Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Review Article Section: Materials Science

Photochromic Core-shell Nanoparticles

Author(s): V.A. Barachevsky*

Volume 1, Issue 2, 2021

Published on: 13 January, 2021

Page: [241 - 250] Pages: 10

DOI: 10.2174/2210298101666210114100325

Abstract

The results of spectral-kinetic studies in the field of nanophotochromism of the core‒ shell type hybrid compounds are integrated. The properties of photochromic nanoparticles based on photochromic spirocompounds (spiropyrans and spirooxazines), chromenes, and diarylethenes and nanoparticles of noble metals (Ag and Au), diamonds, graphene and its oxide, silica, fullerenes, and quantum dots are considered. Preparation methods of photochromic nanoparticles have been developed.

Keywords: Photochromism, spectroscopy, spiropyrans, spirooxazines, diarylethenes, nanoparticles, noble metals, silica, nanodiamonds, fullerene, graphene, graphene oxide.

Graphical Abstract

[1]
Karpov, R.E.; Barachevsky, V.A. Photonics of nanostructured systems based on spirocompounds. High Energy Chem., 2007, 41(3), 188-199.
[http://dx.doi.org/10.1134/S001814390703006X]
[2]
Barachevsky, V.A. Photonics of organic photochromic systems: modern trends. J. Photochem. Photobiol. Chem., 2008, 196(2-3), 180-189.
[http://dx.doi.org/10.1016/j.jphotochem.2007.08.010]
[3]
Barachevsky, V.A. Nanophotochromism. Org. Photon. Photovolt., 2015, 3, 8-41.
[http://dx.doi.org/10.1515/oph-2015-0003]
[4]
Barachevsky, V.A. Advances in photonics of organic photochromism. J. Photochem. Photobiol. Chem., 2018, 354, 61-69.
[http://dx.doi.org/10.1016/j.jphotochem.2017.06.034]
[5]
Barachevsky, V.A. Photochromic nanoparticles and their properties. Crystallogr. Rep., 2018, 63(2), 271-275.
[http://dx.doi.org/10.1134/S1063774518020025]
[6]
Barachevsky, V.A.; Karpov, R.E.; Nagovitsin, I.A.; Chudinova, G.K.; Strokach, Yu.P.; Miroshnikov, V.S.; Chibisova, T.A.; Traven’, V.F. Aggregation, spectral features and nonlinear properties of polymolecular layers based on spirocumarinpyrans. Superlattices Microstruct., 2004, 36(1-3), 73-77.
[http://dx.doi.org/10.1016/j.spmi.2004.08.036]
[7]
Barachevsky, V.A.; Kobeleva, O.I.; Valova, T.M.; Ait, A.O.A.O.; Koltsova, L.S.; Shienok, A.I.; Zaichenko, N.L.; Laptev, A.V.; Khodonov, A.A.; Kuznetsova, O.Yu.; Dudinov, A.A.; Lichitzkii, B.V.; Krauyshkin, M.M. Spectral manifestation of interaction between functionalized photochromic compounds and Ag and Au nanoparticles. Theor. Experiment. Chem., 2012, 48(1), 1342-1361.
[8]
Kobeleva, O.I.; Valova, T.M.; Barachevsky, V.A.; Krauyshkin, M.M.; Lichitzkii, B.V.; Dudinov, A.A.; Kuznetsova, O.Yu.; Adamov, G.E.; Grebennikov, E.P. Spectral-kinetic manifestation of interaction photochromic diarylethenes with silver nanoparticles. Opt. Spectrosc., 2010, 109(1), 101-105.
[http://dx.doi.org/10.1134/S0030400X10070167]
[9]
Vasilyuk, G.T.; Askirka, V.F.; German, A.E.; Yusinskii, V.M.; Yuroshevich, A.A.; Kobeleva, O.I.; Valova, T.M.; Ait, A.O.; Barachevsky, V.A.; Yurovenko, V.N.; Krauyshkin, M.M.; Maskevich, S.A. Photochromism of composite metal-organic nanostructures based on diarylethenes. I. J. Appl. Spectrosc., 2017, 84(4), 588-595.
[http://dx.doi.org/10.1007/s10812-017-0515-2]
[10]
Vasilyuk, G.T.; Maskevich, S.A.; Askirka, V.F.; Lavysh, A.S.; Kurguztnkov, S.A.; German, A.E.; Sveklo, I.F.; Yusinskii, V.M.; Yuroshevich, A.A.; Kobeleva, O.I.; Valova, T.M.; Ait, A.O.; Barachevsky, V.A.; Yurovenko, V.N.; Krauyshkin, M.M. Photochromism of composite metalorganic nanostructures based on diarylethenes. II. Study by methods of vibrational spectroscopy and quantum chemistry. J. Appl. Spectrosc., 2017, 84(5), 710-719.
[http://dx.doi.org/10.1007/s10812-017-0543-y]
[11]
Barachevsky, V.A.; Kobeleva, O.I.; Venidiktova, O.V.; Ayt, A.O.; Vasilyuk, G.T.; Maskevich, S.A.; Krayushkin, M.M. Photoinduced modulation of the emission from CdSe/ZnS quantum dots by photochromic transformations of diarylethenes. Crystallogr. Rep., 2019, 64(5), 823-827.
[http://dx.doi.org/10.1134/S1063774519050055]
[12]
Karpach, P.V.; Scherbovich, A.A.; Vasilyuk, G.T.; Stsiapura, V.I.; Ayt, A.O.; Barachevsky, V.A.; Tuktarov, A.R.; Khuzin, A.A.; Maskevich, S.A. Photoinduced reversible modulation of fluorescence of CdSe/ZnS quantum dots in solutions with diarylethenes. J. Fluoresc., 2019, 29(6), 1311-1320.
[http://dx.doi.org/10.1007/s10895-019-02455-4] [PMID: 31713768]
[13]
Barachevsky, V.A.; Venidiktova, O.V.; Valova, T.M.; Gorelik, A.M.; Vasiliev, R.B.; Khuzin, A.A.; Tuktarov, A.R.; Karpach, P.V.; Stsiapura, V.I.; Vasilyuk, G.T.; Maskevich, S.A. Photochromic systems with photoinduced emission modulation of colloidal CdSe quantum wells. Photochem. Photobiol. Sci., 2019, 18(11), 2661-2665.
[http://dx.doi.org/10.1039/C9PP00341J] [PMID: 31577315]
[14]
Barachevsky, V.A.; Venidiktova, O.V.; Kobeleva, O.I.; Gorelik, A.M.; Ayt, A.O.; Krayushkin, M.M.; Tameev, A.R.; Sigeikin, G.I.; Saveliev, M.A.; Vasiluyk, G.T. Multifunctional nanostructured photochromic photoswitches, IEEE Conference Publications. Nanotechnology (IEEE-NANO), 2015 IEEE 15th International Conference on 2015, pp. 358-361.
[http://dx.doi.org/10.1109/NANO.2015.7388999]
[15]
Barachevsky, V.A.; Kobeleva, O.I.; Gorelik, A.M.; Krayushkin, M.M. Spectral Manifestations of the interaction of silicon dioxide nanoparticles with molecules of photochromic compounds. Opt. Spectrosc., 2018, 125(3), 362-367.
[http://dx.doi.org/10.1134/S0030400X18090047]
[16]
Venidiktova, O.V.; Valova, T.M.; Barachevsky, V.A.; Ait, A.O.; Lebedev-Stepanov, P.V.; Vul, A.Ya.; Koltsova, L.S.; Shienok, A.I.; Zaichenko, N.L. Photochromic properties of modified nanodiamonds. Opt. Spectrosc., 2017, 122(5), 729-734.
[http://dx.doi.org/10.1134/S0030400X17050204]
[17]
Venidiktova, O.V.; Barachevsky, V.A.; Khuzin, A.A.; Tuktarov, A.R.; Shienok, A.I.; Zaichenko, N.L. Spectral and kinetic studies of photochromic systems based on graphene and graphene oxide nanostructures. Opt. Spectrosc., 2019, 127(6), 1148-1154.
[http://dx.doi.org/10.1134/S0030400X19120294]
[18]
Tuktarov, A.R.; Khuzin, A.A.; Akhmetov, A.R.; Barachevsky, V.A.; Venidiktova, O.V.; Dzhemilev, U.M. Synthesis and photochromic properties of fullerene C60 adducts with dithienylethenes. Tetrahedron Lett., 2015, 56(52), 7154-7157.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.034]
[19]
Tuktarov, A.R.; Khuzin, A.A.; Akhmetov, A.R.; Khalilov, L.M.; Tulyabaev, A.R.; Barachevskii, V.A.; Venidiktova, O.V.; Dzhemilev, U.M. Covalent binding of fullerene C60 to dithienylethene as a promising approach to the preparation of new photochromic compounds. Mendeleev Commun., 2016, 26, 143-145.
[http://dx.doi.org/10.1016/j.mencom.2016.03.021]
[20]
Tuktarov, A.R.; Akhmetov, A.R.; Luzina, A.A.; Venidiktova, O.V.; Barachevskii, V.A.; Dzhemilev, U.M. Synthesis and photochromic properties of hybrid molecules based on fullerene C60 и 3,3′-(cyclopent-1-en-1,2-diil)bis(5-chlor-2-methylthiophen). Russ. J. Org. Chem., 2017, 53(6), 891-897.
[http://dx.doi.org/10.1134/S1070428017060136]
[21]
Tuktarov, A.R.; Khuzin, A.A.; Tulyabaev, A.R.; Venidiktova, O.V.; Valova, T.M.; Barachevsky, V.A.; Khalilov, L.M.; Dzhemilev, U.M. Synthesis, structure and photochromic properties of hybrid molecules based on fullerene C60 and spiropyrans. RSC Advances, 2016, 6, 71151-71155.
[http://dx.doi.org/10.1039/C6RA18073F]
[22]
Pomogaev, V.A.; Barachevsky, V.A.; Tuktarov, A.R.; Avramov, P.V.; Artyukhov, V.Ya. Inheritance of photochromic properties of nitrosubstituted and halogenated spiropyrans containing the pyrrolidino [60] fullerene. J. Phys. Chem. A, 2018, 122(2), 505-515.
[http://dx.doi.org/10.1021/acs.jpca.7b08374] [PMID: 29257862]
[23]
Tuktarov, A.R.; Salikhov, R.B.; Khuzin, A.A.; Safargalin, I.N.; Mullagaliev, I.N.; Venidiktova, O.V.; Valova, T.M.; Barachevsky, V.A.; Dzhemilev, U.M. Optically controlled field effect transistors based on photochromic spiropyran and fullerene C60 films. Mend. Commun, 2019, 29, 160-162.

© 2025 Bentham Science Publishers | Privacy Policy