Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Letter Article

Carboxylate-Functionalized P, N-Ligated Cobalt Catalysts for Alkene Hydrosilylation

Author(s): Yangyang Ma, Jiayun Li*, Ying Bai and Jiajian Peng*

Volume 18, Issue 5, 2021

Published on: 14 December, 2020

Page: [425 - 430] Pages: 6

DOI: 10.2174/1570179417666201214112514

Abstract

A series of N, P-ligands bearing carboxyl groups have been synthesized. These have been applied in conjunction with cobalt naphthenate in a facile, economic, and efficient method for the catalytic hydrosilylation of alkenes. In the presence of KOtBu as an additive, the reaction time and activation energy are greatly reduced.

Keywords: Cobalt complex, N, P-Ligands, hydrosilylation, alkene, KOtBu, facile.

Next »
Graphical Abstract

[1]
Maciejewski, H.; Marciniec, B.; Kownacki, I. Catalysis of hydrosilylation Part XXXIV. High catalytic efficiency of the nickel equivalent of Karstedt catalyst. J. Organomet. Chem., 2000, 597(1-2), 175-181.
[http://dx.doi.org/10.1016/S0022-328X(99)00685-3]
[2]
Sommer, L.H.; Pietrusz, E.W.; Whitmore, F.C. Peroxide-catalyzed addition of trichlorosilane to 1-octene. J. Am. Chem. Soc., 1947, 69(1), 188-191.
[http://dx.doi.org/10.1021/ja01193a508] [PMID: 20291058]
[3]
Speier, J.L. Homogeneous catalysis of hydrosilation by transition metals. Adv. Organomet. Chem., 1979, 17, 407-447.
[http://dx.doi.org/10.1016/S0065-3055(08)60328-7]
[4]
Wagner, H.G. Reactions of silanes with aliphatic unsaturated compounds. U.S. Patent 2,637,738,, 1953.
[5]
Hamze, A.; Provot, O.; Brion, J.D.; Alami, M. Platinum chloride-Xphos-catalyzed regioselective hydrosilylation of functionalized terminal arylalkynes. Tetrahedron Lett., 2008, 49(15), 2429-2431.
[http://dx.doi.org/10.1016/j.tetlet.2008.02.060]
[6]
Nakajima, Y.; Sato, K.; Shimada, S. Development of nickel hydrosilylation catalysts. Chem. Rec., 2016, 16(5), 2379-2387.
[http://dx.doi.org/10.1002/tcr.201600056] [PMID: 27500588]
[7]
Obligacion, J.V.; Chirik, P.J. Earth-abundant transition metal catalysts for alkene hydrosilylation and hydroboration. Nat. Rev. Chem., 2018, 2(5), 15-34.
[http://dx.doi.org/10.1038/s41570-018-0001-2] [PMID: 30740530]
[8]
Nishiyama, H.; Furuta, A. An iron-catalysed hydrosilylation of ketones. Chem. Commun. (Camb.), 2007, 7(7), 760-762.
[http://dx.doi.org/10.1039/B617388H] [PMID: 17392975]
[9]
Schuster, C.H.; Diao, T.; Pappas, I.; Chirik, P.J. Bench-Stable, Substrate-activated cobalt carboxylate pre-catalysts for alkene hydrosilylation with tertiary silanes. ACS Catal., 2016, 6, 2632-2636.
[http://dx.doi.org/10.1021/acscatal.6b00304]
[10]
Harrod, J.F.; Chalk, A.J. Dicobalt octacarbonyl as a catalyst for hydrosilation of olefins. J. Am. Chem. Soc., 1965, 87, 1133-1133.
[http://dx.doi.org/10.1021/ja01083a034]
[11]
Gao, Y.; Wang, L.; Deng, L. Distinct catalytic performance of Cobalt(I)–N-heterocyclic carbene complexes in promoting the reaction of alkene with diphenylsilane: selective 2,1-hydrosilylation, 1,2-hydrosilylation, and hydrogenation of alkene. ACS Catal., 2018, 8, 9637-9646.
[http://dx.doi.org/10.1021/acscatal.8b02513]
[12]
Mitsudome, T.; Fujita, S.; Sheng, M.; Yamasaki, J.; Kobayashi, K.; Yoshida, T.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Air-stable and reusable cobalt ion-doped titanium oxide catalyst for alkene hydrosilylation. Green Chem., 2019, 21, 4566-4570.
[http://dx.doi.org/10.1039/C9GC01981B]
[13]
Verhoeven, D.G.A.; Kwakernaak, J.; van Wiggen, M.A.C.; Lutz, M.; Moret, M-E. Cobalt(II) and (I) Complexes of diphosphine-ketone ligands: catalytic activity in hydrosilylation reactions. Eur. J. Inorg. Chem., 2019, 2019(5), 660-667.
[http://dx.doi.org/10.1002/ejic.201801221] [PMID: 31007578]
[14]
Wen, H.; Wang, K.; Zhang, Y.; Liu, G.; Huang, Z. Cobalt-catalyzed regio- and enantioselective markovnikov 1,2-hydrosilylation of conjugated dienes. ACS Catal., 2019, 9, 1612-1618.
[http://dx.doi.org/10.1021/acscatal.8b04481]
[15]
Zong, Z.; Yu, Q.; Sun, N.; Hu, B.; Shen, Z.; Hu, X.; Jin, L. Q. Yu; N. Sun; B. Hu; Z. Shen; X. Hu; L. Jin Bidentate geometry-constrained iminopyridyl ligands in Cobalt catalysis: highly markovnikov-selective hydrosilylation of alkynes. Org. Lett., 2019, 21(14), 5767-5772.
[http://dx.doi.org/10.1021/acs.orglett.9b02254] [PMID: 31290677]
[16]
Kong, D.; Hu, B.; Yang, M.; Chen, D.; Xia, H. Highly regio- and stereoselective tridentate NCNN Cobalt-catalyzed 1,3-diyne hydrosilylation. Organometallics, 2019, 38, 4341-4350.
[http://dx.doi.org/10.1021/acs.organomet.9b00602]
[17]
Sang, H.L.; Hu, Y.; Ge, S. Cobalt-catalyzed regio- and stereoselective hydrosilylation of 1,3-diynes To access silyl-functionalized 1,3-enynes. Org. Lett., 2019, 21(13), 5234-5237.
[http://dx.doi.org/10.1021/acs.orglett.9b01836] [PMID: 31247801]
[18]
Guo, J.; Wang, H.; Xing, S.; Hong, X.; Lu, Z. Cobalt-catalyzed asymmetric synthesis of gem-bis(silyl)alkanes by double hydrosilylation of aliphatic terminal alkynes. Chem, 2019, 5, 881-895.
[http://dx.doi.org/10.1016/j.chempr.2019.02.001]
[19]
Li, R.H.; Zhang, G.L.; Dong, J.X.; Li, D.C.; Yang, Y.; Pan, Y.M.; Tang, H.T.; Chen, L.; Zhan, Z.P. Xantphos doped POPs-PPh3 as heterogeneous ligand for Cobalt-catalyzed highly regio- and stereoselective hydrosilylation of alkynes. Chem. Asian J., 2019, 14(1), 149-154.
[http://dx.doi.org/10.1002/asia.201801241] [PMID: 30203915]
[20]
Nurseiit, A.; Janabel, J.; Gudun, K.A.; Kassymbek, A.; Segizbayev, M.; Seilkhanov, T.M.; Khalimon, A.Y. Bench-stable Cobalt pre-catalysts for mild hydrosilative reduction of tertiary amides to amines and beyond. ChemCatChem, 2019, 11, 790-798.
[http://dx.doi.org/10.1002/cctc.201801605]
[21]
Hu, M.Y.; Lian, J.; Sun, W.; Qiao, T.Z.; Zhu, S.F. Iron-catalyzed dihydrosilylation of alkynes: efficient access to geminal bis(silanes). J. Am. Chem. Soc., 2019, 141(11), 4579-4583.
[http://dx.doi.org/10.1021/jacs.9b02127] [PMID: 30810313]
[22]
Kobayashi, K.; Taguchi, D.; Sun, T.; Moriuchi, T.; Nakazawa, H. Chemoselective hydrosilylation of olefin/ketone catalyzed by iminobipyridine Fe and Co complexes. ChemCatChem, 2020, 12, 736-739.
[http://dx.doi.org/10.1002/cctc.201901717]
[23]
Dai, Z.; Yu, Z.; Bai, Y.; Li, J.; Peng, J. Cobalt bis(2-ethylhexanoate) and terpyridine derivatives as catalysts for the hydrosilylation of olefins. Appl. Organomet. Chem., 2020.
[24]
Li, J.; Yang, C.; Bai, Y.; Yang, X.; Liu, Y.; Peng, J. The effect of an acylphosphine ligand on the rhodium-catalyzed hydrosilylation of alkenes. J. Organomet. Chem., 2018, 855, 7-11.
[http://dx.doi.org/10.1016/j.jorganchem.2017.12.004]
[25]
Kiso, Y.; Kumada, M.; Tamao, K.; Umeno, M. Silicon hydrides and nickel complexes: I. Phosphine-nickel(II) complexes as hydrosilylation catalysts. J. Organomet. Chem., 1973, 50, 297-310.
[http://dx.doi.org/10.1016/S0022-328X(00)95116-7]
[26]
Li, J.Y.; Niu, C.B.; Peng, J.J.; Deng, Y.; Zhang, G.D.; Bai, Y.; Ma, C.; Xiao, W.J.; Lai, G.Q. Study on the anti-sulfur-poisoning characteristics of platinum–acetylide–phosphine complexes as catalysts for hydrosilylation reactions. Appl. Organomet. Chem., 2014, 28, 454-460.
[http://dx.doi.org/10.1002/aoc.3149]
[27]
Blom, B.; Enthaler, S.; Inoue, S.; Irran, E.; Driess, M. Electron-rich N-heterocyclic silylene (NHSi)-iron complexes: synthesis, structures, and catalytic ability of an isolable hydridosilylene-iron complex. J. Am. Chem. Soc., 2013, 135(17), 6703-6713.
[http://dx.doi.org/10.1021/ja402480v] [PMID: 23570308]
[28]
Lin, H.J.; Lutz, S.; O’Kane, C.; Zeller, M.; Chen, C.H.; Al Assil, T.; Lee, W.T. Synthesis and characterization of an iron complex bearing a hemilabile NNN-pincer for catalytic hydrosilylation of organic carbonyl compounds. Dalton Trans., 2018, 47(10), 3243-3247.
[http://dx.doi.org/10.1039/C7DT04928E] [PMID: 29445796]
[29]
Bhattacharyya, P.; Loza, M.L. Parr, Jonathan; Slawin, A. M. Z. Complexes of ruthenium with tridentate [P, N,O] ligands. J. Chem. Soc., Dalton Trans., 1999, 2917-2921.
[http://dx.doi.org/10.1039/a904905c]
[30]
Hossain, I.; Schmidt, J.A.R. Cationic Nickel(II)-Catalyzed Hydrosilylation of Alkenes: Role of P, N-Type Ligand Scaffold on Selectivity and Reactivity. Organometallics, 2020, 39, 3441-3451.
[http://dx.doi.org/10.1021/acs.organomet.0c00551]
[31]
Smith, M.B.; Elsegood, M.R.J. Mannich-based condensation reactions as a practical route to new aminocarboxylic acid tertiary phosphines. Tetrahedron Lett., 2002, 43, 1299-1301.
[http://dx.doi.org/10.1016/S0040-4039(01)02361-9]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy