] [PMID: 19818677]
[16]
Metzker, M.L. Sequencing technologies - the next generation. Nat. Rev. Genet., 2010, 11(1), 31-46.
[http://dx.doi.org/10.1038/nrg2626] [PMID: 19997069]
[17]
Pedreschi, R.; Vanstreels, E.; Carpentier, S.; Hertog, M.; Lammertyn, J.; Robben, J.; Noben, J.P.; Swennen, R.; Vanderleyden, J.; Nicolaï, B.M. Proteomic analysis of core breakdown disorder in Conference pears (Pyrus communis L.). Proteomics, 2007, 7(12), 2083-2099.
[http://dx.doi.org/10.1002/pmic.200600723] [PMID: 17566975]
[18]
D’Alessandro, A.; Zolla, L. We are what we eat: food safety and proteomics. J. Proteome Res., 2012, 11(1), 26-36.
[http://dx.doi.org/10.1021/pr2008829] [PMID: 21992580]
[19]
Hollung, K.; Veiseth, E.; Jia, X.; Færgestad, E.M.; Hildrum, K.I. Application of proteomics to understand the molecular mechanisms behind meat quality. Meat Sci., 2007, 77(1), 97-104.
[http://dx.doi.org/10.1016/j.meatsci.2007.03.018] [PMID: 22061400]
[20]
Lametsch, R.; Roepstorff, P.; Bendixen, E. Identification of protein degradation during post-mortem storage of pig meat. J. Agric. Food Chem., 2002, 50(20), 5508-5512.
[http://dx.doi.org/10.1021/jf025555n] [PMID: 12236671]
[21]
Morzel, M.; Chambon, C.; Hamelin, M.; Santé-Lhoutellier, V.; Sayd, T.; Monin, G. Proteome changes during pork meat ageing following use of two different pre-slaughter handling procedures. Meat Sci., 2004, 67(4), 689-696.
[http://dx.doi.org/10.1016/j.meatsci.2004.01.008] [PMID: 22061819]
[22]
Sayd, T.; Morzel, M.; Chambon, C.; Franck, M.; Figwer, P.; Larzul, C.; Le Roy, P.; Monin, G.; Chérel, P.; Laville, E. Proteome analysis of the sarcoplasmic fraction of pig semimembranosus muscle: implications on meat color development. J. Agric. Food Chem., 2006, 54(7), 2732-2737.
[http://dx.doi.org/10.1021/jf052569v] [PMID: 16569068]
[23]
Jia, X.; Hildrum, K.I.; Westad, F.; Kummen, E.; Aass, L.; Hollung, K. Changes in enzymes associated with energy metabolism during the early post mortem period in longissimus thoracis bovine muscle analyzed by proteomics. J. Proteome Res., 2006, 5(7), 1763-1769.
[http://dx.doi.org/10.1021/pr060119s] [PMID: 16823984]
[24]
Jia, X.; Veiseth-Kent, E.; Grove, H.; Kuziora, P.; Aass, L.; Hildrum, K.I.; Hollung, K. Peroxiredoxin-6--a potential protein marker for meat tenderness in bovine longissimus thoracis muscle. J. Anim. Sci., 2009, 87(7), 2391-2399.
[http://dx.doi.org/10.2527/jas.2009-1792] [PMID: 19359513]
[25]
Alderton, A.L.; Faustman, C.; Liebler, D.C.; Hill, D.W. Induction of redox instability of bovine myoglobin by adduction with 4-hydroxy-2-nonenal. Biochemistry, 2003, 42(15), 4398-4405.
[http://dx.doi.org/10.1021/bi0271695] [PMID: 12693935]
[26]
Suman, S.P.; Faustman, C.; Stamer, S.L.; Liebler, D.C. Redox instability induced by 4-hydroxy-2-nonenal in porcine and bovine myoglobins at pH 5.6 and 4 ° C. J. Agric. Food Chem., 2006, 54(9), 3402-3408.
[http://dx.doi.org/10.1021/jf052811y] [PMID: 16637701]
[27]
Maheswarappa, N.B.; Faustman, C.; Tatiyaborworntham, N.; Yin, S.; Ramanathan, R.; Mancini, R.A. Mass spectrometric characterization and redox instability of turkey and chicken myoglobins as induced by unsaturated aldehydes. J. Agric. Food Chem., 2009, 57(18), 8668-8676.
[http://dx.doi.org/10.1021/jf902705q] [PMID: 19711951]
[28]
Joseph, P.; Suman, S.P.; Rentfrow, G.; Li, S.; Beach, C.M. Proteomics of muscle-specific beef color stability. J. Agric. Food Chem., 2012, 60(12), 3196-3203.
[http://dx.doi.org/10.1021/jf204188v] [PMID: 22369190]
[29]
Canto, A.C.V.C.S.; Suman, S.P.; Nair, M.N.; Li, S.; Rentfrow, G.; Beach, C.M.; Silva, T.J.P.; Wheeler, T.L.; Shackelford, S.D.; Grayson, A.; McKeith, R.O.; King, D.A. Differential abundance of sarcoplasmic proteome explains animal effect on beef Longissimus lumborum color stability. Meat Sci., 2015, 102, 90-98.
[http://dx.doi.org/10.1016/j.meatsci.2014.11.011] [PMID: 25556319]
[30]
Nair, M.N.; Suman, S.P.; Chatli, M.K.; Li, S.; Joseph, P.; Beach, C.M.; Rentfrow, G. Proteome basis for intramuscular variation in color stability of beef semimembranosus. Meat Sci., 2016, 113, 9-16.
[http://dx.doi.org/10.1016/j.meatsci.2015.11.003] [PMID: 26588815]
[31]
Yu, Q.; Wu, W.; Tian, X.; Hou, M.; Dai, R.; Li, X. Unraveling proteome changes of Holstein beef M. semitendinosus and its relationship to meat discoloration during post-mortem storage analyzed by label-free mass spectrometry. J. Proteomics, 2017, 154, 85-93.
[http://dx.doi.org/10.1016/j.jprot.2016.12.012] [PMID: 28039026]
[32]
Huff Lonergan, E.; Zhang, W.; Lonergan, S.M. Biochemistry of postmortem muscle - lessons on mechanisms of meat tenderization. Meat Sci., 2010, 86(1), 184-195.
[http://dx.doi.org/10.1016/j.meatsci.2010.05.004] [PMID: 20566247]
[33]
Laville, E.; Sayd, T.; Morzel, M.; Blinet, S.; Chambon, C.; Lepetit, J.; Renand, G.; Hocquette, J.F. Proteome changes during meat aging in tough and tender beef suggest the importance of apoptosis and protein solubility for beef aging and tenderization. J. Agric. Food Chem., 2009, 57(22), 10755-10764.
[http://dx.doi.org/10.1021/jf901949r] [PMID: 19860418]
[34]
Lametsch, R.; Larsen, M.R.; Essén-Gustavsson, B.; Jensen-Waern, M.; Lundström, K.; Lindahl, G. Postmortem changes in pork muscle protein phosphorylation in relation to the RN genotype. J. Agric. Food Chem., 2011, 59(21), 11608-11615.
[http://dx.doi.org/10.1021/jf201936h] [PMID: 21958152]
[35]
Anderson, M.J.; Lonergan, S.M.; Huff-Lonergan, E. Differences in phosphorylation of phosphoglucomutase 1 in beef steaks from the longissimus dorsi with high or low star probe values. Meat Sci., 2014, 96(1), 379-384.
[http://dx.doi.org/10.1016/j.meatsci.2013.07.017] [PMID: 23973564]
[36]
Kiran, M.; Naveena, B.M.; Reddy, K.S.; Shashikumar, M.; Reddy, V.R.; Kulkarni, V.V.; Rapole, S.; More, T.H. Muscle Specific Variation in Buffalo (Bubalus bubalis) Meat Texture: Biochemical, Ultrastructural and Proteome Characterization. J. Texture Stud., 2015, 46(4), 254-261.
[http://dx.doi.org/10.1111/jtxs.12123]
[37]
van de Wiel, D.F.; Zhang, W.L. Identification of pork quality parameters by proteomics. Meat Sci., 2007, 77(1), 46-54.
[http://dx.doi.org/10.1016/j.meatsci.2007.04.017] [PMID: 22061395]
[38]
Wu, W.; Fu, Y.; Therkildsen, M.; Li, X.M.; Dai, R.T. Molecular understanding of meat quality through application of proteomics. Food Rev. Int., 2015, 31(1), 13-28.
[http://dx.doi.org/10.1080/87559129.2014.961073]
[39]
Larsen, M.R.; Larsen, P.M.; Fey, S.J.; Roepstorff, P. Characterization of differently processed forms of enolase 2 from Saccharomyces cerevisiae by two-dimensional gel electrophoresis and mass spectrometry. Electrophoresis, 2001, 22(3), 566-575.
[http://dx.doi.org/10.1002/1522-2683(200102)22:3<566::AID-ELPS566>3.0.CO;2-T] [PMID: 11258770]
[40]
Lametsch, R.; Bendixen, E. Proteome analysis applied to meat science: characterizing postmortem changes in porcine muscle. J. Agric. Food Chem., 2001, 49(10), 4531-4537.
[http://dx.doi.org/10.1021/jf010103g] [PMID: 11599984]
[41]
Hwang, I.H.; Park, B.Y.; Kim, J.H.; Cho, S.H.; Lee, J.M. Assessment of postmortem proteolysis by gel-based proteome analysis and its relationship to meat quality traits in pig longissimus. Meat Sci., 2005, 69(1), 79-91.
[http://dx.doi.org/10.1016/j.meatsci.2004.06.019] [PMID: 22062642]
[42]
Paredi, G.; Raboni, S.; Bendixen, E.; de Almeida, A.M.; Mozzarelli, A. “Muscle to meat” molecular events and technological transformations: the proteomics insight. J. Proteomics, 2012, 75(14), 4275-4289.
[http://dx.doi.org/10.1016/j.jprot.2012.04.011] [PMID: 22543183]
[43]
Bouley, J.; Chambon, C.; Picard, B. Mapping of bovine skeletal muscle proteins using two-dimensional gel electrophoresis and mass spectrometry. Proteomics, 2004, 4(6), 1811-1824.
[http://dx.doi.org/10.1002/pmic.200300688] [PMID: 15174147]
[44]
Laville, E.; Sayd, T.; Santé-Lhoutellier, V.; Morzel, M.; Labas, R.; Franck, M.; Chambon, C.; Monin, G. Characterisation of PSE zones in semimembranosus pig muscle. Meat Sci., 2005, 70(1), 167-172.
[http://dx.doi.org/10.1016/j.meatsci.2004.12.008] [PMID: 22063293]
[45]
Wu, W.; Yu, Q.Q.; Fu, Y.; Tian, X.J.; Jia, F.; Li, X.M.; Dai, R.T. Towards muscle-specific meat color stability of Chinese Luxi yellow cattle: A proteomic insight into post-mortem storage. J. Proteomics, 2016, 147, 108-118.
[http://dx.doi.org/10.1016/j.jprot.2015.10.027] [PMID: 26546560]
[46]
Mancini, R.A.; Hunt, M.C. Current research in meat color. Meat Sci., 2005, 71(1), 100-121.
[http://dx.doi.org/10.1016/j.meatsci.2005.03.003] [PMID: 22064056]
[47]
Bekhit, A.E.D.; Faustman, C. Metmyoglobin reducing activity. Meat Sci., 2005, 71(3), 407-439.
[http://dx.doi.org/10.1016/j.meatsci.2005.04.032] [PMID: 22060917]
[48]
Zapata, I.; Reddish, J.M.; Miller, M.A.; Lilburn, M.S.; Wick, M. Comparative proteomic characterization of the sarcoplasmic proteins in the pectoralis major and supracoracoideus breast muscles in 2 chicken genotypes. Poult. Sci., 2012, 91(7), 1654-1659.
[http://dx.doi.org/10.3382/ps.2011-02029] [PMID: 22700512]
[49]
Yang, X.; Wu, S.; Hopkins, D.L.; Liang, R.; Zhu, L.; Zhang, Y.; Luo, X. Proteomic analysis to investigate color changes of chilled beef longissimus steaks held under carbon monoxide and high oxygen packaging. Meat Sci., 2018, 142, 23-31.
[http://dx.doi.org/10.1016/j.meatsci.2018.04.001] [PMID: 29635219]
[50]
Faustman, C.; Liebler, D.C.; McClure, T.D.; Sun, Q. α,β-unsaturated aldehydes accelerate oxymyoglobin oxidation. J. Agric. Food Chem., 1999, 47(8), 3140-3144.
[http://dx.doi.org/10.1021/jf990016c] [PMID: 10552621]
[51]
Suman, S.P.; Faustman, C.; Stamer, S.L.; Liebler, D.C. Proteomics of lipid oxidation-induced oxidation of porcine and bovine oxymyoglobins. Proteomics, 2007, 7(4), 628-640.
[http://dx.doi.org/10.1002/pmic.200600313] [PMID: 17309108]
[52]
Naveena, B.M.; Faustman, C.; Tatiyaborworntham, N.; Yin, S.; Ramanathan, R.; Mancini, R.A. Detection of 4-hydroxy-2-nonenal adducts of turkey and chicken myoglobins using mass spectrometry. Food Chem., 2010, 122, 836-840.
[http://dx.doi.org/10.1016/j.foodchem.2010.02.062]
[53]
Nair, M.N.; Suman, S.P.; Li, S.; Ramanathan, R.; Mancini, R.A. Temperature- and pH-dependent effect of lactate on in vitro redox stability of red meat myoglobins. Meat Sci., 2014, 96(1), 408-412.
[http://dx.doi.org/10.1016/j.meatsci.2013.07.033] [PMID: 23973625]
[54]
Maheswarappa, N.B.; Rani, K.U.; Kumar, Y.P.; Kulkarni, V.V.; Rapole, S. Proteomic based approach for characterizing 4-hydroxy-2-nonenal induced oxidation of buffalo (Bubalus bubalis) and goat (Capra hircus) meat myoglobins. Proteome Sci., 2016, 14(18), 18.
[http://dx.doi.org/10.1186/s12953-016-0108-7] [PMID: 27891064]
[55]
Ramanathan, R.; Mancini, R.A.; Suman, S.P.; Beach, C.M. Covalent binding of 4-hydroxy-2-nonenal to lactate dehydrogenase decreases NADH formation and metmyoglobin reducing activity. J. Agric. Food Chem., 2014, 62(9), 2112-2117.
[http://dx.doi.org/10.1021/jf404900y] [PMID: 24552270]
[56]
Lepetit, J.; Culioli, J. Mechanical properties of meat. Meat Sci., 1994, 36(1-2), 203-237.
[http://dx.doi.org/10.1016/0309-1740(94)90042-6] [PMID: 22061461]
[57]
Savell, J.W.; Cross, H.R. The role of fat in the palatability of beef, pork, and lamb.Designing foods. Animal product options in the marketplace; National Academy Press: Washington, D.C., 1988, pp. 345-355.
[58]
Lomiwes, D.; Farouk, M.M.; Wu, G.; Young, O.A. The development of meat tenderness is likely to be compartmentalised by ultimate pH. Meat Sci., 2014, 96(1), 646-651.
[http://dx.doi.org/10.1016/j.meatsci.2013.08.022] [PMID: 24060535]
[59]
Kim, N.K.; Cho, S.; Lee, S.H.; Park, H.R.; Lee, C.S.; Cho, Y.M.; Choy, Y.H.; Yoon, D.; Im, S.K.; Park, E.W.; Park, E.W. Proteins in longissimus muscle of Korean native cattle and their relationship to meat quality. Meat Sci., 2008, 80(4), 1068-1073.
[http://dx.doi.org/10.1016/j.meatsci.2008.04.027] [PMID: 22063838]
[60]
Polati, R.; Menini, M.; Robotti, E.; Millioni, R.; Marengo, E.; Novelli, E.; Balzan, S.; Cecconi, D. Proteomic changes involved in tenderization of bovine Longissimus dorsi muscle during prolonged ageing. Food Chem., 2012, 135(3), 2052-2069.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.093] [PMID: 22953957]
[61]
Feder, M.E.; Hofmann, G.E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol., 1999, 61, 243-282.
[http://dx.doi.org/10.1146/annurev.physiol.61.1.243] [PMID: 10099689]
[62]
Féasson, L.; Stockholm, D.; Freyssenet, D.; Richard, I.; Duguez, S.; Beckmann, J.S.; Denis, C. Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle. J. Physiol., 2002, 543(Pt 1), 297-306.
[http://dx.doi.org/10.1113/jphysiol.2002.018689] [PMID: 12181300]
[63]
Perng, M.D.; Cairns, L. Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. J. Cell Sci., 112(13), 2099-2112.
[64]
Bernard, C.; Cassar-Malek, I.; Le Cunff, M.; Dubroeucq, H.; Renand, G.; Hocquette, J.F. New indicators of beef sensory quality revealed by expression of specific genes. J. Agric. Food Chem., 2007, 55(13), 5229-5237.
[http://dx.doi.org/10.1021/jf063372l] [PMID: 17547415]
[65]
Morzel, M.; Terlouw, C.; Chambon, C.; Micol, D.; Picard, B. Muscle proteome and meat eating qualities of Longissimus thoracis of “Blonde d’Aquitaine” young bulls: A central role of HSP27 isoforms. Meat Sci., 2008, 78(3), 297-304.
[http://dx.doi.org/10.1016/j.meatsci.2007.06.016] [PMID: 22062282]
[66]
Laville, E.; Sayd, T.; Terlouw, C.; Chambon, C.; Damon, M.; Larzul, C.; Leroy, P.; Glénisson, J.; Chérel, P. Comparison of sarcoplasmic proteomes between two groups of pig muscles selected for shear force of cooked meat. J. Agric. Food Chem., 2007, 55(14), 5834-5841.
[http://dx.doi.org/10.1021/jf070462x] [PMID: 17567033]
[67]
Picard, B.; Berri, C.; Lefaucheur, L.; Molette, C.; Sayd, T.; Terlouw, C. Skeletal muscle proteomics in livestock production. Brief. Funct. Genomics, 2010, 9(3), 259-278.
[http://dx.doi.org/10.1093/bfgp/elq005] [PMID: 20308039]
[68]
Mekchay, S.; Teltathum, T.; Nakasathien, S.; Pongpaichan, P. Proteomic analysis of tenderness trait in Thai native and commercial broiler chicken muscles. J. Poult. Sci., 2010, 47, 8-12.
[http://dx.doi.org/10.2141/jpsa.009033]
[69]
Picard, B.; Lebret, B.; Cassar-Malek, I.; Liaubet, L.; Berri, C.; Le Bihan-Duval, E.; Hocquette, J.F.; Renand, G. Recent advances in omic technologies for meat quality management. Meat Sci., 2015, 109, 18-26.
[http://dx.doi.org/10.1016/j.meatsci.2015.05.003] [PMID: 26002117]
[70]
Guillemin, N.; Jurie, C.; Cassar-Malek, I.; Hocquette, J.F.; Renand, G.; Picard, B. Variations in the abundance of 24 protein biomarkers of beef tenderness according to muscle and animal type. Animal, 2011, 5(6), 885-894.
[http://dx.doi.org/10.1017/S1751731110002612] [PMID: 22440028]
[71]
Kiran, M.; Naveena, B.M.; Reddy, K.S.; Shahikumar, M.; Reddy, V.R.; Kulkarni, V.V.; Rapole, S.; More, T.H. Understanding tenderness variability and ageing changes in buffalo meat: biochemical, ultrastructural and proteome characterization. Animal, 2016, 10(6), 1007-1015.
[http://dx.doi.org/10.1017/S1751731115002931] [PMID: 27076348]
[72]
Naveena, B.M.; Muthukumar, M.; Kulkarni, V.V.; Praveen Kumar, Y.; Usha Rani, K.; Kiran, M. Effect of ageing on physico-chemical, textural, microbial and proteome changes in emu (Dromaius novaehollandiae) meat under different packaging conditions. J. Food Process. Preserv., 2015, 39(6), 2497-2506.
[http://dx.doi.org/10.1111/jfpp.12499]
[73]
Wiepkema, P.R.; Koolhaas, J.M. Stress and animal welfare. Anim. Welf., 1993, 2(3), 195-218.
[74]
Cassens, R.G.; Marple, D.N.; Eikelenboom, G. Animal physiology and meat quality. Adv. Food Res., 1975, 21, 71-155.
[http://dx.doi.org/10.1016/S0065-2628(08)60090-7] [PMID: 239548]
[75]
Xing, T.; Wang, M.F.; Han, M.Y.; Zhu, X.S.; Xu, X.L.; Zhou, G.H. Expression of heat shock protein 70 in transport-stressed broiler pectoralis major muscle and its relationship with meat quality. Animal, 2017, 11(9), 1599-1607.
[http://dx.doi.org/10.1017/S1751731116002809] [PMID: 28077200]
[76]
Huang, J.C.; Yang, J.; Huang, F.; Huang, M.; Chen, K.J.; Xu, X.L.; Zhou, G.H. Effect of fast pH decline during the early postmortem period on calpain activity and cytoskeletal protein degradation of broiler M. pectoralis major. Poult. Sci., 2016, 95(10), 2455-2463.
[http://dx.doi.org/10.3382/ps/pew206] [PMID: 27433017]
[77]
Wang, S.; Li, C.; Xu, X.; Zhou, G. Effect of fasting on energy metabolism and tenderizing enzymes in chicken breast muscle early postmortem. Meat Sci., 2013, 93(4), 865-872.
[http://dx.doi.org/10.1016/j.meatsci.2012.11.053] [PMID: 23313973]
[78]
Shen, Q.W.; Means, W.J.; Thompson, S.A.; Underwood, K.R.; Zhu, M.J.; McCormick, R.J.; Ford, S.P.; Du, M. Pre-slaughter transport, AMP-activated protein kinase, glycolysis, and quality of pork loin. Meat Sci., 2006, 74(2), 388-395.
[http://dx.doi.org/10.1016/j.meatsci.2006.04.007] [PMID: 22062850]
[79]
Xing, T.; Xu, X.; Zhou, G.; Wang, P.; Jiang, N. The effect of transportation of broilers during summer on the expression of heat shock protein 70, postmortem metabolism and meat quality. J. Anim. Sci., 2015, 95(4), 1565-1573.
[http://dx.doi.org/10.2527/jas.2014-7831] [PMID: 28464077]
[80]
Franco, D.; Mato, A.; Salgado, F.J.; López-Pedrouso, M.; Carrera, M.; Bravo, S.; Parrado, M.; Gallardo, J.M.; Zapata, C. Tackling proteome changes in the longissimus thoracis bovine muscle in response to pre-slaughter stress. J. Proteomics, 2015, 122, 73-85.
[http://dx.doi.org/10.1016/j.jprot.2015.03.029] [PMID: 25857277]
[81]
Cruzen, S.M.; Boddicker, R.L.; Graves, K.L.; Johnson, T.P.; Arkfeld, E.K.; Baumgard, L.H.; Ross, J.W.; Safranski, T.J.; Lucy, M.C.; Lonergan, S.M. Carcass composition of market weight pigs subjected to heat stress in utero and during finishing. J. Anim. Sci., 2015, 93(5), 2587-2596.
[http://dx.doi.org/10.2527/jas.2014-8347] [PMID: 26020353]
[82]
Kiran, M.; Naveena, B.M.; Smrutirekha, M.; Baswa Reddy, P.; Rituparna, B.; Praveen Kumar, Y.; Venkatesh, C.; Rapole, S. Traditional halal slaughter without stunning versus slaughter with electrical stunning of sheep (Ovis aries). Meat Sci., 2019, 148(148), 127-136.
[http://dx.doi.org/10.1016/j.meatsci.2018.10.011] [PMID: 30388477]
[83]
He, J.; Xia, C.; He, Y.; Pan, D.; Cao, J.; Sun, Y.; Zeng, X. Proteomic responses to oxidative damage in meat from ducks exposed to heat stress. Food Chem., 2019, 295, 129-137.
[http://dx.doi.org/10.1016/j.foodchem.2019.05.073] [PMID: 31174741]
[84]
Fuente-García, C.; Aldai, N.; Sentandreu, E.; Oliván, M.; García- Torres, S.; Franco, D.; Zapata, C.; Sentandreu, M.A. Search for proteomic biomarkers related to bovine pre-slaughter stress using liquid isoelectric focusing (OFFGEL) and mass spectrometry. J. Proteomics, 2019, 198, 59-65.
[http://dx.doi.org/10.1016/j.jprot.2018.10.013] [PMID: 30385412]
[85]
Ballin, N.Z. Authentication of meat and meat products. Meat Sci., 2010, 86(3), 577-587.
[http://dx.doi.org/10.1016/j.meatsci.2010.06.001] [PMID: 20685045]
[86]
Montowska, M.; Pospiech, E. Is authentication of regional and traditional food made of meat possible? Crit. Rev. Food Sci. Nutr., 2012, 52(6), 475-487.
[http://dx.doi.org/10.1080/10408398.2010.501408] [PMID: 22452729]
[87]
Sentandreu, M.A.; Sentandreu, E. Peptide biomarkers as a way to determine meat authenticity. Meat Sci., 2011, 89(3), 280-285.
[http://dx.doi.org/10.1016/j.meatsci.2011.04.028] [PMID: 21612878]
[88]
Buckley, M.; Collins, M.; Thomas-Oates, J.; Wilson, J.C. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 2009, 23(23), 3843-3854.
[http://dx.doi.org/10.1002/rcm.4316] [PMID: 19899187]
[89]
Sentandreu, M.A.; Fraser, P.D.; Halket, J.; Patel, R.; Bramley, P.M. A proteomic-based approach for detection of chicken in meat mixes. J. Proteome Res., 2010, 9(7), 3374-3383.
[http://dx.doi.org/10.1021/pr9008942] [PMID: 20433202]
[90]
Sentandreu, M.A.; Sentandreu, E.; Fraser, P.D.; Amat, C.B.; Bramley, P.M. Peptide biomarkers as a way to differentiate chicken and turkey meat. Proceedings of the 56th International Congress of Meat Science and Technology, 2010, p. 111.
[91]
Balizs, G.; Weise, C.; Rozycki, C.; Opialla, T.; Sawada, S.; Zagon, J.; Lampen, A. Determination of osteocalcin in meat and bone meal of bovine and porcine origin using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry and high-resolution hybrid mass spectrometry. Anal. Chim. Acta, 2011, 693(1-2), 89-99.
[http://dx.doi.org/10.1016/j.aca.2011.03.027] [PMID: 21504815]
[92]
von Bargen, C.; Dojahn, J.; Waidelich, D.; Humpf, H.U.; Brockmeyer, J. New sensitive high-performance liquid chromatography- tandem mass spectrometry method for the detection of horse and pork in halal beef. J. Agric. Food Chem., 2013, 61(49), 11986-11994.
[http://dx.doi.org/10.1021/jf404121b] [PMID: 24274913]
[93]
Montowska, M.; Pospiech, E. Species-specific expression of various proteins in meat tissue: proteomic analysis of raw and cooked meat and meat products made from beef, pork and selected poultry species. Food Chem., 2013, 136(3-4), 1461-1469.
[http://dx.doi.org/10.1016/j.foodchem.2012.09.072] [PMID: 23194549]
[94]
Montowska, M.; Alexander, M.R.; Tucker, G.A.; Barrett, D.A. Authentication of processed meat products by peptidomic analysis using rapid ambient mass spectrometry. Food Chem., 2015, 187, 297-304.
[http://dx.doi.org/10.1016/j.foodchem.2015.04.078] [PMID: 25977030]
[95]
Naveena, B.M.; Jagadeesh, D.S.; Jagadeesh Babu, A.; Madhava Rao, T.; Kamuni, V.; Vaithiyanathan, S.; Kulkarni, V.V.; Rapole, S. OFFGEL electrophoresis and tandem mass spectrometry approach compared with DNA-based PCR method for authentication of meat species from raw and cooked ground meat mixtures containing cattle meat, water buffalo meat and sheep meat. Food Chem., 2017, 233, 311-320.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.116] [PMID: 28530580]
[96]
Naveena, B.M.; Jagadeesh, D.S.; Kamuni, V.; Muthukumar, M.; Kulkarni, V.V.; Kiran, M.; Rapole, S. In-gel and OFFGEL-based proteomic approach for authentication of meat species from minced meat and meat products. J. Sci. Food Agric., 2018, 98(3), 1188-1196.
[http://dx.doi.org/10.1002/jsfa.8572] [PMID: 28737240]
[97]
Wang, G.J.; Zhou, G.Y.; Ren, H.W.; Xu, Y.; Yang, Y.; Guo, L.H.; Liu, N. Peptide biomarkers identified by LC–MS in processed meats of five animal species. J. Food Compos. Anal., 2018, 73, 47-54.
[http://dx.doi.org/10.1016/j.jfca.2018.07.004]
[98]
Fornal, E.; Montowska, M. Species-specific peptide-based liquid chromatography-mass spectrometry monitoring of three poultry species in processed meat products. Food Chem., 2019, 283, 489-498.
[http://dx.doi.org/10.1016/j.foodchem.2019.01.074] [PMID: 30722903]
[99]
Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature, 2003, 422(6928), 198-207.
[http://dx.doi.org/10.1038/nature01511] [PMID: 12634793]
[100]
Yates, J.R., III Mass spectral analysis in proteomics. Annu. Rev. Biophys. Biomol. Struct., 2004, 33, 297-316.
[http://dx.doi.org/10.1146/annurev.biophys.33.111502.082538] [PMID: 15139815]
[101]
Careri, M.; Bianchi, F.; Corradini, C. Recent advances in the application of mass spectrometry in food-related analysis. J. Chromatogr. A, 2002, 970(1-2), 3-64.
[http://dx.doi.org/10.1016/S0021-9673(02)00903-2] [PMID: 12350102]
[102]
Ji, Q.C.; Rodila, R.; Gage, E.M.; El-Shourbagy, T.A. A strategy of plasma protein quantitation by selective reaction monitoring of an intact protein. Anal. Chem., 2003, 75(24), 7008-7014.
[http://dx.doi.org/10.1021/ac034930n] [PMID: 14670064]
[103]
Marshall, A.G.; Hendrickson, C.L. High-resolution mass spectrometers. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2008, 1, 579-599.
[http://dx.doi.org/10.1146/annurev.anchem.1.031207.112945] [PMID: 20636090]
[104]
Glish, G.L.; Burinsky, D.J. Hybrid mass spectrometers for tandem mass spectrometry. J. Am. Soc. Mass Spectrom., 2008, 19(2), 161-172.
[http://dx.doi.org/10.1016/j.jasms.2007.11.013] [PMID: 18187337]
[105]
Le Blanc, J.C.; Hager, J.W.; Ilisiu, A.M.; Hunter, C.; Zhong, F.; Chu, I. Unique scanning capabilities of a new hybrid linear ion trap mass spectrometer (Q TRAP) used for high sensitivity proteomics applications. Proteomics, 2003, 3(6), 859-869.
[http://dx.doi.org/10.1002/pmic.200300415] [PMID: 12833509]
[106]
Scigelova, M.; Makarov, A. Orbitrap mass analyzer-overview and applications in proteomics. Proteomics, 2006, 6(Suppl. 2), 16-21.
[http://dx.doi.org/10.1002/pmic.200600528] [PMID: 17031791]
[107]
Michalski, A.; Damoc, E.; Hauschild, J. P.; Lange, O.; Wieghaus, A.; Makarov, A.; Nagaraj, N.; Cox, J.; Mann, M.; Horning, S. Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol. Cell Proteom., 2011, 10(9)
[http://dx.doi.org/10.1074/mcp.M111.011015]
[108]
Toelstede, S.; Hofmann, T. Sensomics mapping and identification of the key bitter metabolites in Gouda cheese. J. Agric. Food Chem., 2008, 56(8), 2795-2804.
[http://dx.doi.org/10.1021/jf7036533] [PMID: 18355023]
[109]
Huang, H.; Larsen, M.R.; Lametsch, R. Changes in phosphorylation of myofibrillar proteins during postmortem development of porcine muscle. Food Chem., 2012, 134(4), 1999-2006.
[http://dx.doi.org/10.1016/j.foodchem.2012.03.132] [PMID: 23442649]
[110]
Rush, J.; Moritz, A.; Lee, K.A.; Guo, A.; Goss, V.L.; Spek, E.J.; Zhang, H.; Zha, X.M.; Polakiewicz, R.D.; Comb, M.J. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol., 2005, 23(1), 94-101.
[http://dx.doi.org/10.1038/nbt1046] [PMID: 15592455]
[111]
Ficarro, S.B.; McCleland, M.L.; Stukenberg, P.T.; Burke, D.J.; Ross, M.M.; Shabanowitz, J.; Hunt, D.F.; White, F.M. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol., 2002, 20(3), 301-305.
[http://dx.doi.org/10.1038/nbt0302-301] [PMID: 11875433]
[112]
Thingholm, T.E.; Jørgensen, T.J.D.; Jensen, O.N.; Larsen, M.R. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat. Protoc., 2006, 1(4), 1929-1935.
[http://dx.doi.org/10.1038/nprot.2006.185] [PMID: 17487178]
[113]
Beausoleil, S.A.; Jedrychowski, M.; Schwartz, D.; Elias, J.E.; Villén, J.; Li, J.; Cohn, M.A.; Cantley, L.C.; Gygi, S.P. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. USA, 2004, 101(33), 12130-12135.
[http://dx.doi.org/10.1073/pnas.0404720101] [PMID: 15302935]
[114]
Yang, Z.; Hancock, W.S. Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. J. Chromatogr. A, 2004, 1053(1-2), 79-88.
[http://dx.doi.org/10.1016/S0021-9673(04)01433-5] [PMID: 15543974]
[115]
Hägglund, P.; Bunkenborg, J.; Elortza, F.; Jensen, O.N.; Roepstorff, P. A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J. Proteome Res., 2004, 3(3), 556-566.
[http://dx.doi.org/10.1021/pr034112b] [PMID: 15253437]
[116]
Kim, S.C.; Sprung, R.; Chen, Y.; Xu, Y.; Ball, H.; Pei, J.; Cheng, T.; Kho, Y.; Xiao, H.; Xiao, L.; Grishin, N.V.; White, M.; Yang, X.J.; Zhao, Y. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell, 2006, 23(4), 607-618.
[http://dx.doi.org/10.1016/j.molcel.2006.06.026] [PMID: 16916647]
[117]
Wells, L.; Vosseller, K.; Cole, R.N.; Cronshaw, J.M.; Matunis, M.J.; Hart, G.W. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol. Cell. Proteomics, 2002, 1(10), 791-804.
[http://dx.doi.org/10.1074/mcp.M200048-MCP200] [PMID: 12438562]
[118]
Oda, Y.; Nagasu, T.; Chait, B.T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol., 2001, 19(4), 379-382.
[http://dx.doi.org/10.1038/86783] [PMID: 11283599]
[119]
Kinoshita, Y.; Sato, T.; Naitou, H.; Ohashi, N.; Kumazawa, S. Proteomic studies on protein oxidation in bonito (Katsuwonus pelamis) muscle. Food Sci. Technol. Res., 2007, 13(2), 133-138.
[http://dx.doi.org/10.3136/fstr.13.133]
[120]
Bernevic, B.; Petre, B.A.; Galetskiy, D.; Werner, C.; Schellaider, K.; Przybylski, M. Degradation & oxidation postmortem of myofibrillar proteins in porcine skeleton muscle revealed by high resolution mass spectrometric proteome analysis. Int. J. Mass Spectrom., 2011, 305(2–3), 217-227.
[http://dx.doi.org/10.1016/j.ijms.2010.11.010]
[121]
Herrero, M.; Simó, C.; García-Cañas, V.; Ibáñez, E.; Cifuentes, A. Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom. Rev., 2012, 31(1), 49-69.
[http://dx.doi.org/10.1002/mas.20335] [PMID: 21374694]
[122]
von Bargen, C.; Brockmeyer, J.; Humpf, H.U. Meat authentication: a new HPLC-MS/MS based method for the fast and sensitive detection of horse and pork in highly processed food. J. Agric. Food Chem., 2014, 62(39), 9428-9435.
[http://dx.doi.org/10.1021/jf503468t] [PMID: 25188355]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy