Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

General Review Article

Recent Developments in the Synthesis of Tetrazoles and their Pharmacological Relevance

Author(s): Socorro Leyva-Ramos and Jaime Cardoso-Ortiz*

Volume 25, Issue 3, 2021

Published on: 10 December, 2020

Page: [388 - 403] Pages: 16

DOI: 10.2174/1385272824999201210193344

Price: $65

Abstract

The heterocycle ring tetrazole is an important moiety relevant to medicinal chemistry since it is present in some drugs with clinical importance. Its primary biological activity is being a bioisosteric analogue of the carboxylic acid and cis-amide groups. Its metabolic stability and other physicochemical properties make it an attractive structure for designing and synthesizing new pharmaceuticals. The biological activity of tetrazoles is quite extensive and includes antiviral, antibacterial, anticancer, antifungal, and antioxidant properties; all of them are discussed in this review. The most effective way to obtain tetrazoles is by azide derivatives, either in the starting materials by the cycloaddition [3 + 2] of organic azides and nitriles or by preparing a reactive imidoyl azide intermediate. The nucleophilic behavior of the azide group is discussed when the raw materials include isocyanides. Some other methods include alternative synthetic routes like thermolysis. This review also highlights some of the developments regarding the use of different heterogeneous catalysts to synthesize several tetrazole derivatives.

Keywords: Tetrazole, isosteric substituent, biological activity, synthesis, structure-tautomerization, tetrazoles.

Graphical Abstract

[1]
Bladin, J.A. Ueber von Dicyanphenylhydrazin Abgeleitete Verbindungen. Ber. Dtsch. Chem. Ges., 1885, 18(1), 1544-1551.
[http://dx.doi.org/10.1002/cber.188501801335]
[2]
Ostrovskii, V.A.; Popova, E.A.; Trifonov, R.E. Developments in tetrazole chemistry (2009-16).Advances in Heterocyclic Chemistry; Scriven, E.F.V.; Ramsden, S.A., Eds.; Elsevier Ltd., 2017, Vol. 123, pp. 1-64.
[3]
Neochoritis, C.G.; Zhao, T.; Dömling, A. Tetrazoles via multicomponent reactions. Chem. Rev., 2019, 119(3), 1970-2042.
[http://dx.doi.org/10.1021/acs.chemrev.8b00564] [PMID: 30707567]
[4]
Popova, E.A.; Trifonov, R.E.; Ostrovskii, V.A. Advances in the synthesis of tetrazoles coordinated to metal ions. Ark. Online J. Org. Chem., 2012, 11(6), 45-65.
[5]
Roh, J.; Vávrová, K.; Hrabálek, A. Synthesis and functionalization of 5-substituted tetrazoles. Eur. J. Org. Chem., 2012, 2012(31), 6101-6118.
[http://dx.doi.org/10.1002/ejoc.201200469]
[6]
Sarvary, A.; Maleki, A. A review of syntheses of 1,5-disubstituted tetrazole derivatives. Mol. Divers., 2015, 19(1), 189-212.
[http://dx.doi.org/10.1007/s11030-014-9553-3] [PMID: 25273563]
[7]
Tisseh, Z.N.; Dabiri, M.; Nobahar, M.; Khavasi, H.R.; Bazgir, A. Catalyst-free, aqueous and highly diastereoselective synthesis of new 5-substituted 1H-tetrazoles via a multi-component Domino Knoevenagel condensation/1, 3 dipolar cycloaddition reaction. Tetrahedron, 2012, 68(6), 1769-1773.
[http://dx.doi.org/10.1016/j.tet.2011.12.044]
[8]
Ostrovskii, V.A.; Trifonov, R.E.; Popova, E.A. Medicinal chemistry of tetrazoles. Russ. Chem. Bull. Int. Ed., 2012, 61(4), 768-780.
[http://dx.doi.org/10.1007/s11172-012-0108-4]
[9]
Klapötke, T.M.; Minar, N.K.; Stierstorfer, J. Investigations of bis(methyltetrazolyl)triazenes as nitrogen-rich ingredients in solid rocket propellants: synthesis, characterization and properties. Polyhedron, 2009, 28(1), 13-26.
[http://dx.doi.org/10.1016/j.poly.2008.09.015]
[10]
Mukhopadhyay, S.; Lasri, J.; Guedes da Silva, M.F.C.; Januário-Charmier, M.A.; Pombeiro, A.J.L. Activation of C-CN bond of propionitrile: an alternative route to the syntheses of 5-substituted-1H-tetrazoles and dicyano-platinum(II) species. Polyhedron, 2008, 27(13), 2883-2888.
[http://dx.doi.org/10.1016/j.poly.2008.06.031]
[11]
Quareshy, M.; Prusinska, J.; Kieffer, M.; Fukui, K.; Pardal, A.J.; Lehmann, S.; Schafer, P.; Del Genio, C.I.; Kepinski, S.; Hayashi, K.; Marsh, A.; Napier, R.M. The tetrazole analogue of the auxin indole-3-acetic acid binds preferentially to TIR1 and not AFB5. ACS Chem. Biol., 2018, 13(9), 2585-2594.
[http://dx.doi.org/10.1021/acschembio.8b00527] [PMID: 30138566]
[12]
He, Z.; Shao, H.; Rao, W.; Ren, T.; Liu, W. Tribochemical study of tetrazole derivatives as lubricating oil additives. Ind. Lubr. Tribol., 2005, 57(2), 64-68.
[http://dx.doi.org/10.1108/00368790510583366]
[13]
Lalhruaitluanga, J.; Zodinpuia, P. Gas phase computational studies of C- substituted tetrazoles. IOSR J. Appl. Chem., 2015, 8(2), 63-76.
[14]
Trifonov, R.E.; Ostrovskii, V.A. Protolytic equilibria in tetrazoles. Russ. J. Org. Chem., 2006, 42(11), 1585-1605.
[http://dx.doi.org/10.1134/S1070428006110017]
[15]
Shestakova, T.S.; Shenkarev, Z.O.; Deev, S.L.; Chupakhin, O.N.; Khalymbadzha, I.A.; Rusinov, V.L.; Arseniev, A.S. Long-range 1H-15N J couplings providing a method for direct studies of the structure and azide-tetrazole equilibrium in a series of azido-1,2,4-triazines and azidopyrimidines. J. Org. Chem., 2013, 78(14), 6975-6982.
[http://dx.doi.org/10.1021/jo4008207] [PMID: 23751069]
[16]
Lukyanov, S.M.; Bliznets, I.V.; Shorshnev, S.V.; Aleksandrov, G.G.; Stepanov, A.E.; Vasil’ev, A.A. Microwave-assisted synthesis and transformations of sterically hindered 3-(5-tetrazolyl)pyridines. Tetrahedron, 2006, 62(8), 1849-1863.
[http://dx.doi.org/10.1016/j.tet.2005.11.039]
[17]
Safaei-Ghomi, J.; Paymard-Samani, S.; Zahraie, Z.; Shahbazi-Alavi, H. Synthesis of 1,5 and 2,5-disubstituted tetrazoles and their evaluation as antimicrobial agents. Nanomedicine Res. J., 2019, 4(2), 91-100.
[18]
Liu, W.; Guo, Y.; Han, C.; Huang, X. Characteristic fragmentation behavior of 5-[1-Aryl-1H-pyrrol-2-Yl]-1H-tetrazole by electrospray ionization tandem mass spectrometry. Life Sci. J., 2008, 5(2), 25-29.
[19]
Billes, F.; Endrédi, H.; Keresztury, G. Vibrational spectroscopy of triazoles and tetrazole. J. Mol. Struct. THEOCHEM, 2000, 530(1), 183-200.
[http://dx.doi.org/10.1016/S0166-1280(00)00340-7]
[20]
Světlík, J.; Martvoň, A.; Leško, J. Preparation and spectral properties of tetrazoles. Chem. Zvesti, 1979, 33(4), 521-527.
[21]
Minkin, V.I.; Garnovskii, A.D.; Elguero, J.; Katritzky, A.R.; Denisko, O.V. Tautomerism of heterocycles: five-membered rings with two or more heteroatoms. Adv. Heterocycl. Chem., 2000, 76, 157-323.
[http://dx.doi.org/10.1016/S0065-2725(00)76005-3]
[22]
Rauhut, G. Recent advances in computing heteroatom-rich five- and six-membered ring systems.Advances In Heterocyclic Chemistry; Katritzky, A.R., Ed.; Elsevier, 2001, Vol. 81, pp. 2-166.
[23]
Zubarev, V.Y.; Trifonov, R.E.; Ostrovskii, V.A.; Moderhack, D. A theoretical study of annular tautomerism of pyrrolotetrazoles in the gas phase. Chem. Heterocycl. Compd., 2015, 51(3), 246-249.
[http://dx.doi.org/10.1007/s10593-015-1692-7]
[24]
Alkorta, I.; Blanco, F.; Elguero, J.; Claramunt, R.M. The azido-tetrazole and diazo-1, 2, 3-triazole tautomerism in six-membered heteroaromatic rings and their relationships with aromaticity: azines and perimidine. Tetrahedron, 2010, 66(15), 2863-2868.
[http://dx.doi.org/10.1016/j.tet.2010.02.035]
[25]
Zervou, M.; Cournia, Z.; Potamitis, C.; Patargias, G.; Durdagi, S.; Grdadolnik, S.G.; Mavromoustakos, T. Insights into the molecular basis of action of the AT1 antagonist losartan using a combined NMR spectroscopy and computational approach. Biochim. Biophys. Acta, 2014, 1838(3), 1031-1046.
[http://dx.doi.org/10.1016/j.bbamem.2013.12.012] [PMID: 24374319]
[26]
Himasekar, C.; Mustafa, S.; Babu, M.S. Synthesis, characterization of mixed Cu (II) pyridyl tetrazoles and 1,10-phenanthroline complexes-DFT and biological activity. Open Chem. J., 2019, 6(1), 1-7.
[http://dx.doi.org/10.2174/1874842201906010001]
[27]
Lamie, P.F.; Philoppes, J.N.; Azouz, A.A.; Safwat, N.M.; Lamie, P.F.; Philoppes, J.N.; Azouz, A.A.; Safwat, N.M. Novel tetrazole and cyanamide derivatives as inhibitors of cyclooxygenase-2 enzyme: design, synthesis, anti-inflammatory evaluation, ulcerogenic liability and docking study. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 805-820.
[http://dx.doi.org/10.1080/14756366.2017.1326110] [PMID: 28587532]
[28]
Malik, M.A.; Younus, W.M.; Al-Thabaiti, S.A.; Shiekh, R.A. Tetrazoles as carboxylic acid isosteres: chemistry and biology. J. Incl. Phenom. Macrocycl. Chem., 2014, 78, 15-37.
[http://dx.doi.org/10.1007/s10847-013-0334-x]
[29]
Popova, E.A.; Trifonov, R.E. Synthesis and biological properties of amino acids and peptides containing a tetrazolyl moiety. Russ. Chem. Rev., 2015, 84(9), 891-916.
[http://dx.doi.org/10.1070/RCR4527]
[30]
Matta, C.F.; Arabi, A.A.; Weaver, D.F. The bioisosteric similarity of the tetrazole and carboxylate anions: clues from the topologies of the electrostatic potential and of the electron density. Eur. J. Med. Chem., 2010, 45(5), 1868-1872.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.025] [PMID: 20133027]
[31]
Allen, F.H.; Groom, C.R.; Liebeschuetz, J.W.; Bardwell, D.A.; Olsson, T.S.G.; Wood, P.A. The hydrogen bond environments of 1H-tetrazole and tetrazolate rings: the structural basis for tetrazole-carboxylic acid bioisosterism. J. Chem. Inf. Model., 2012, 52(3), 857-866.
[http://dx.doi.org/10.1021/ci200521k] [PMID: 22303876]
[32]
Meyer, E.A.; Castellano, R.K.; Diederich, F. Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed. Engl., 2003, 42(11), 1210-1250.
[http://dx.doi.org/10.1002/anie.200390319] [PMID: 12645054]
[33]
Farrokhzadeh, A.; Modarresi-Alam, A.R.; Akher, F.B.; Ebrahimi, A. A theoretical study of π-stacking interactions in C-substituted tetrazoles. J. Mol. Graph. Model., 2016, 67, 85-93.
[http://dx.doi.org/10.1016/j.jmgm.2016.05.005] [PMID: 27258189]
[34]
Gouda, M.A.; Al-Ghorbani, M.; Helal, M.H.; Salem, M.A.; Hanashalshahaby, E.H.A. Review: recent progress on the synthetic routes to 1(5)-substituted 1H-tetrazoles and its analogs. Synth. Commun., 2020, 2020, 3017-3043.
[http://dx.doi.org/10.1080/00397911.2020.1792499]
[35]
Ye, Z.; Wang, F.; Li, Y.; Zhang, F. Electrochemical synthesis of tetrazoles via metal-and oxidant-free [3+2] cycloaddition of azides with hydrazones. Green Chem., 2018, 20(23), 5271-5275.
[http://dx.doi.org/10.1039/C8GC02889C]
[36]
Cardoso, A.L.; Sousa, C.; Henriques, M.S.C.; Paixão, J.A.; Pinho e Melo, T.M.V.D. Synthesis of new 2-halo-2-(1H-tetrazol-5-yl)-2H-azirines via a non-classical Wittig reaction. Molecules, 2015, 20(12), 22351-22363.
[http://dx.doi.org/10.3390/molecules201219848] [PMID: 26703533]
[37]
Pokhodylo, N.T.; Shyyka, O.Y.; Obushak, M.D. A convenient one-pot synthesis of 1,5-disubstituted tetrazoles containing an amino or a carboxy group. Russ. J. Org. Chem., 2020, 56, 802-812.
[http://dx.doi.org/10.1134/S1070428020050127]
[38]
Chandgude, A.L.; Dömling, A. Convergent three-component tetrazole synthesis. Eur. J. Org. Chem., 2016, 2016, 2383-2387.
[http://dx.doi.org/10.1002/ejoc.201600317]
[39]
Katritzky, A.R.; Cai, C.; Meher, N.K. Efficient synthesis of 1, 5-disubstituted tetrazoles. Synthesis (Stuttg), 2007, 2007(08), 1204-1208.
[http://dx.doi.org/10.1055/s-2007-966001]
[40]
Kutovaya, I.V.; Zarezin, D.P.; Shmatova, O.I.; Nenajdenko, V.G. Pseudo‐seven‐component double Azido‐Ugi reaction: an efficient synthesis of bistetrazole derivatives. Eur. J. Org. Chem., 2019, 2019(24), 3908-3915.
[http://dx.doi.org/10.1002/ejoc.201900662]
[41]
Artamonova, T.V.; Zhivich, A.B.; Dubinskii, M.Y.; Koldobskii, G.I. Preparation of 1,5-disubstituted tetrazoles under phase-transfer conditions. Synthesis (Stuttg), 1996, 1996(12), 1428-1430.
[http://dx.doi.org/10.1055/s-1996-4418]
[42]
Tong, Y.; Olczak, J.; Zabrocki, J.; Gershengorn, M.C.; Marshall, G.R.; Moeller, K.D. Constrained peptidomimetics for TRH: cis-peptide bond analogs. Tetrahedron, 2000, 56(50), 9791-9800.
[http://dx.doi.org/10.1016/S0040-4020(00)00886-3]
[43]
Lodyga-Chruscinska, E.; Brzezinska-Blaszczyk, E.; Micera, G.; Sanna, D.; Kozlowski, H.; Olczak, J.; Zabrocki, J.; Olejnik, A.K. Can the 1,5-disubstituted tetrazole ring modify the co-ordinating ability and biological activity of opiate-like peptides? J. Inorg. Biochem., 2000, 78(4), 283-291.
[http://dx.doi.org/10.1016/S0162-0134(00)00055-6] [PMID: 10857908]
[44]
May, B.C.H.; Abell, A.D. α-Methylene tetrazole-based peptidomimetics: synthesis and inhibition of HIV protease. J. Chem. Soc., Perkin Trans. 1, 2002, 2, 172-178.
[45]
Kaval, N.; Ermolat’ev, D.; Appukkuttan, P.; Dehaen, W.; Kappe, C.O.; Van der Eycken, E. The application of “Click chemistry” for the decoration of 2(1H)-pyrazinone scaffold: generation of templates. J. Comb. Chem., 2005, 7(3), 490-502.
[http://dx.doi.org/10.1021/cc0498377] [PMID: 15877478]
[46]
El-Ahl, A.A.S.; Elmorsy, S.S.; Elbeheery, A.H.; Amer, F.A. A Novel Approach for the synthesis of 5-substituted tetrazole derivatives from primary amides in mild one-step method. Tetrahedron Lett., 1997, 38(7), 1257-1260.
[http://dx.doi.org/10.1016/S0040-4039(97)00052-X]
[47]
Esikov, K.A.; Zubarev, V.Y.; Malin, A.A.; Ostrovskii, V.A. Use of the tetrachlorosilane-sodium azide system for synthesis of tetrazoles from carboxylic acid amides. Chem. Heterocycl. Compd., 2000, 36(7), 878-879.
[http://dx.doi.org/10.1007/BF02256929]
[48]
Esikov, K.A.; Morozova, S.E.; Malin, A.A.; Ostrovskii, V.A. Tetrachlorosilane-sodium azide system in the synthesis of tetrazole-containing amino acid derivatives. Russ. J. Org. Chem., 2002, 38(9), 1370-1373.
[http://dx.doi.org/10.1023/A:1021624401405]
[49]
Morozova, S.E.; Esikov, K.A.; Dmitrieva, T.N.; Malin, A.A.; Ostrovskii, V.A. Tetrachlorosilane-sodium azide system in the synthesis of tetrazole-containing D,L-tryptophane derivatives. Russ. J. Org. Chem., 2004, 40(3), 443-445.
[http://dx.doi.org/10.1023/B:RUJO.0000034989.85330.06]
[50]
Morozova, S.E.; Esikov, K.A.; Zubarev, V.Y.; Malin, A.A.; Ostrovskii, V.A. Polynuclear tetrazole-containing amino acid analogs. Russ. J. Org. Chem., 2004, 40(10), 1528-1531.
[http://dx.doi.org/10.1007/s11178-005-0056-7]
[51]
Morozova, S.E.; Komissarov, A.V.; Esikov, K.A.; Zubarev, V.Y.; Malin, A.A.; Ostrovskii, V.A. Linear polynuclear tetrazole-containing compounds. Russ. J. Org. Chem., 2004, 40(10), 1532-1538.
[http://dx.doi.org/10.1007/s11178-005-0057-6]
[52]
Sribalan, R.; Lavanya, A.; Kirubavathi, M.; Padmini, V. Selective synthesis of ureas and tetrazoles from amides controlled by experimental conditions using conventional and microwave irradiation. J. Saudi Chem. Soc., 2018, 22(2), 198-207.
[http://dx.doi.org/10.1016/j.jscs.2016.03.004]
[53]
Najafi, P.; Modarresi-Alam, A.R. One-step synthesis of sterically hindered 1, 5-disubstituted tetrazoles from bulky secondary N-benzoyl amides using Triazidochlorosilane (TACS). Res. J. Chem. Env. Sci., 2013, 1(5), 28-33.
[54]
Duncia, J.V.; Pierce, M.E.; Santella, J.B. Three synthetic routes to a sterically hindered tetrazole. A new one-step mild conversion of an amide into a tetrazole. Am. Chem. Soc., 1991, 58(7), 2395-2400.
[55]
Himo, F.; Demko, Z.P.; Noodleman, L.; Sharpless, K.B. Mechanisms of tetrazole formation by addition of azide to nitriles. J. Am. Chem. Soc., 2002, 124(41), 12210-12216.
[http://dx.doi.org/10.1021/ja0206644] [PMID: 12371861]
[56]
Kant, R.; Singh, V.; Agarwal, A. An efficient and economical synthesis of 5-substituted 1H-tetrazoles via Pb(II) salt catalyzed [3+2] cycloaddition of nitriles and sodium azide. C. R. Chim., 2016, 19(3), 306-313.
[http://dx.doi.org/10.1016/j.crci.2015.11.016]
[57]
Cantillo, D.; Gutmann, B.; Kappe, C.O. An experimental and computational assessment of acid-catalyzed azide-nitrile cycloadditions. J. Org. Chem., 2012, 77(23), 10882-10890.
[http://dx.doi.org/10.1021/jo3022742] [PMID: 23126486]
[58]
Chrétien, J.; Kerric, G.; Zammattio, F.; Galland, N.; Paris, M.; Quintard, J.; Le Grognec, E. Tin‐catalyzed synthesis of 5‐substituted 1H‐tetrazoles from nitriles: homogeneous and heterogeneous procedures. Adv. Synth. Catal., 2019, 361(4), 747-757.
[http://dx.doi.org/10.1002/adsc.201801117]
[59]
Aureggi, V.; Sedelmeier, G. 1,3-dipolar cycloaddition: click chemistry for the synthesis of 5-substituted tetrazoles from organoaluminum azides and nitriles. Angew. Chem. Int. Ed. Engl., 2007, 46(44), 8440-8444.
[http://dx.doi.org/10.1002/anie.200701045] [PMID: 17899564]
[60]
Hernández-López, H.; Leyva-Ramos, S.; Moncada-Martínez, R.D.; López, J.A.; Cardoso-Ortiz, J. Cooper(I)-catalyzed azide-alkyne cycloaddition microwave-assisted: preparation of 7-(4-Substituted-1H-1,2,3-triazol-1-yl)-fluoroquinolones. ChemistrySelect, 2019, 4(40), 11899-11902.
[http://dx.doi.org/10.1002/slct.201903254]
[61]
Noriega, S.; Leyva, E.; Moctezuma, E.; Flores, L.; Loredo-Carrillo, S. Recent catalysts used in the synthesis of 1, 4-disubstituted 1,2,3-triazoles by heterogeneous and homogeneous methods. Curr. Org. Chem., 2020, 24(5), 536-549.
[http://dx.doi.org/10.2174/1385272824666200226120135]
[62]
Zarghani, M.; Akhlaghinia, B. Magnetically separable Fe3O4@Chitin as an eco-friendly nanocatalyst with high efficiency for green synthesis of 5-substituted-1 H-tetrazoles under solvent-free conditions. RSC Adv, 2016, 6(38), 31850-31860.
[http://dx.doi.org/10.1039/C6RA07252F]
[63]
Ghodsinia, S.S.E.; Akhlaghinia, B. A rapid metal free synthesis of 5-substituted-1H-tetrazoles using cuttlebone as a natural high effective and low cost heterogeneous catalyst. RSC Adv, 2015, 5(62), 49849-49860.
[http://dx.doi.org/10.1039/C5RA08147E]
[64]
Jahanshahi, R.; Akhlaghinia, B. Expanded perlite: an inexpensive natural efficient heterogeneous catalyst for the green and highly accelerated solvent-free synthesis of 5-substituted-1H-tetrazoles using [Bmim]N3 and nitriles. Rsc Adv., 2015, 5(126), 104087-104094.
[http://dx.doi.org/10.1039/C5RA21481E]
[65]
Afsarian, M.H.; Farjam, M.; Zarenezhad, E.; Behrouz, S.; Rad, M.N.S. Synthesis, antifungal evaluation and molecular docking studies of some tetrazole derivatives. Acta Chim. Slov., 2019, 66(4), 874-887.
[http://dx.doi.org/10.17344/acsi.2019.4992]
[66]
Kazemnejadi, M.; Mahmoudi, B.; Sharafi, Z.; Nasseri, M.A.; Allahresani, A.; Esmaeilpour, M. Copper coordinated‐poly (A‐amino acid) decorated on magnetite graphene oxide as an efficient heterogeneous magnetically recoverable catalyst for the selective synthesis of 5‐and 1‐substituted tetrazoles from various sources: a comparative study. Appl. Organomet. Chem., 2020, 34(2)e5273
[http://dx.doi.org/10.1002/aoc.5273]
[67]
Halder, M.; Islam, M.M.; Singh, P.; Singha Roy, A.; Islam, S.M.; Sen, K. Sustainable generation of Ni(OH)2 nanoparticles for the green synthesis of 5-substituted 1H-tetrazoles: a competent turn on fluorescence sensing of H2O2. ACS Omega, 2018, 3(7), 8169-8180.
[http://dx.doi.org/10.1021/acsomega.8b01081] [PMID: 31458954]
[68]
Hosseinzadeh, R.; Lasemi, Z.; Maliji, F. Montmorillonite KSF as a very efficient heterogeneous catalyst for the synthesis of 5-substituted 1H-tetrazoles. Iran. J. Catal., 2018, 8(1), 29-33.
[69]
Bosch, L.; Vilarrasa, J. Cu2(OTf)2-catalyzed and microwave-controlled preparation of tetrazoles from nitriles and organic azides under mild, safe conditions. Angew. Chem. Int. Ed. Engl., 2007, 46(21), 3926-3930.
[http://dx.doi.org/10.1002/anie.200605095] [PMID: 17427165]
[70]
Schmidt, B.; Meid, D.; Kieser, D. Safe and fast tetrazole formation in ionic liquids. Tetrahedron, 2007, 63(2), 492-496.
[http://dx.doi.org/10.1016/j.tet.2006.10.057]
[71]
Padmaja, R.D.; Chanda, K. A robust and recyclable ionic liquid-supported copper(II) catalyst for the synthesis of 5-substituted-1H-tetrazoles using microwave irradiation. Res. Chem. Intermed., 2020, 46(2), 1307-1317.
[http://dx.doi.org/10.1007/s11164-019-04035-4]
[72]
Safaei-Ghomi, J.; Paymard-Samani, S.; Zahraie, Z.; Shahbazi-Alavi, H. Synthesis of 1,5 and 2,5-disubstituted tetrazoles using NiO nanoparticles and their evaluation as antimicrobial agents. Nanomedicine Res. J., 2019, 4(2), 91-100.
[73]
Safaei-Ghomi, J.; Paymard-Samani, S. Facile and rapid synthesis of 5-substituted 1H-tetrazoles via a multicomponent Domino reaction using nickel(II) oxide nanoparticles as catalyst. Chem. Heterocycl. Compd., 2015, 50(11), 1567-1574.
[http://dx.doi.org/10.1007/s10593-014-1625-x]
[74]
Yuan, X.; Wang, Z.; Zhang, Q.; Luo, J. An intramolecular relay catalysis strategy for Knoevenagel condensation and 1,3-dipolar cycloaddition Domino reactions. RSC Adv, 2019, 9(41), 23614-23621.
[http://dx.doi.org/10.1039/C9RA04081A]
[75]
Nasrollahzadeh, M.; Sajjadi, M.; Tahsili, M.R.; Shokouhimehr, M.; Varma, R.S. Synthesis of 1-substituted 1H-1,2,3,4-tetrazoles using biosynthesized Ag/Sodium borosilicate nanocomposite. ACS Omega, 2019, 4(5), 8985-9000.
[http://dx.doi.org/10.1021/acsomega.9b00800] [PMID: 31459987]
[76]
Naeimi, H.; Kiani, F.; Moradian, M. Rapid microwave promoted heterocyclization of primary amines with triethyl orthoformate and sodium azide using zinc sulfide nanoparticles as recyclable catalyst. Green Chem. Lett. Rev., 2018, 11(3), 361-369.
[http://dx.doi.org/10.1080/17518253.2018.1510990]
[77]
Su, W.; Hong, Z.; Shan, W.; Zhang, X. A facile synthesis of 1-substituted-1H-1,2,3,4-tetrazoles catalyzed by ytterbium triflate hydrate. Eur. J. Med. Chem., 2006, 2006(12), 2723-2726.
[78]
Mohammadkhani, L.; Heravi, M.M. Synthesis of N-heterocycles containing 1,5-disubstituted-1H-tetrazole via post-Ugi-azide reaction. Mol. Divers., 2020, 24(3), 841-853.
[http://dx.doi.org/10.1007/s11030-019-09972-1] [PMID: 31222498]
[79]
Cortes-García, C.J.; Islas-Jácome, A.; Rentería-Gómez, A.; Gámez-Montaño, R. Synthesis of 1,5-disubstituted tetrazoles containing a fragment of the anticancer drug imatinib via a microwave-assisted Ugi-Azide reaction. Monatsh. Chem., 2016, 14(7), 1277-1290.
[http://dx.doi.org/10.1007/s00706-016-1686-x]
[80]
Gohel, J.N.; Lunagariya, K.S.; Kapadiya, K.M.; Khunt, R.C. An efficient protocol for the synthesis of 1,5‐disubstituted tetrazole derivatives via a TMS‐N3 based Ugi reaction and their anti‐cancer activity. ChemistrySelect, 2018, 3(41), 11657-11662.
[http://dx.doi.org/10.1002/slct.201802638]
[81]
Gunawan, S.; Hulme, C. Bifunctional building blocks in the Ugi-azide condensation reaction: a general strategy toward exploration of new molecular diversity. Org. Biomol. Chem., 2013, 11(36), 6036-6046.
[http://dx.doi.org/10.1039/c3ob40900g] [PMID: 23912086]
[82]
Kiselyov, A.S. Reaction of N-fluoropyridinium fluoride with isonitriles and TMSN3: a convenient one-pot synthesis of tetrazol-5-yl pyridines. Tetrahedron Lett., 2005, 46(29), 4851-4854.
[http://dx.doi.org/10.1016/j.tetlet.2005.05.066]
[83]
Holzschneider, K.; Tong, M.L.; Mohr, F.; Kirsch, S.F. A synthetic route toward tetrazoles: the thermolysis of geminal diazides. Chemistry, 2019, 25(50), 11725-11733.
[http://dx.doi.org/10.1002/chem.201902131] [PMID: 31407837]
[84]
El-Ahl, A.A.S.; Elmorsy, S.S.; Soliman, H.; Amer, F.A. A facile and convenient synthesis of substituted tetrazole derivatives from ketones or α,β-unsaturated ketones. Tetrahedron Lett., 1995, 36(40), 7337-7340.
[http://dx.doi.org/10.1016/0040-4039(95)01513-H]
[85]
Mohite, P.B.; Bhaskar, V.H. Potential pharmacological activities of tetrazoles in the new millennium. Int. J. Pharm. Tech. Res., 2011, 3(3), 1557-1566.
[86]
Asif, M. Biological potentials of substituted tetrazole compounds. Pharm. Methods, 2014, 5(2), 39-46.
[87]
Wei, C.X.; Bian, M.; Gong, G.H. Tetrazolium compounds: synthesis and applications in medicine. Molecules, 2015, 20(4), 5528-5553.
[http://dx.doi.org/10.3390/molecules20045528] [PMID: 25826789]
[88]
Vedpathak, S.G.; Kakade, G.K.; Ingale, V.S. Biological portfolio of 1,5-disubstituted tetrazoles: a review. IRA-Int. J. Appl. Sci., 2016, 3(2), 269-294.
[http://dx.doi.org/10.21013/jas.v3.n2.p14]]
[89]
Crosby, D.C.; Lei, X.; Gibbs, C.G.; McDougall, B.R.; Robinson, W.E., Jr; Reinecke, M.G. Design, synthesis, and biological evaluation of novel hybrid dicaffeoyltartaric/diketo acid and tetrazole-substituted L-chicoric acid analogue inhibitors of human immunodeficiency virus type 1 integrase. J. Med. Chem., 2010, 53(22), 8161-8175.
[http://dx.doi.org/10.1021/jm1010594] [PMID: 20977258]
[90]
Zhan, P.; Liu, H.; Liu, X.; Wang, Y.; Pannecouque, C.; Witvrouw, M.; De Clercq, E. Synthesis and anti-HIV activity evaluation of novel N′-arylidene-2-[1-(naphthalen-1-yl)-1H-tetrazol-5-ylthio] acetohydrazides. Med. Chem. Res., 2010, 19(7), 652-663.
[http://dx.doi.org/10.1007/s00044-009-9220-x]
[91]
Seliverstova, D.V.; Suslonov, V.V.; Zarubaev, V.V.; Trifonov, R.E. Synthesis, structure, and anti-influenza activity of 2-(adamantan-1-yl)-5-Aryl-1,3,4-oxadiazoles and 2-(adamantan-1-yl)-5-aryltetrazoles. Russ. J. Org. Chem., 2018, 54(4), 633-638.
[http://dx.doi.org/10.1134/S107042801804019X]
[92]
Serebryanskaya, T.V.; Yung, T.; Bogdanov, A.A.; Shchebet, A.; Johnsen, S.A.; Lyakhov, A.S.; Ivashkevich, L.S.; Ibrahimava, Z.A.; Garbuzenco, T.S.; Kolesnikova, T.S.; Melnova, N.I.; Gaponik, P.N.; Ivashkevich, O.A. Synthesis, characterization, and biological evaluation of new tetrazole-based platinum(II) and palladium(II) chlorido complexes--potent cisplatin analogues and their trans isomers. J. Inorg. Biochem., 2013, 120, 44-53.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.12.001] [PMID: 23305964]
[93]
Penov-Gaši, K.M.; Oklješa, A.M.; Petri, E.T.; Ćelić, A.S.; Djurendić, E.A.; Klisurić, O.R.; Csanadi, J.J.; Batta, G.; Nikolić, A.R.; Jakimov, D.S.; Sakač, M.N. Selective antitumour activity and ERα molecular docking studies of newly synthesized D-homo fused steroidal tetrazoles. MedChemComm, 2013, 4(2), 317-323.
[http://dx.doi.org/10.1039/C2MD20327H]
[94]
Köhler, S.C.; Wiese, M. HM30181 Derivatives as novel potent and selective inhibitors of the Breast Cancer Resistance Protein (BCRP/ABCG2). J. Med. Chem., 2015, 58(9), 3910-3921.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00188] [PMID: 25855895]
[95]
Arshad, M.; Bhat, A.R.; Pokharel, S.; Kim, J.E.; Lee, E.J.; Athar, F.; Choi, I. Synthesis, characterization and anticancer screening of some novel piperonyl-tetrazole derivatives. Eur. J. Med. Chem., 2014, 71, 229-236.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.008] [PMID: 24309000]
[96]
Shaikh, S.K.J.; Kamble, R.R.; Somagond, S.M.; Devarajegowda, H.C.; Dixit, S.R.; Joshi, S.D. Tetrazolylmethyl quinolines: design, docking studies, synthesis, anticancer and antifungal analyses. Eur. J. Med. Chem., 2017, 128, 258-273.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.043] [PMID: 28192709]
[97]
Dileep, K.; Polepalli, S.; Jain, N.; Buddana, S.K.; Prakasham, R.S.; Murty, M.S.R. Synthesis of novel tetrazole containing hybrid ciprofloxacin and pipemidic acid analogues and preliminary biological evaluation of their antibacterial and antiproliferative activity. Mol. Divers., 2018, 22(1), 83-93.
[http://dx.doi.org/10.1007/s11030-017-9795-y] [PMID: 29138963]
[98]
Rechelo, B.S.; Fernandes, F.H.A.; Kogawa, A.C.; Nunes-Salgado, H.R. New environmentally friendly method for quantification of cefazolin sodium. Eur. Chem. Bull., 2017, 6(6), 238-245.
[http://dx.doi.org/10.17628/ecb.2017.6.238-245]
[99]
Ostrovskii, V.A.; Trifonov, R.E.; Popova, E.A. Medicinal chemistry of tetrazoles. Russ. Chem. Bull., 2012, 61, 768-780.
[http://dx.doi.org/10.1007/s11172-012-0108-4]
[100]
Kaplancikli, Z.A.; Yurttaş, L.; Özdemir, A.; Turan-Zitouni, G.; Işcan, G.; Akalın, G.; Abu Mohsen, U. Synthesis, anticandidal activity and cytotoxicity of some tetrazole derivatives. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 43-48.
[http://dx.doi.org/10.3109/14756366.2012.752363] [PMID: 23323990]
[101]
Figueiredo, J.A.; Ismael, M.I.; Pinheiro, J.M.; Silva, A.M.S.; Justino, J.; Silva, F.V.M.; Goulart, M.; Mira, D.; Araújo, M.E.M.; Campoy, R.; Rauter, A.P. Facile synthesis of oxo-/thioxopyrimidines and tetrazoles C-C linked to sugars as novel non-toxic antioxidant acetylcholinesterase inhibitors. Carbohydr. Res., 2012, 347(1), 47-54.
[http://dx.doi.org/10.1016/j.carres.2011.11.006] [PMID: 22153708]
[102]
Lenda, F.; Crouzin, N.; Cavalier, M.; Guiramand, J.; Lanté, F.; Barbanel, G.; Cohen-Solal, C.; Martinez, J.; Guenoun, F.; Lamaty, F.; Vignes, M. Synthesis of C5-tetrazole derivatives of 2-amino-adipic acid displaying NMDA glutamate receptor antagonism. Amino Acids, 2011, 40(3), 913-922.
[http://dx.doi.org/10.1007/s00726-010-0713-1] [PMID: 20706748]
[103]
Boatman, P.D.; Schrader, T.O.; Kasem, M.; Johnson, B.R.; Skinner, P.J.; Jung, J.K.; Xu, J.; Cherrier, M.C.; Webb, P.J.; Semple, G.; Sage, C.R.; Knudsen, J.; Chen, R.; Taggart, A.K.; Carballo-Jane, E.; Richman, J.G. Potent tricyclic pyrazole tetrazole agonists of the nicotinic acid receptor (GPR109a). Bioorg. Med. Chem. Lett., 2010, 20(9), 2797-2800.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.062] [PMID: 20363624]
[104]
Pegklidou, K.; Koukoulitsa, C.; Nicolaou, I.; Demopoulos, V.J. Design and synthesis of novel series of pyrrole based chemotypes and their evaluation as selective aldose reductase inhibitors. A case of bioisosterism between a carboxylic acid moiety and that of a tetrazole. Bioorg. Med. Chem., 2010, 18(6), 2107-2114.
[http://dx.doi.org/10.1016/j.bmc.2010.02.010] [PMID: 20189816]
[105]
Al-Hourani, B.J.; Sharma, S.K.; Suresh, M.; Wuest, F. Novel 5-substituted 1H-tetrazoles as cyclooxygenase-2 (COX-2) inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(6), 2235-2238.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.093] [PMID: 22341941]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy