Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

A Combined Approach of Pharmacophore Modeling, QSAR Study, Molecular Docking and In silico ADME/Tox Prediction of 4-Arylthio & 4-Aryloxy-3- Iodopyridine-2(1H)-one Analogs to Identify Potential Reverse Transcriptase Inhibitor: Anti-HIV Agents

Author(s): Debadash Panigrahi*, Amiyakanta Mishra, Susanta Kumar Sahu, Mohd. Afzal Azam and C.M. Vyshaag

Volume 18, Issue 1, 2022

Published on: 13 December, 2020

Page: [51 - 87] Pages: 37

DOI: 10.2174/1573406417666201214100822

Price: $65

Abstract

Background: Reverse transcriptase is an important therapeutic target to treat AIDS caused by the Human Immunodeficiency Virus (HIV). Despite many effective anti-HIV drugs, reverse transcriptase (RT) inhibitors remain the cornerstone of the drug regimen to treat AIDS. In the present work, we have expedited the use of different computational modules and presented an easy, costeffective, and high throughput screening method to identify potential reverse transcriptase inhibitors.

Methods: A congeneric series of 4-Arylthio & 4-Aryloxy-3- Iodopyridine-2(1H)-one analogs having anti-HIV activity were subjected to structure-based 2D, 3D QSAR, Pharmacophore Modeling, and Molecular Docking to elucidate the structural properties required for the design of potent HIV-RT inhibitors. Prediction of preliminary Pharmacokinetic and the Drug Likeliness profile was performed for these compounds by in silico ADME study.

Results: The 2D and 3D- QSAR models were developed by correlating two and three-dimensional descriptors with activity (pIC50) by sphere exclusion method and k-nearest neighbor molecular field analysis approach, respectively. The significant 2D- QSAR model developed by Partial Least Square is associated with the Sphere Exclusion method (PLS-SE), having r2 and q2 values 0.9509 and 0.8038, respectively. The 3D-QSAR model by Step Wise variable selection method (SW-kNN MFA) is more significant, which has a cross-validated squared correlation coefficient q2= 0.8509 and a non-crossvalidated correlation coefficient pred_r2= 0.8102. The pharmacophore hypothesis was developed, which comprised 5 features includes 3 aliphatic regions (Ala), 1 H-bond donor (HDr) and 1 H-bond acceptor (HAc). Docking studies of the selected inhibitors with the active site of reverse transcriptase enzyme showed hydrogen bond and π - π interaction with LYS-101, LYS-103, TYR- 181, TYR-188 and TRP-229 residues present at the active site. All the candidates with good bioavailability and ADMET drug likeliness properties.

Conclusion: The results of the present work provide more useful information and important structural insights for the discovery, design of novel and potent reverse transcriptase inhibitors with high therapeutic windows in the future.

Keywords: Reverse transcriptase inhibitors, anti-HIV, Pharmacophore Modelling, 2D, 3D QSAR, Molecular Docking, ADME-T.

Graphical Abstract

[1]
Wainberg, M.A.; Jeang, K.T. 25 years of HIV-1 research - progress and perspectives. BMC Med., 2008, 6, 31-37.
[http://dx.doi.org/10.1186/1741-7015-6-31] [PMID: 18976462]
[2]
Simon, V.; Ho, D.D.; Abdool Karim, Q. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet, 2006, 368(9534), 489-504.
[http://dx.doi.org/10.1016/S0140-6736(06)69157-5] [PMID: 16890836]
[3]
Fajardo-Ortiz, D.; Lopez-Cervantes, M.; Duran, L.; Dumontier, M.; Lara, M.; Ochoa, H.; Castano, V.M. The emergence and evolution of the research fronts in HIV/AIDS research. PLoS One, 2017, 12(5)e0178293
[http://dx.doi.org/10.1371/journal.pone.0178293] [PMID: 28542584]
[4]
Jochmans, D. Novel HIV-1 reverse transcriptase inhibitors. Virus Res., 2008, 134(1-2), 171-185.
[http://dx.doi.org/10.1016/j.virusres.2008.01.003] [PMID: 18308412]
[5]
Sweileh, W.M. Global research output on HIV/AIDS-related medication adherence from 1980 to 2017. BMC Health Serv. Res., 2018, 18(1), 765-777.
[http://dx.doi.org/10.1186/s12913-018-3568-x] [PMID: 30305093]
[6]
Jegede, O.; Babu, J.; Di Santo, R.; McColl, D.J.; Weber, J.; Quiñones-Mateu, M. HIV type 1 integrase inhibitors: from basic research to clinical implications. AIDS Rev., 2008, 10(3), 172-189.
[PMID: 18820719]
[7]
El Safadi, Y.; Vivet-Boudou, V.; Marquet, R. HIV-1 reverse transcriptase inhibitors. Appl. Microbiol. Biotechnol., 2007, 75(4), 723-737.
[http://dx.doi.org/10.1007/s00253-007-0919-7] [PMID: 17370068]
[8]
Sarafianos, S.G.; Marchand, B.; Das, K.; Himmel, D.M.; Parniak, M.A.; Hughes, S.H.; Arnold, E. Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J. Mol. Biol., 2009, 385(3), 693-713.
[http://dx.doi.org/10.1016/j.jmb.2008.10.071] [PMID: 19022262]
[9]
La, J.; Latham, C.F.; Tinetti, R.N.; Johnson, A.; Tyssen, D.; Huber, K.D.; Sluis-Cremer, N.; Simpson, J.S.; Headey, S.J.; Chalmers, D.K.; Tachedjian, G. Identification of mechanistically distinct inhibitors of HIV-1 reverse transcriptase through fragment screening. Proc. Natl. Acad. Sci. USA, 2015, 112(22), 6979-6984.
[http://dx.doi.org/10.1073/pnas.1423900112] [PMID: 26038551]
[10]
Cory, T.; Midde, N.M.; Rao, P.S.S.; Kumar, S. Investigational reverse transcriptase inhibitors for the treatment of HIV. Virus Res., 2008, 134, 147-156.
[11]
Chinsembu, K.C. Chemical diversity and activity profiles of HIV-1 reverse transcriptase inhibitors from plants. Rev. Bras. Farmacogn., 2019, 29, 504-528.
[http://dx.doi.org/10.1016/j.bjp.2018.10.006]
[12]
Yu, F.; Liu, X.; Zhan, P.; De Clercq, E. Recent advances in the research of HIV-1 RNase H inhibitors. Mini Rev. Med. Chem., 2008, 8(12), 1243-1251.
[http://dx.doi.org/10.2174/138955708786141052] [PMID: 18855738]
[13]
Asahchop, E.L.; Wainberg, M.A.; Sloan, R.D.; Tremblay, C.L. Antiviral drug resistance and the need for development of new HIV-1 reverse transcriptase inhibitors. Antimicrob. Agents Chemother., 2012, 56(10), 5000-5008.
[http://dx.doi.org/10.1128/AAC.00591-12] [PMID: 22733071]
[14]
Bethell, R.C.; Lie, Y.S.; Parkin, N.T. In vitro activity of SPD754, a new deoxycytidine nucleoside reverse transcriptase inhibitor (NRTI), against 215 HIV-1 isolates resistant to other NRTIs. Antivir. Chem. Chemother., 2005, 16(5), 295-302.
[http://dx.doi.org/10.1177/095632020501600502] [PMID: 16245645]
[15]
Mehellou, Y.; De Clercq, E. Twenty-six years of anti-HIV drug discovery: where do we stand and where do we go? J. Med. Chem., 2010, 53(2), 521-538.
[http://dx.doi.org/10.1021/jm900492g] [PMID: 19785437]
[16]
Tsibris, A.M.N.; Hirsch, M.S. Antiretroviral therapy in the clinic. J. Virol., 2010, 84(11), 5458-5464.
[http://dx.doi.org/10.1128/JVI.02524-09] [PMID: 20181709]
[17]
Adamson, C.S.; Freed, E.O. Recent progress in antiretrovirals--lessons from resistance. Drug Discov. Today, 2008, 13(9-10), 424-432.
[http://dx.doi.org/10.1016/j.drudis.2008.02.003] [PMID: 18468560]
[18]
Arts, E.J.; Hazuda, D.J. HIV-1 antiretroviral drug therapy. Cold Spring Harb. Perspect. Med., 2012, 2(4)a007161
[http://dx.doi.org/10.1101/cshperspect.a007161] [PMID: 22474613]
[19]
Zhou, J.; Yuan, X.; Dismuke, D.; Forshey, B.M.; Lundquist, C.; Lee, K.H.; Aiken, C.; Chen, C.H. Small-molecule inhibition of human immunodeficiency virus type 1 replication by specific targeting of the final step of virion maturation. J. Virol., 2004, 78(2), 922-929.
[http://dx.doi.org/10.1128/JVI.78.2.922-929.2004] [PMID: 14694123]
[20]
Correa-Basurto, J.; Bello, M.; Rosales-Hernández, M.C.; Hernández-Rodríguez, M.; Nicolás-Vázquez, I.; Rojo-Domínguez, A.; Trujillo-Ferrara, J.G.; Miranda, R.; Flores-Sandoval, C.A. QSAR, docking, dynamic simulation and quantum mechanics studies to explore the recognition properties of cholinesterase binding sites. Chem. Biol. Interact., 2014, 209, 1-13.
[http://dx.doi.org/10.1016/j.cbi.2013.12.001] [PMID: 24321698]
[21]
Khan, M.F.; Verma, G.; Akhtar, W.; Shaquiquzzaman, M.; Akhter, M.; Rizvi, M.A.; Alam, M.M. Pharmacophore modelling, 3D-QSAR, docking study and ADME a prediction of acyl 1,3,4-thizole amides and sulphonamides as antitubulin agents. Arab. J. Chem., 2016. in press
[22]
Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W., Jr Computational methods in drug discovery. Pharmacol. Rev., 2013, 66(1), 334-395.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[23]
Kumari, M.; Chandra, S.; Tiwari, N.; Subbarao, N. 3D QSAR, pharmacophore and molecular docking studies of known inhibitors and designing of novel inhibitors for M18 aspartyl aminopeptidase of Plasmodium falciparum. BMC Struct. Biol., 2016, 16, 12.
[http://dx.doi.org/10.1186/s12900-016-0063-7] [PMID: 27534744]
[24]
Choubey, S.K.; Jeyaraman, J. A mechanistic approach to explore novel HDAC1 inhibitor using pharmacophore modeling, 3D- QSAR analysis, molecular docking, density functional and molecular dynamics simulation study. J. Mol. Graph. Model., 2016, 70, 54-69.
[http://dx.doi.org/10.1016/j.jmgm.2016.09.008] [PMID: 27668885]
[25]
Ghasemi, J.B.; Nazarshodeh, E.; Abedi, H. Molecular docking, 2D and 3D-QSAR studies of new indole-based derivatives as HCV-NS5B polymerase inhibitors. J IRAN CHEM SOC, 2015, 12, 1789-1799.
[http://dx.doi.org/10.1007/s13738-015-0654-4]
[26]
Gramatica, P. Principles of QSAR models validation: internal and external. QSAR Comb. Sci., 2007, 26, 694-701.
[http://dx.doi.org/10.1002/qsar.200610151]
[27]
Yousefinejad, S.; Hemmateenejad, B. Chemometrics tools in QSAR/QSPR studies: a historical perspective. Chemom. Intell. Lab. Syst., 2015, 149, 177-204.
[http://dx.doi.org/10.1016/j.chemolab.2015.06.016]
[28]
Lill, M.A. Multi-dimensional QSAR in drug discovery. Drug Discov. Today, 2007, 12(23-24), 1013-1017.
[http://dx.doi.org/10.1016/j.drudis.2007.08.004] [PMID: 18061879]
[29]
Jain, S.V.; Ghate, M.; Bhadoriya, K.S.; Bari, S.B.; Chaudhari, A.; Borse, J.S. II 2D, 3D-QSAR and docking studies of 1,2,3-thiadiazole thioacetanilides analogues as potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Org. Med. Chem. Lett., 2012, 2(1), 22.
[http://dx.doi.org/10.1186/2191-2858-2-22] [PMID: 22691718]
[30]
Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov., 2004, 3(11), 935-949.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[31]
Dai, D.; Zhou, L.; Zhu, X.; You, R.; Zhong, L. Combined multi-pharmacophore, Molecular docking and molecular dynamic study for discovery of promising MTH1 inhibitors. J. MOLSTR, 2017, 1137, 33-42.
[http://dx.doi.org/10.1016/j.molstruc.2017.02.034]
[32]
Yilmaz, H.; Ahmed, L.; Rasulev, B. Application of ligand-and receptor-based approaches for prediction of the HIV-RT inhibitory activity of fullerene derivatives. J. Nanopart. Res., 2016, 18, 1-12.
[http://dx.doi.org/10.1007/s11051-016-3429-7]
[33]
Alam, S.; Khan, F. 3D-QSAR, Docking, ADME/Tox studies on flavones analogs reveal anticancer activity through Tankyrase inhibition. Sci. Rep., 2019, 9.
[http://dx.doi.org/10.1038/s41598-019-41984-7]
[34]
Panigrahi, D.; Mishra, A.; Sahu, S.K. Pharmacophore modelling, QSAR study, molecular docking and insilico ADME prediction of 1,2,3-triazole and pyrazolopyridones as DprE1 inhibitor antitubercular agents; SN App. Sci, 2020, p. 2.
[35]
Al Sharif, M.; Alov, P.; Vitcheva, V.; Diukendjieva, A.; Mori, M.; Botta, B.; Tsakovska, I.; Pajeva, I. Natural modulators of nonalcoholic fatty liver disease: Mode of action analysis and in silico ADME-Tox prediction. Toxicol. Appl. Pharmacol., 2017, 337, 45-66.
[http://dx.doi.org/10.1016/j.taap.2017.10.013] [PMID: 29056366]
[36]
Alqahtani, S. In silico ADME-Tox modeling: progress and prospects. Expert Opin. Drug Metab. Toxicol., 2017, 13(11), 1147-1158.
[http://dx.doi.org/10.1080/17425255.2017.1389897] [PMID: 28988506]
[37]
El-Brollosy, N.R.; Jrgensen, P.T.; Dahan, B.; Boel, A-M.; Pedersen, E.B.; Nielsen, C. Synthesis of novel N-1 (allyloxymethyl)analogues of MKC-442 (Emivirine) with improved activity against HIV-1 and its mutants. J. Med. Chem., 2002, 45, 5721-5726.
[http://dx.doi.org/10.1021/jm020949r] [PMID: 12477355]
[38]
Le Van, K.; Cauvin, C.; De Walque, S.; Georges, B.; Boland, S.; Martinelli, V. Demont_e, D.; Durant, F.; Hevesi, L.; Van Lint, C. Newpyridinone derivatives as potent HIV-1 nonnucleoside reverse transcriptase inhibitors. J. Med. Chem., 2009, 52, 3636-3643.
[http://dx.doi.org/10.1021/jm801438e] [PMID: 19469474]
[39]
Guillemont, J.; Benjahad, A.; Oumouch, S.; Decrane, L.; Palandjian, P.; Vernier, D.; Queguiner, L.; Andries, K.; de Béthune, M.P.; Hertogs, K.; Grierson, D.S.; Nguyen, C.H. Synthesis and biological evaluation of C-5 methyl substituted 4-arylthio and 4-aryloxy-3-Iodopyridin-2(1H)-one type anti-HIV agents. J. Med. Chem., 2009, 52(23), 7473-7487.
[http://dx.doi.org/10.1021/jm900802y] [PMID: 19645483]
[40]
VLife MDS 4.6 Molecular design suite 2018.
[41]
Golbraikh, A.; Tropsha, A. Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J. Comput. Aided Mol. Des., 2002, 16(5-6), 357-369.
[http://dx.doi.org/10.1023/A:1020869118689] [PMID: 12489684]
[42]
Sharma, M.C.; Sharma, S. Molecular modeling studies of 3-acyl-2-phenylamino-1,4-dihydroquinolin-4-one derivatives as phosphatase SerB653 inhibitors. Med. Chem. Res., 2016, 25, 2119-2126.
[http://dx.doi.org/10.1007/s00044-016-1624-9]
[43]
Lee, Y.H.; Yi, G.S. Prediction of Novel Anoctamin1 (ANO1) inhibitors using 3D-QSAR Pharmacophore modeling and molecular docking. Int. J. Mol. Sci., 2018, 19(10), 1-18.
[http://dx.doi.org/10.3390/ijms19103204] [PMID: 30336555]
[44]
Aher, R.B.; Roy, K. QSAR and pharmacophore modeling of diverse aminothiazoles and aminopyridines for antimalarial potency against multidrug- resistant Plasmodium falciparum. Med. Chem. Res., 2014, 23, 4238-4249.
[http://dx.doi.org/10.1007/s00044-014-0997-x]
[45]
Bhayye, S.S.; Roy, K.; Saha, A. Exploring structural requirement, pharmacophore modeling, and de novo design of LRRK2 inhibitors using homology modeling approach. Med. Chem. Res., 2014, 23, 3705-3713.
[http://dx.doi.org/10.1007/s00044-014-0955-7]
[46]
Dong, H.; Liu, J.; Liu, X.; Yu, Y.; Cao, S. Molecular docking and QSAR analyses of aromatic heterocycle thiosemicarbazone analogues for finding novel tyrosinase inhibitors. Bioorg. Chem., 2017, 75, 106-117.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.002] [PMID: 28926783]
[47]
Wang, Z.; Cheng, L.; Kai, Z.; Wu, F.; Liu, Z.; Cai, M. Molecular modeling studies of atorvastatin analogues as HMGR inhibitors using 3D-QSAR, molecular docking and molecular dynamics simulations. Bioorg. Med. Chem. Lett., 2014, 24(16), 3869-3876.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.055] [PMID: 25022881]
[48]
Zheng, W.; Tropsha, A. Novel variable selection quantitative structure--property relationship approach based on the k-nearest-neighbor principle. J. Chem. Inf. Comput. Sci., 2000, 40(1), 185-194.
[http://dx.doi.org/10.1021/ci980033m] [PMID: 10661566]
[49]
Ghosh, P.; Bagchi, M.C. QSAR modeling for quinoxaline derivatives using genetic algorithm and simulated annealing based feature selection. Curr. Med. Chem., 2009, 16(30), 4032-4048.
[http://dx.doi.org/10.2174/092986709789352303] [PMID: 19747124]
[50]
Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron, 1980, 36, 3219-3228.
[http://dx.doi.org/10.1016/0040-4020(80)80168-2]
[51]
Cramer, R.D.; Patterson, D.E.; Bunce, J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110(18), 5959-5967.
[http://dx.doi.org/10.1021/ja00226a005] [PMID: 22148765]
[52]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[53]
Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. J. Chem. Theory Comput., 2010, 6(5), 1509-1519.
[http://dx.doi.org/10.1021/ct900587b] [PMID: 26615687]
[54]
Lyne, P.D.; Lamb, M.L.; Saeh, J.C. Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J. Med. Chem., 2006, 49(16), 4805-4808.
[http://dx.doi.org/10.1021/jm060522a] [PMID: 16884290]
[55]
Li, J.; Abel, R.; Zhu, K.; Cao, Y.; Zhao, S.; Friesner, R.A. The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling. Proteins, 2011, 79(10), 2794-2812.
[http://dx.doi.org/10.1002/prot.23106] [PMID: 21905107]
[56]
Jacobson, M.P.; Pincus, D.L.; Rapp, C.S.; Day, T.J.F.; Honig, B.; Shaw, D.E.; Friesner, R.A. A hierarchical approach to all-atom protein loop prediction. Proteins, 2004, 55(2), 351-367.
[http://dx.doi.org/10.1002/prot.10613] [PMID: 15048827]
[57]
Dong, J.; Wang, N.N.; Yao, Z.J.; Zhang, L.; Cheng, Y.; Ouyang, D.; Lu, A.P.; Cao, D.S. ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J. Cheminform., 2018, 10(1), 29.
[http://dx.doi.org/10.1186/s13321-018-0283-x] [PMID: 29943074]
[58]
Kant, K.; Lal, U.R.; Kumar, A.; Ghosh, M. A merged molecular docking, ADME-T and dynamics approaches towards the genus of Arisaema as herpes simplex virus type 1 and type 2 inhibitors. Comput. Biol. Chem., 2019, 78, 217-226.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.12.005] [PMID: 30579134]
[59]
Yadav, D.K.; Kumar, S. Saloni; Singh, H.; Kim, M.H.; Sharma, P.; Misra, S.; Khan, F. Molecular docking, QSAR and ADMET studies of withanolide analogs against breast cancer. Drug Des. Devel. Ther., 2017, 11, 1859-1870.
[http://dx.doi.org/10.2147/DDDT.S130601] [PMID: 28694686]
[60]
Zhang, J.; Shan, Y.; Pan, X.; Wang, C.; Xu, W.; He, L. Molecular docking, 3D-QSAR studies, and in silico ADME prediction of p-aminosalicylic acid derivatives as neuraminidase inhibitors. Chem. Biol. Drug Des., 2011, 78(4), 709-717.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01179.x] [PMID: 21752201]
[61]
Sankar, V.; Engel, S.E.M. Synthesis, biological evaluation, molecular docking and in silico ADME studies of phenacyl esters of N-Phthaloyl amino acids as pancreatic lipase inhibitors. FJPS, 2018, 4, 276-283.
[http://dx.doi.org/10.1016/j.fjps.2018.10.004]
[62]
Chander, S.; Penta, A.; Murugesan, S. Structure-based virtual screening and docking studies for the identification of novel inhibitors against wild and drug resistance strains of HIV-1 RT. Med. Chem. Res., 2015, 24, 1869-1883.
[http://dx.doi.org/10.1007/s00044-014-1251-2]
[63]
Penta, A.; Sharma, H.; Lathiya, H.; Chander, S.; Murugesan, S. In-silico design and study of novel piperazinyl b-carbolines as inhibitor of HIV-1 reverse transcriptase. Med. Chem. Res., 2014, 24, 513-522.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy