Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Synthesis, Characterization and Photocatalytic Activity of Tin Oxide Nanocrystals

Author(s): Shatendra Sharma*, Monika Vats*, Jyotsna Sharma, Arvind Chhabra, R.K. Rakesh Kumar and Cheng-Hsin Chuang

Volume 17, Issue 4, 2021

Published on: 15 December, 2020

Page: [612 - 619] Pages: 8

DOI: 10.2174/1573413716666201215170717

Price: $65

Abstract

Background: Tin oxide nanoparticles also show good photocatalytic efficiency due to wide bandgap and high recombination rates of photo-generated electron-hole pairs. Being non-toxic and chemically stable, the tin oxide nanoparticles are used as dynamic photo-catalyst for the degradation. Tin oxide nanocrystals suitable for charge storage devices are synthesized using the coprecipitation technique.

Objectives: Synthesis of Tin oxide nanocrystals by using the co-precipitation method for photocatalytic activity under sunlight that can be used for photo-degradation. The method of synthesis and characterization are also discussed.

Materials and Methods: The nanocrystals are prepared by co-precipitation method using stannic chloride and sodium carbonate. Sodium carbonate is added under constant stirring drop by drop for 90 minutes. The solution is settled for 4 hours. The precipitates are first washed using de-ionized water and then with ethyl alcohol. The dried powder of nanocrystals is then calcinated at 500°C for one hour in a muffle furnace. The structural, morphological, optical, and electrical characterization of these synthesized crystals is done using (XRD), (FESEM), (TEM), (UV-Visible), (FT-Raman), Zeta potential, and dielectric constant measurements.

Results and Discussion: The sizes of synthesized nanocrystals vary from 25 nm to 100 nm and are found to be optically transparent. The dielectric constant of nanocrystals is measured in the frequency range of 100Hz-1MHz and it can be seen that it declines from ~2000 at a frequency of 100Hz to ~30 at 1MHz. However, this decline in dielectric constant with frequency can be explained well on the basis of strong space charge polarization and rotational direction polarization processes in nanostructures. In the high-frequency regions, these processes cannot follow the electrical field frequency variations that result in the rapid decrease of dielectric constant.

Photocatalytic Activity: The photocatalytic activity of the particles under sunlight is also investigated, which shows that the crystals show degradation of the methylene blue dye under sunlight irradiation.

Theoretical Investigations with DFT: The bandgap of the particles was also calculated from the UV-VIS spectra, which was found to be ~3.6 eV and this experimentally observed value of bandgap matches with that calculated theoretically from Density Functional Theory (DFT) using Local Density Approximation (LDA).

Conclusion: The method of synthesis reported in the present paper is scalable and can be used for the commercial synthesis of SnO2 nano-crystals for electrodes and energy storage devices.

Keywords: Tin oxide, co-precipitation, nanocrystals, characterization, photo-degradation, photocatalytic activity, DFT calculations, dielectric constant.

Graphical Abstract

[1]
Liu, K-K.; Jiang, Q.; Kacica, C.; Derami, H.G.; Biswas, P.; Singamaneni, S. Flexible solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose. RSC Advances, 2018, 8, 31296.
[http://dx.doi.org/10.1039/C8RA05270K]
[2]
Zhao, Q.; Ma, L.; Zhang, Q.; Wang, C.; Xu, X. SnO2 based nanomaterials: synthesis and application in lithium-ion batteries and supercapacitors. J. Nanomater., 2015, 2015, 850147.
[3]
He, Z.; Zhou, J. Synthesis, characterization, and activity of tin oxide nanoparticles: influence of solvothermal time on photocatalytic degradation of rhodamine B. Modern Res. Catalysis, 2013, 2(3A), 13-18.
[http://dx.doi.org/10.4236/mrc.2013.23A003]
[4]
Srivastava, N.; Mukhopadhyay, M. Biosynthesis of SnO2 nanoparticles using bacterium Erwinia herbicola and their photocatalytic activity for degradation of dyes. Ind. Eng. Chem. Res., 2014, 53(36), 13971-13979.
[http://dx.doi.org/10.1021/ie5020052]
[5]
Cai, F.; Yuan, Z.; Duan, Y.; Bie, L. TiO2 coated SnO2 nanosheet films for dye-sensitized solar cells. Thin Solid Films, 2011, 519, 5645-5648.
[http://dx.doi.org/10.1016/j.tsf.2011.03.013]
[6]
Gao, C.; Li, X.; Lu, B.; Chen, L.; Wang, Y.; Teng, F.; Wang, J.; Zhang, Z.; Pan, X.; Xie, E. A facile method to prepare SnO2 nanotubes for use in efficient SnO2-TiO2 core-shell dye-sensitized solar cells. Nanoscale, 2012, 4(11), 3475-3481.
[http://dx.doi.org/10.1039/c2nr30349c] [PMID: 22572999]
[7]
Kaushal, I.; Maken, S.; Sharma, A.K. SnO2 mixed banana peel derived biochar composite for supercapacitor application. Korean Chem Eng Res., 2018, 56(5), 694-704.
[8]
Zhao, Y.; Rana, W.; Xiong, D-B.; Zhang, L.; Xu, J.; Faming, G. Synthesis of Sn-doped Mn3O4/C nano-composites as supercapacitor electrodes with remarkable capacity retention. Mater. Lett., 2014, 118, 80-83.
[http://dx.doi.org/10.1016/j.matlet.2013.12.061]
[9]
Channu, V.S.R.; Holze, R.; Wicker, S.A., Sr; Walker, E.H., Jr; Williams, Q.L.; Kalluru, R.R. Synthesis and characterization of (Ru-Sn) O2 nanoparticles for supercapacitors. Mater. Sci. Appl., 2011, 2(9), 1175-1179.
[http://dx.doi.org/10.4236/msa.2011.29158]
[10]
Jayalakshmi, M.; Venugopal, N.; Phani, R.K.; Rao, M. Nano SnO2-Al2O3 mixed oxide and SnO2-Al2O3-carbon composite oxides as new and novel electrodes for supercapacitor applications. J. Pow. Sourc., 2006, 158, 1538-1543.
[http://dx.doi.org/10.1016/j.jpowsour.2005.10.091]
[11]
Saravanakumar, B.; Ravi, G.; Ganesh, V.; Ameen, F.; Al-Sabri, A.; Yuvakkumar, R. Surfactant assisted zinc doped tin oxide nanoparticles for supercapacitor applications. J. Sol-Gel Sci. Technol., 2018, 86, 521-535.
[http://dx.doi.org/10.1007/s10971-018-4685-z]
[12]
Liu, Y.; Jiao, Y.; Zhang, Z.; Qu, F.; Umar, A.; Wu, X. Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl. Mater. Interfaces, 2014, 6(3), 2174-2184.
[http://dx.doi.org/10.1021/am405301v] [PMID: 24443836]
[13]
Ramesh, S.; Yadav, H.M.; Lee, Y-J.; Hong, G-W.; Kathalingam, A.; Sivasamy, A.; Kim, H-S.; Kim, H.S.; Kim, J-H. Porous materials of nitrogen doped graphene oxide@SnO2 electrode for capable supercapacitor application. Sci. Rep., 2019, 9(1), 12622.
[http://dx.doi.org/10.1038/s41598-019-48951-2] [PMID: 31477759]
[14]
Saraswathy, R. Electrochemical capacitance of nanostructured ruthenium-doped tin oxide Sn1–xRuxO2 by the microemulsion method. Front. Mater. Sci., 2017, 11(4), 385-394.
[http://dx.doi.org/10.1007/s11706-017-0396-6]
[15]
Hsieh, C-T.; Lee, W-Y.; Lee, C-E.; Teng, H. Electrochemical capacitors fabricated with tin oxide/graphene oxide nanocomposites. PhysChemComm, 2014, 118(28), 15146-15153.
[16]
Prashanth, M.N.; Paulraj, R.; Ramasamy, P. Sintering effect on tin oxide electrode for supercapacitor applications. AIP Conf. Proc., 2017, 1832(1), 050063.
[17]
García, A.B.; Cuesta, A.; Montes-Morán, M.A.; Martínez-Alonso, A.; Tascón, J.M.D. Zeta potential as a tool to characterize plasma oxidation of carbon fibers. J Coll. J. Colloid Interface Sci., 1997, 192(2), 363-367.
[http://dx.doi.org/10.1006/jcis.1997.5007] [PMID: 9367558]
[18]
Suganthi, K.S.; Rajan, K.S. Temperature induced changes in ZnO–water nanofluid: zeta potential, size distribution and viscosity profiles. Int. J. Heat Mass Transf., 2012, 55, 7969-7980.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.08.032]
[19]
Suthakaran, S.; Dhanapandian, S.; Krishnakumar, N.; Ponpandian, N. Hydrothermal synthesis of SnO2 nanoparticles and its photocatalytic degradation of methyl violet and electrochemical performance. Mater. Res. Express, 2019, 6, 0850i3.
[http://dx.doi.org/10.1088/2053-1591/ab29c2]
[20]
Ullah, A.; Kibria, A.K.M.F.; Akter, M. Oxidative degradation of Methylene Blue using Mn3O4 nanoparticles. Water Conserv Sci Eng, 2017, 1, 249-256.
[http://dx.doi.org/10.1007/s41101-017-0017-3]
[21]
Lia, Z.; Lia, X.; Zhanga, X. Yitao Qianc, Hydrothermal synthesis and characterization of novel flower-like Zinc doped SnO2 nanocrystals. J. Cryst. Growth, 2006, 291, 258-261.
[http://dx.doi.org/10.1016/j.jcrysgro.2006.02.047]
[22]
Wu, S.; Cao, H.; Yin, S.; Liu, X.; Zhang, X. Amino acid-assisted hydrothermal synthesis and photocatalysis of SnO2 nanocrystals. J. Phys. Chem. C, 2009, 113(41), 17893-17898.
[http://dx.doi.org/10.1021/jp9068762]
[23]
Senthilkumar, V.; Vickraman, P.; Jayachandran, M.; Sanjeeviraja, C. Synthesis and characterization of SnO2nanopowder prepared by precipitation method. J. Dispers. Sci. Technol., 2010, 31(9), 1178-1181.
[http://dx.doi.org/10.1080/01932690903223856]
[24]
Van Viet, P.; Thi, C.M.; Hieu, L.V. The High Photocatalytic Activity of SnO2 Nanoparticles Synthesized by Hydrothermal Method. J. Nanomater., 2016, 2016, 1687-4110.
[25]
Shek, C.H.; Lai, J.K.L.; Lin, G.M. Grain growth in nanocryatalline SnO2 prepared by Sol-Gel rout. Nanostruct. Mater., 1999, 11, 887-893.
[http://dx.doi.org/10.1016/S0965-9773(99)00387-6]
[26]
de Monredon, S.; Cellot, A.; Ribot, F.O. Synthesis and characterization of crystalline tin oxide nanoparticles. J. Mater. Chem., 2002, 12(8), 2396-2400.
[http://dx.doi.org/10.1039/b203049g]
[27]
Chen, W.; Ghosh, D.; Chen, S. Large-scale electrochemical synthesis of SnO2 nanoparticles. J. Mater. Sci., 2008, 43(15), 5291-5299.
[http://dx.doi.org/10.1007/s10853-008-2792-x]
[28]
Ning, W.; Xu, J.; Guan, L. Synthesis and enhanced photocatalytic activity of tin oxide nanoparticles coated on multi-walled carbon nanotube. Mater. Res. Bull., 2011, 46(9), 1372-1376.
[http://dx.doi.org/10.1016/j.materresbull.2011.05.014]
[29]
Ahn, H-J.; Choi, H-C.; Park, K-W.; Kim, S-B.; Sung, Y-E. Investigation of the structural and electrochemical properties of size-controlled SnO2 nanoparticles. J. Phys. Chem. B, 2004, 108(28), 9815-9820.
[http://dx.doi.org/10.1021/jp035769n]
[30]
Dimitrov, M.; Tsoncheva, T.; Shao, S.; Köhn, R. Novel preparation of nanosized mesoporous SnO2 powders: physicochemical and catalytic properties. Appl. Catal. B, 2010, 94, 1-2, 158-165.
[http://dx.doi.org/10.1016/j.apcatb.2009.11.004]
[31]
Tazikeh, S.; Akbari, A.; Talebi, A.; Talebi, E. Synthesis and characterization of tin oxide nano particles via the co-precipitation method. Mater. Sci. Pol., 2014, 32(1), 98-101.
[http://dx.doi.org/10.2478/s13536-013-0164-y]
[32]
Krishnakumar, T. Pinna, Nicola.; PrasannaKumari, K.; Perumal, K.; Jayapraksh, R. Microwave-assisted synthesis and characterization of tin oxide nanoparticles. Mater. Lett., 2008, 62, 3437-3440.
[http://dx.doi.org/10.1016/j.matlet.2008.02.062]
[33]
Davis, E.A.; Mott, N.F. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag., 1970, 22, 903.
[http://dx.doi.org/10.1080/14786437008221061]
[34]
Mott, N.F.; Davis, E.A. Electronic processes in non-crystalline materials, 2nd ed; Clarendon Press: Oxford, New York, 1979.
[35]
Musumeci, T.; Ventura, C.A.; Giannone, I.; Ruozi, B.; Montenegro, L.; Pignatello, R.; Puglisi, G. PLA/PLGA nanoparticles for sustained release of docetaxel. Int. J. Pharm., 2006, 325(1-2), 172-179.
[http://dx.doi.org/10.1016/j.ijpharm.2006.06.023] [PMID: 16887303]
[36]
Ahmed, S.A. Room-temperature ferromagnetism in pure and Mn doped SnO2 powders. Solid State Commun., 2010, 150, 2190-2193.
[http://dx.doi.org/10.1016/j.ssc.2010.08.029]
[37]
Khuc, Q.T.; Vu, X.H.; Dang, D.V.; Nguyen, D.C. The influence of hydrothermal temperature on SnO2 nanorod formation Adv. Nat. Sci.: Nanosci. Nanotechnol, 2010, 1, 025010.
[38]
Gaber, A. Abdel- Rahim, M.A.; Abdel-Latief, A.Y.; Abdel-Salam, M.N. Influence of calcination temperature on the structure and porosity of nanocrystalline SnO2 synthesized by a conventional precipitation method. Int. J. Electrochem. Sci., 2014, 9, 81-95.
[39]
Nejati, K. Synthesis by precipitation method and investigation of SnO2 nanoparticles. Cryst. Res. Technol., 2012, 47(5), 567-572.
[http://dx.doi.org/10.1002/crat.201100633]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy