Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Letter Article

Self-supported Hierarchical Nanoporous Cu/Mo@MoOx Hybrid Electrodes as Robust Nonprecious Electrocatalysts for High-efficiency Hydrogen Evolution

Author(s): Li-Ping Han, Hang Shi, Rui-Qi Yao, Wu-Bin Wan, Zi Wen, Xing-You Lang* and Qing Jiang*

Volume 17, Issue 5, 2021

Published on: 06 January, 2021

Page: [728 - 735] Pages: 8

DOI: 10.2174/1573413716666210106095259

Price: $65

Abstract

Background: The hydrogen evolution reaction is a crucial step in electrochemical water splitting to generate molecular hydrogen with high purity, but it usually suffers from a sluggish reaction kinetics in alkaline media because of additional water dissociation and/or improper adsorption energy of reactive hydrogen intermediates. It is desirable to design highly active and robust nonprecious electrocatalysts as alternatives to state-of-the-art commercially available Pt/C catalysts for large-scale hydrogen production via water-alkali electrolysis.

Methods: We developed monolithic nanoporous hybrid electrodes composed of electroactive Mo@MoOx nanoparticles, which are seamlessly integrated on hierarchical nanoporous Cu scaffold (Cu/Mo@MoOx) by making use of a spontaneous phase separation of Mo nanoparticles and subsequently, self-grown MoOx in chemical dealloying.

Results: Owing to the unique monolithic electrode architecture, in which the constituent Mo@MoOx nanoparticles work as electroactive sites and the hierarchical nanoporous Cu skeleton serves as fast electron-transfer and mass-transport pathways, the monolithic nanoporous Cu/Mo@MoOx hybrid electrode exhibits superior electrocatalysis in 1 M KOH, with a low Tafel slope of 66 mV dec−1 and outstanding stability. It only takes them ~185 mV overpotential to reach −400 mA cm−2, ~150 mV lower than that of nanoporous Cu supported Pt/C.

Conclusion: The outstanding electrochemical performance and excellent structural stability make nanoporous Cu/Mo@MoOx electrodes attractive alternatives to Pt/C catalysts in alkaline-based devices.

Keywords: Nanoporous metals, hybrid materials, hydrogen evolution reaction, electrocatalysts, metal oxides, dealloying.

Graphical Abstract

[1]
Dresselhaus, M.S.; Thomas, I.L. Alternative energy technologies. Nature, 2001, 414(6861), 332-337.
[http://dx.doi.org/10.1038/35104599] [PMID: 11713539]
[2]
Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater., 2016, 16(1), 16-22.
[http://dx.doi.org/10.1038/nmat4834] [PMID: 27994253]
[3]
Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Nørskov, J.K.; Jaramillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355(6321)
[http://dx.doi.org/10.1126/science.aad4998] [PMID: 28082532]
[4]
Yang, Z.; Zhang, J.; Kintner-Meyer, M.C.W.; Lu, X.; Choi, D.; Lemmon, J.P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev., 2011, 111(5), 3577-3613.
[http://dx.doi.org/10.1021/cr100290v] [PMID: 21375330]
[5]
Turner, J.A. Sustainable hydrogen production. Science, 2004, 305(5686), 972-974.
[http://dx.doi.org/10.1126/science.1103197] [PMID: 15310892]
[6]
Roger, I.; Shipman, M.A.; Symes, M.D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem., 2007, 1, 0003.
[7]
Kibsgaard, J.; Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy, 2019, 4, 430-433.
[http://dx.doi.org/10.1038/s41560-019-0407-1]
[8]
Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S.Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev., 2015, 44(8), 2060-2086.
[http://dx.doi.org/10.1039/C4CS00470A] [PMID: 25672249]
[9]
Stamenkovic, V.R.; Strmcnik, D.; Lopes, P.P.; Markovic, N.M. Energy and fuels from electrochemical interfaces. Nat. Mater., 2016, 16(1), 57-69.
[http://dx.doi.org/10.1038/nmat4738] [PMID: 27994237]
[10]
Zou, X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev., 2015, 44(15), 5148-5180.
[http://dx.doi.org/10.1039/C4CS00448E] [PMID: 25886650]
[11]
Mahmood, J.; Li, F.; Jung, S.M.; Okyay, M.S.; Ahmad, I.; Kim, S.J.; Park, N.; Jeong, H.Y.; Baek, J.B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol., 2017, 12(5), 441-446.
[http://dx.doi.org/10.1038/nnano.2016.304] [PMID: 28192390]
[12]
Zheng, J.; Sheng, W.; Zhuang, Z.; Xu, B.; Yan, Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv., 2016, 2(3), e1501602.
[http://dx.doi.org/10.1126/sciadv.1501602] [PMID: 27034988]
[13]
Cheng, T.; Wang, L.; Merinov, B.V.; Goddard, W.A. III Explanation of dramatic pH-dependence of hydrogen binding on noble metal electrode: Greatly weakened water adsorption at high pH. J. Am. Chem. Soc., 2018, 140(25), 7787-7790.
[http://dx.doi.org/10.1021/jacs.8b04006] [PMID: 29792321]
[14]
Yin, J.; Fan, Q.; Li, Y.; Cheng, F.; Zhou, P.; Xi, P.; Sun, S. Ni-C-N nanosheets as catalyst for hydrogen evolution reaction. J. Am. Chem. Soc., 2016, 138(44), 14546-14549.
[http://dx.doi.org/10.1021/jacs.6b09351] [PMID: 27775881]
[15]
Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S.Z. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew. Chem. Int. Ed. Engl., 2018, 57(26), 7568-7579.
[http://dx.doi.org/10.1002/anie.201710556] [PMID: 29194903]
[16]
Mahmood, N.; Yao, Y.; Zhang, J.W.; Pan, L.; Zhang, X.; Zou, J.J. Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv. Sci. (Weinh.), 2017, 5(2), 1700464.
[http://dx.doi.org/10.1002/advs.201700464] [PMID: 29610722]
[17]
Sheng, W.C.; Myint, M.; Chen, J.G.G.; Yan, Y.S. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci., 2013, 6, 1509-1512.
[http://dx.doi.org/10.1039/c3ee00045a]
[18]
Strmcnik, D.; Lopes, P.P.; Genorio, B.; Stamenkovic, V.R.; Markovic, N.M. Design principles for hydrogen evolution reaction catalyst materials. Nano Energy, 2016, 29, 29-36.
[http://dx.doi.org/10.1016/j.nanoen.2016.04.017]
[19]
Conway, B.E.; Tilak, B.V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta, 2002, 47, 3571-3594.
[http://dx.doi.org/10.1016/S0013-4686(02)00329-8]
[20]
Kibler, L.A. Hydrogen electrocatalysis. ChemPhysChem, 2006, 7(5), 985-991.
[http://dx.doi.org/10.1002/cphc.200500646] [PMID: 16607662]
[21]
Yao, R.Q.; Zhou, Y.T.; Shi, H.; Zhang, Q.H.; Gu, L.; Wen, Z.; Lang, X.Y.; Jiang, Q. Nanoporous palladium-silver surface alloys as efficient and pH-universal catalysts for the hydrogen evolution reaction. ACS Energy Lett., 2019, 4, 1379-1386.
[http://dx.doi.org/10.1021/acsenergylett.9b00845]
[22]
Faber, M.S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci., 2014, 7, 3519-3542.
[http://dx.doi.org/10.1039/C4EE01760A]
[23]
Gong, M.; Zhou, W.; Tsai, M.C.; Zhou, J.; Guan, M.; Lin, M.C.; Zhang, B.; Hu, Y.; Wang, D.Y.; Yang, J.; Pennycook, S.J.; Hwang, B.J.; Dai, H. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun., 2014, 5, 4695.
[http://dx.doi.org/10.1038/ncomms5695] [PMID: 25146255]
[24]
Jin, H.; Wang, J.; Su, D.; Wei, Z.; Pang, Z.; Wang, Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc., 2015, 137(7), 2688-2694.
[http://dx.doi.org/10.1021/ja5127165] [PMID: 25658518]
[25]
Jin, Y.; Wang, H.; Li, J.; Yue, X.; Han, Y.; Shen, P.K.; Cui, Y. Porous MoO2 nanosheets as non-noble bfunctional electrocatalysts for overall water splitting. Adv. Mater., 2016, 28(19), 3785-3790.
[http://dx.doi.org/10.1002/adma.201506314] [PMID: 26996884]
[26]
Dutta, B.; Wu, Y.; Chen, J.; Wang, J.; He, J.K.; Sharafeldin, M.; Kerns, P.; Jin, L.; Dongare, A.M.; Rusling, J.; Suib, S.L. Partial surface selenization of cobalt sulfide microspheres for enhancing the hydrogen evolution reaction. ACS Catal., 2019, 9, 456-465.
[http://dx.doi.org/10.1021/acscatal.8b02904]
[27]
Huang, Z.F.; Song, J.; Li, K.; Tahir, M.; Wang, Y.T.; Pan, L.; Wang, L.; Zhang, X.; Zou, J.J. Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc., 2016, 138(4), 1359-1365.
[http://dx.doi.org/10.1021/jacs.5b11986] [PMID: 26777119]
[28]
Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R.; Liu, S.; Zhuang, X.; Feng, X. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem. Int. Ed. Engl., 2016, 55(23), 6702-6707.
[http://dx.doi.org/10.1002/anie.201602237] [PMID: 27100374]
[29]
Chen, X.S.; Liu, G.B.; Zheng, W.; Feng, W.; Cao, W.W.; Hu, W.P.; Hu, P.A. Vertical 2D MoO2/MoSe2 core-shell nanosheet arrays as high‐performance electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater., 2016, 26, 8537-8544.
[http://dx.doi.org/10.1002/adfm.201603674]
[30]
Qu, Y.; Medina, H.; Wang, S.W.; Wang, Y.C.; Chen, C.W.; Su, T.Y.; Manikandan, A.; Wang, K.; Shih, Y.C.; Chang, J.W.; Kuo, H.C.; Lee, C.Y.; Lu, S.Y.; Shen, G.; Wang, Z.M.; Chueh, Y.L. Wafer scale phase-engineered 1T- and 2H-MoSe2/Mo core-shell 3D-hierarchical nanostructures toward efficient electrocatalytic hydrogen evolution reaction. Adv. Mater., 2016, 28(44), 9831-9838.
[http://dx.doi.org/10.1002/adma.201602697] [PMID: 27717140]
[31]
Yan, H.J.; Xie, Y.; Jiao, Y.Q.; Wu, A.P.; Tian, C.G.; Zhang, X.M.; Wang, L.; Fu, H.G. Holey reduced graphene oxide coupled with an Mo2N-Mo2C heterojunction for efficient hydrogen evolution. Adv. Mater., 2018, 30(2), 1704156.
[http://dx.doi.org/10.1002/adma.201704156]
[32]
Zhang, Y.Q.; Ouyang, B.; Xu, J.; Chen, S.; Rawat, R.S.; Fan, H.J. 3D porous hierarchical nickel-molybdenum nitrides synthesized by RF plasma as highly active and stable hydrogen-evolution-reaction electrocatalysts. Adv. Energy Mater., 2016, 6(11), 1600221.
[http://dx.doi.org/10.1002/aenm.201600221]
[33]
Zhang, R.; Wang, X.X.; Yu, S.J.; Wen, T.; Zhu, X.W.; Yang, F.X.; Sun, X.N.; Wang, X.K.; Hu, W.P. Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater., 2017, 29(9), 1605502.
[http://dx.doi.org/10.1002/adma.201605502]
[34]
Liang, K.; Pakhira, S.; Yang, Z.Z.; Nijamudheen, A.; Ju, L.C.; Wang, M.Y.; Aguirre-Velez, C.I.; Sterbinsky, G.E.; Du, Y.G.; Feng, Z.X.; Mendoza-Cortes, J.L.; Yang, Y. S-Doped MoP nanoporous layer toward high-efficiency hydrogen evolution in pH-universal electrolyte. ACS Catal., 2019, 9, 651-659.
[http://dx.doi.org/10.1021/acscatal.8b04291]
[35]
Lin, H.; Liu, N.; Shi, Z.; Guo, Y.; Tang, Y.; Gao, Q. Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution. Adv. Funct. Mater., 2016, 26, 5590-5598.
[http://dx.doi.org/10.1002/adfm.201600915]
[36]
Anjum, M.A.R.; Lee, M.H.; Lee, J.S. Boron- and nitrogen-codoped molybdenum carbide nanoparticles imbedded in a BCN network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. ACS Catal., 2018, 8, 8296-8305.
[http://dx.doi.org/10.1021/acscatal.8b01794]
[37]
Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem., 1972, 39, 163-184.
[http://dx.doi.org/10.1016/S0022-0728(72)80485-6]
[38]
Zang, M.J.; Xu, N.; Cao, G.X.; Chen, Z.J.; Cui, J.; Gan, L.Y.; Dai, H.B.; Yang, X.F.; Wang, P. Cobalt molybdenum oxide derived high-performance electrocatalyst for the hydrogen evolution reaction. ACS Catal., 2018, 8, 5062-5069.
[http://dx.doi.org/10.1021/acscatal.8b00949]
[39]
Wu, H.B.; Xia, B.Y.; Yu, L.; Yu, X.Y.; Lou, X.W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat. Commun., 2015, 6, 6512.
[http://dx.doi.org/10.1038/ncomms7512] [PMID: 25758159]
[40]
Tan, Y.; Liu, P.; Chen, L.; Cong, W.; Ito, Y.; Han, J.; Guo, X.; Tang, Z.; Fujita, T.; Hirata, A.; Chen, M.W. Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production. Adv. Mater., 2014, 26(47), 8023-8028.
[http://dx.doi.org/10.1002/adma.201403808] [PMID: 25363090]
[41]
Lang, X.Y.; Fu, H.Y.; Hou, C.; Han, G.F.; Yang, P.; Liu, Y.B.; Jiang, Q. Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat. Commun., 2013, 4, 2169.
[http://dx.doi.org/10.1038/ncomms3169] [PMID: 23851924]
[42]
Kumar, K.A.; Sugunamma, V.; Sandeep, N. Effect of thermal radiation on MHD casson fluid flow over an exponentially stretching curved sheet. J. Therm. Anal. Calorim., 2020, 140, 2377-2385.
[http://dx.doi.org/10.1007/s10973-019-08977-0]
[43]
Kumar, K.A.; Sugunamma, V.; Sandeep, N. Influence of viscous dissipation on MHD flow of micropolar fluid over a slandering stretching surface with modified heat flux model. J. Therm. Anal. Calorim., 2020, 139, 3661-3674.
[http://dx.doi.org/10.1007/s10973-019-08694-8]
[44]
Kumar, K.A.; Sugunamma, V.; Sandeep, N.; Reddy, J.V.R. Impact of Brownian motion and thermophoresis on bioconvective flow of nanoliquids past a variable thickness surface with slip effects. Multidiscipl. Model. Mater. Struct., 2019, 15, 103-132.
[http://dx.doi.org/10.1108/MMMS-02-2018-0023]
[45]
Tlili, I.; Mustafa, M.T.; Kumar, K.A.; Sandeep, N. Effect of asymmetrical heat rise/fall on the film flow of magnetohydrodynamic hybrid ferrofluid. Sci. Rep., 2020, 10(1), 6677.
[http://dx.doi.org/10.1038/s41598-020-63708-y] [PMID: 32317721]
[46]
Kumar, K.A.; Sugunamma, V.; Sandeep, N. Thermophoresis and Brownian motion effects on MHD micropolar nanofluid flow past A stretching surface with non-uniform heat source/sink. Comput. Therm. Sci., 2020, 12, 55-77.
[http://dx.doi.org/10.1615/ComputThermalScien.2020027016]
[47]
McCue, I.; Benn, E.; Gaskey, B.; Erlebacher, J. Dealloying and dealloyed materials. Annu. Rev. Mater. Res., 2016, 46, 1-24.
[http://dx.doi.org/10.1146/annurev-matsci-070115-031739]
[48]
Lang, X.Y.; Han, G.F.; Xiao, B.B.; Gu, L.; Yang, Z.Z.; Wen, Z.; Zhu, Y.F.; Zhao, M.; Li, J.C.; Jiang, Q. Mesostructured intermetallic compounds of platinum and non-transition metals for enhanced electrocatalysis of oxygen reduction reaction. Adv. Funct. Mater., 2015, 25, 230-237.
[http://dx.doi.org/10.1002/adfm.201401868]
[49]
Xu, C.X.; Wang, L.Q.; Wang, R.Y.; Wang, K.; Zhang, Y.; Tian, F.; Ding, Y. Nanotubular mesoporous bimetallic nanostructures with enhanced electrocatalytic performance. Adv. Mater., 2009, 21, 2165-2169.
[http://dx.doi.org/10.1002/adma.200702700]
[50]
Shi, H.; Zhou, Y.T.; Yao, R.Q.; Wan, W.B.; Ge, X.; Zhang, W.; Wen, Z.; Lang, X.Y.; Zheng, W.T.; Jiang, Q. Spontaneously separated intermetallic Co3Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting. Nat. Commun., 2020, 11(1), 2940.
[http://dx.doi.org/10.1038/s41467-020-16769-6] [PMID: 32522988]
[51]
Shi, H.; Zhou, Y.T.; Yao, R.Q.; Wan, W.B.; Zhang, Q.H.; Gu, L.; Wen, Z.; Lang, X.Y.; Jiang, Q. Intermetallic Cu5Zr clusters anchored on hierarchical nanoporous copper as efficient catalysts for hydrogen evolution reaction. Research (Wash D C), 2020, 2020, 2987234.
[http://dx.doi.org/10.34133/2020/2987234] [PMID: 32161925]
[52]
Kim, H.; Hwang, E.; Park, H.; Lee, B.S.; Jang, J.H.; Kim, H.J.; Ahn, S.H.; Kim, S.K. Non-precious metal electrocatalysts for hydrogen production in proton exchange membrane water electrolyzer. Appl. Catal. B, 2017, 206, 608-616.
[http://dx.doi.org/10.1016/j.apcatb.2017.01.074]
[53]
de Jong, A.M.; Borg, H.J.; Van Ijzendoorn, L.J.; Soudant, V.G.F.M.; de Beer, V.H.J.; van Veen, J.A.R.; Niemantsverdriet, J.W. Sulfidation mechanism by molybdenum catalysts supported on silica/silicon(100) model support studied by surface spectroscopy. J. Phys. Chem., 1993, 97, 6477-6483.
[http://dx.doi.org/10.1021/j100126a024]
[54]
Zheng, X.L.; Ji, Y.F.; Tang, J.; Wang, J.Y.; Liu, B.F.; Steinrück, H.G.; Lim, K.; Li, Y.Z.; Toney, M.F.; Chan, K.; Cui, Y. Theory-guided Sn/Cu alloying for efficient CO2 electroreduction at low overpotentials. Nat. Catal., 2019, 2, 55-61.
[http://dx.doi.org/10.1038/s41929-018-0200-8]
[55]
Panda, C.; Menezes, P.W.; Zheng, M.; Orthmann, S.; Driess, M. In situ formation of nanostructured core-shell Cu3N-CuO to promote alkaline water electrolysis. ACS Energy Lett., 2019, 4, 747-754.
[http://dx.doi.org/10.1021/acsenergylett.9b00091]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy