Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

CT Image Reconstruction Using NLMfuzzyCD Regularization Method

Author(s): Manju Devi, Sukhdip Singh and Shailendra Tiwari*

Volume 17, Issue 9, 2021

Published on: 12 January, 2021

Page: [1103 - 1113] Pages: 11

DOI: 10.2174/1573405617999210112195819

Price: $65

Abstract

Aims and Scope: Computed tomography (CT) is one of the most efficient clinical diagnostic tools. The main goal of CT is to reproduce an acceptable reconstructed image of an object (either anatomical or functional behaviour) with the help of a limited set of projections at different angles.

Background: To achieve this goal, one of the most commonly iterative reconstruction algorithm called Maximum Likelihood Expectation Maximization (MLEM) is used.

Objective: The conventional Maximum Likelihood (ML) algorithm can achieve quality images in CT. However, it still suffers from optimal smoothing as the number of iterations increases.

Methods: For solving this problem, this paper presents a novel statistical image reconstruction algorithm for CT, which utilizes a nonlocal means of fuzzy complex diffusion as a regularization term for noise reduction and edge preservation.

Results: The proposed model was evaluated on four test cases phantoms.

Conclusion: Qualitative and quantitative analyses indicate that the proposed technique has higher efficiency for computed tomography. The proposed method yields significant improvements when compared with the state-of-the-art techniques.

Keywords: Computed tomography, maximum likelihood, noise reduction, fuzzy logic, nonlocal means, complex diffusion.

Graphical Abstract

[1]
Kak AC, Slaney M, Wang G. Principles of computerized tomographic imaging. SIAM IEEE Press 1988.
[http://dx.doi.org/10.1137/1.9780898719277]
[2]
Vardi Y, Shepp LA, Kaufman L. A statistical model for positron emission tomography. J Am Stat Assoc 1985; 80(389): 8-20.
[http://dx.doi.org/10.1080/01621459.1985.10477119]
[3]
Dehairs M, Bosmans H, Desmet W, Marshall NW. Evaluation of automatic dose rate control for flat panel imaging using a spatial frequency domain figure of merit. Phys Med Biol 2017; 62(16): 6610-30.
[http://dx.doi.org/10.1088/1361-6560/aa7a9d] [PMID: 28632501]
[4]
Nowik P, Bujila R, Kull L, Andersson J, Poludniowski G. The dosimetric impact of including the patient table in CT dose estimates. Phys Med Biol 2017; 62(23): N538-47.
[http://dx.doi.org/10.1088/1361-6560/aa9259] [PMID: 28994662]
[5]
Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 2001; 176(2): 289-96.
[http://dx.doi.org/10.2214/ajr.176.2.1760289] [PMID: 11159059]
[6]
Brody AS, Frush DP, Huda W, Brent RL. American Academy of Pediatrics Section on Radiology. Radiation risk to children from computed tomography. Pediatrics 2007; 120(3): 677-82.
[http://dx.doi.org/10.1542/peds.2007-1910] [PMID: 17766543]
[7]
Saltybaeva N, Martini K, Frauenfelder T, Alkadhi H. Organ dose and attributable cancer risk in lung cancer screening with low- dose computed tomography. PLoS One 2016; 11(5): e0155722.
[http://dx.doi.org/10.1371/journal.pone.0155722] [PMID: 27203720]
[8]
den Harder AM, Suchá D, van Doormaal PJ, et al. Radiation dose reduction in pediatric great vessel stent computed tomography using iterative reconstruction: A phantom study. PLoS One 2017; 12(4): e0175714.
[http://dx.doi.org/10.1371/journal.pone.0175714] [PMID: 28410386]
[9]
Gong C, Han C, Gan G, et al. Low-dose dynamic myocardial perfusion CT image reconstruction using pre-contrast normal-dose CT scan induced structure tensor total variation regularization. Phys Med Biol 2017; 62(7): 2612-35.
[http://dx.doi.org/10.1088/1361-6560/aa5d40] [PMID: 28140366]
[10]
Han H, Gao H, Xing L. Low-dose 4D cone-beam CT via joint spatiotemporal regularization of tensor framelet and nonlocal total variation. Phys Med Biol 2017; 62(16): 6408-27.
[http://dx.doi.org/10.1088/1361-6560/aa7733] [PMID: 28726684]
[11]
Gordic S, Desbiolles L, Stolzmann P, et al. Advanced modelled iterative reconstruction for abdominal CT: qualitative and quantitative evaluation. Clin Radiol 2014; 69(12): e497-504.
[http://dx.doi.org/10.1016/j.crad.2014.08.012] [PMID: 25239788]
[12]
Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 1990; 12(7): 629-39.
[http://dx.doi.org/10.1109/34.56205]
[13]
Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D 1992; 60(1-4): 259-68.
[http://dx.doi.org/10.1016/0167-2789(92)90242-F]
[14]
Buades A, Coll B, Morel JM. A non-local algorithm for image denoising. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). Vol. 2: 60-5.
[http://dx.doi.org/10.1109/CVPR.2005.38]
[15]
Ling J, Bovik AC. Smoothing low-SNR molecular images via anisotropic median-diffusion. IEEE Trans Med Imaging 2002; 21(4): 377-84.
[http://dx.doi.org/10.1109/TMI.2002.1000261] [PMID: 12022625]
[16]
Gilboa G, Zeevi YY, Sochen NA. Complex difusion processes for image filtering. Springer. 2106: 299-307.
[http://dx.doi.org/10.1007/3-540-47778-0_27]
[17]
Yan JH. Investigation of positron emission tomography image reconstruction. Wuhan, China: Huazhong University of Science and Technology 2007.
[18]
He Q, Huang L. Penalized maximum likelihood algorithm for positron emission tomography by using anisotropic median-diffusion. Math Probl Eng 2014; 2014: Article ID 491239.
[http://dx.doi.org/10.1155/2014/491239]
[19]
Van De Ville D, Nachtegael M, Van der Weken D, Kerre EE, Philips W, Lemahieu I. Noise reduction by fuzzy image filtering. IEEE Trans Fuzzy Syst 2003; 11(4): 429-36.
[http://dx.doi.org/10.1109/TFUZZ.2003.814830]
[20]
Nachtegael M, Van der Weken D, Van De Ville D, Kerre EE, Eds. Fuzzy filters for image processing. Springer 2013; p. Pages 3-24.
[21]
Reusch B, Fathi M, Hildebrand L. Soft computing, multimedia and image processing-Proceedings of the World Automation Congress.Ch. Fuzzy Color Processing for Quality Improvement In: TSI Press 1998; pp. 841-8.
[22]
Bothorel S, Bouchon Meunier B, Muller S. A fuzzy logic based approach for semiological analysis of microcalcifications in mammographic images. Int J Intell Syst 1997; 12(11‐12): 819-48.
[http://dx.doi.org/10.1002/(SICI)1098-111X(199711/12)12:11/12<819::AID-INT3>3.0.CO;2-#]
[23]
Mondal PP, Rajan K. Iterative image reconstruction for emission tomography using fuzzy potential. In: IEEE; Rome, Italy. 2004.
[http://dx.doi.org/10.1109/NSSMIC.2004.1466666]
[24]
Tiwari S, Kaur K, Pathak Y, Shivani S, Kaur K. Computed tomography reconstruction on distributed storage using hybrid regularization approach. Mod Phys Lett B 2019; 33(06): 1950063.
[http://dx.doi.org/10.1142/S0217984919500635]
[25]
Pathak Y, Arya KV, Tiwari S. Fourth-order partial differential equations based anisotropic diffusion model for low-dose CT images. Mod Phys Lett B 2018; 32(25): 1850300.
[http://dx.doi.org/10.1142/S0217984918503001]
[26]
Lan R, Zhou Y, Tang YY, Chen CP. Image denoising using non-local fuzzy means. 2015 IEEE China Summit and International Conference on Signal and Information Processing (China SIP). 196-200.
[http://dx.doi.org/10.1109/ChinaSIP.2015.7230390]
[27]
Lv J, Luo X. Image denoising via fast and fuzzy non-local means algorithm. J Inform Process Syst 2019; 15(5): 1108-18.
[28]
Hsieh CJ, Jin SC, Chen JC, Kuo CW, Wang RT, Chu WC. Performance of sparse-view CT reconstruction with multi-directional gradient operators. PLoS One 2019; 14(1): e0209674.
[http://dx.doi.org/10.1371/journal.pone.0209674] [PMID: 30615635]
[29]
Tiwari S, Srivastava R. A hybrid-cascaded iterative framework for positron emission tomography and single-photon emission computed tomography image reconstruction. J Med Imaging Health Inform 2016; 6(4): 1001-12.
[http://dx.doi.org/10.1166/jmihi.2016.1779]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy