Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Strain-induced Reactivity Effects in the Reaction of 2,5-Dihydroxy-[1,4]- benzoquinone with Diamines

Author(s): Hubert Hettegger, Andreas Hofinger and Thomas Rosenau*

Volume 25, Issue 4, 2021

Published on: 08 December, 2020

Page: [529 - 538] Pages: 10

DOI: 10.2174/1385272824666201209112938

Abstract

The regioselectivity of the reaction of 2,5-dihydroxy-[1,4]-benzoquinone (DHBQ) with diamines could not be explained satisfactorily so far. In general, the reaction products can be derived from the tautomeric ortho-quinoid structure of a hypothetical 4,5-dihydroxy- [1,2]-benzoquinone. However, both aromatic and aliphatic 1,2-diamines form phenazines, in some cases, formally by diimine formation on the quinoid carbonyl groups, and in other cases, the corresponding 1,2-diamino-[1,2]-benzoquinones by nucleophilic substitution of the OH groups; the regioselectivity apparently does not follow any discernible pattern. The reactivity was now explained by an adapted theory of strain-induced bond localization (SIBL). Here, the preservation of the "natural" geometry of the two quinoid C–C double bonds (C3=C4 and C5=C6) as well as the N–N distance of the co-reacting diamine are crucial. A decrease of the annulation angle sum (N–C4–C5 + C4–C5–N) is tolerated well and the 4,5-diamino-ortho-quinones, having relatively short N–N spacings, are formed. An increase in the angular sum is energetically unfavorable, so that diamines with a larger N–N distance afford the corresponding ortho-quinone imines. Thus, for the reaction of DHBQ with diamines, exact predictions of the regioselectivity and the resulting product structure can be made on the basis of simple computations of bond spacings and product geometries.

Keywords: Amines, benzoquinones, diamines, DHBQ, regioselectivity, SIBL theory.

« Previous
Graphical Abstract

[1]
Halis, S.; Inge, A.K.; Dehning, N.; Weyrich, T.; Reinsch, H.; Stock, N. Dihydroxybenzoquinone as linker for the synthesis of permanently porous aluminum metal-organic frameworks. Inorg. Chem., 2016, 55(15), 7425-7431.
[http://dx.doi.org/10.1021/acs.inorgchem.6b00661] [PMID: 27427885]
[2]
Rao, T.R.; Rao, P.R.; Lingaiah, P.; Sir Deshmukh, L. Synthesis, dielectric and X-ray powder differentiation studies of iron(II), cobalt(II) and nickel(II) chelate polymers with 2,5-dihydroxy-p-benzoquinone. J. Ind. Chem. Soc., 1991, 68(8), 458-459.
[3]
Sarkar, B.; Schweinfurth, D.; Deibel, N.; Weisser, F. Functional metal complexes based on bridging “imino”-quinonoid ligands. Coord. Chem. Rev., 2015, 293-294, 250-262.
[http://dx.doi.org/10.1016/j.ccr.2015.01.015]
[4]
Murase, R.; Commons, C.J.; Hudson, T.A.; Jameson, G.N.L.; Ling, C.D.; Murray, K.S.; Phonsri, W.; Robson, R.; Xia, Q.; Abrahams, B.F.; D’Alessandro, D.M. Effects of mixed valency in an Fe-based framework: coexistence of slow magnetic relaxation, semiconductivity, and redox activity. Inorg. Chem., 2020, 59(6), 3619-3630.
[http://dx.doi.org/10.1021/acs.inorgchem.9b03172] [PMID: 32124614]
[5]
Horiuchi, S.; Kumai, R.; Tokura, Y. Hydrogen-bonded donor--acceptor compounds for organic ferroelectric materials. Chem. Commun. (Camb.), 2007, 23(23), 2321-2329.
[http://dx.doi.org/10.1039/B617881B] [PMID: 17844735]
[6]
Hosoya, T.; French, A.D.; Rosenau, T. Chemistry of 2,5-dihydroxy-[1,4]-benzoquinone, a key chromophore in aged cellulosics. Mini Rev. Org. Chem., 2013, 10(3), 302-308.
[http://dx.doi.org/10.2174/1570193X11310030008]
[7]
Korntner, P.; Hosoya, T.; Dietz, T.; Eibinger, K.; Reiter, H.; Spitzbart, M.; Röder, T.; Borgards, A.; Kreiner, W.; Mahler, A.K.; Winter, H.; French, A.D.; Henniges, U.; Potthast, A.; Rosenau, T. Chromophores in lignin-free cellulosic materials belong to three compound classes. Chromophores in cellulosics, XII. Cellulose, 2015, 22(2), 1053-1062.
[http://dx.doi.org/10.1007/s10570-015-0566-6]
[8]
Manthey, M.K.; Pyne, S.G.; Truscott, R.J.W. Addition of aliphatic and aromatic amines to catechol in aqueous solution under oxidizing conditions. Aust. J. Chem., 1989, 42, 365-373.
[http://dx.doi.org/10.1071/CH9890365]
[9]
Gellerman, G.; Rudi, A.; Kashman, Y. The biomimetic synthesis of marine alkaloid related pyrido- and pyrrolo[2,3,4-k]acridines. Tetrahedron, 1994, 50, 12959-12972.
[http://dx.doi.org/10.1016/S0040-4020(01)81215-1]
[10]
Jones, R.G.; Shonle, H.A. The preparation of some 9-diethylaminoalkylphenazines. J. Am. Chem. Soc., 1946, 68(11), 2246-2247.
[http://dx.doi.org/10.1021/ja01215a037] [PMID: 21002228]
[11]
Placin, F.; Clavier, G.; Najera, F.; Desvergne, J.P.; Pozzo, J.L. New organogelators based on linear azapolycyclic arenes. Polycycl. Aromat. Compd., 2000, 19, 107-117.
[http://dx.doi.org/10.1080/10406630008034726]
[12]
Lee, D-C.; Cao, B.; Jang, K.; Forster, P.M. Self-assembly of halogen substituted phenazines. J. Mater. Chem., 2010, 20, 867-873.
[http://dx.doi.org/10.1039/B917601B]
[13]
Tang, Q.; Liang, Z.; Liu, J.; Xu, J.; Miao, Q. N-heteroquinones: quadruple weak hydrogen bonds and n-channel transistors. Chem. Commun. (Camb.), 2010, 46(17), 2977-2979.
[http://dx.doi.org/10.1039/c001215g] [PMID: 20386842]
[14]
Seillan, C.; Brisset, H.; Siri, O. Efficient synthesis of substituted dihydrotetraazapentacenes. Org. Lett., 2008, 10(18), 4013-4016.
[http://dx.doi.org/10.1021/ol801509v] [PMID: 18729370]
[15]
Ikeda, M.; Kitahara, K.; Nishi, H. Syntheses and properties of halogen-free carbazoledioxazines. J. Heterocycl. Chem., 1992, 29, 289-294.
[http://dx.doi.org/10.1002/jhet.5570290203]
[16]
Zhang, D.; Jin, G-X. Novel, highly active binuclear 2,5-disubstituted amino-p-benzoquinone-nickel(II) ethylene polymerization catalysts. Organometallics, 2003, 22, 2851-2854.
[http://dx.doi.org/10.1021/om030068y]
[17]
Rosenau, T.; Potthast, A.; Krainz, K.; Yoneda, Y.; Dietz, T.; Shields, Z.P.I.; French, A.D. Chromophores in cellulosics, VI. First isolation and identification of residual chromophores from cotton linters. Cellulose, 2011, 18(6), 1623-1633.
[http://dx.doi.org/10.1007/s10570-011-9585-0]
[18]
Hettegger, H.; Amer, H.; Zwirchmayr, N.S.; Bacher, M.; Hosoya, T.; Potthast, A.; Rosenau, T. Pitfalls in the chemistry of cellulosic key chromophores. Cellulose, 2019, 26, 185-204.
[http://dx.doi.org/10.1007/s10570-018-2131-6]
[19]
Stanger, A.; Ashkenazi, N.; Boese, R.; Stellberg, P. Evidence for metal induced bond localization in cyclobutabenzenes: the crystal and molecular structures of η6-Cr(CO)3 and η4-Fe(CO)3 complexes of cyclobutabenzene. J. Organomet. Chem., 1997, 542, 19.
[http://dx.doi.org/10.1016/S0022-328X(97)00334-3]
[20]
Frank, N.L.; Siegel, J.S. Advances in Theoretically Interesting Molecules; AI Press Inc.: Greenwich, 1995, Vol. 3, pp. 209-260.
[http://dx.doi.org/10.1016/S1046-5766(06)80007-8]
[21]
Stanger, A.; Vollhardt, K.P.C. The origin of the symmetrical structure of benzene. Is the sigma or the pi frame responsible? An ab-initio study of the effect of HCC bond angle distortion. J. Org. Chem., 1988, 53, 4889-4890.
[http://dx.doi.org/10.1021/jo00255a049]
[22]
Maksić, Z.B.; Eckert-Maksić, M.; Mó, O.; Yáñez, M. Pauling’s legacy: modern modelling of the chemical bond.In: Theor. Comput. Chem; Elsevier: Amsterdam, 1999, Vol. 6, p. 47.
[23]
Mills, W.H.; Nixon, I.G. Stereochemical influences on aromatic substitution. Substitution derivatives of 5-hydroxyhydrindene. J. Chem. Soc., 1930, 2510-2524.
[http://dx.doi.org/10.1039/JR9300002510]
[24]
Behan, J.M.; Dean, F.M.; Johnstone, R.A.W. Photoelectron spectra of cyclic aromatic ethers: the question of the Mills-Nixon effect. Tetrahedron, 1976, 32, 167-171.
[http://dx.doi.org/10.1016/0040-4020(76)80038-5]
[25]
Rosenau, T.; Ebner, G.; Stanger, A.; Perl, S.; Nuri, L. From a theoretical concept to biochemical reactions: Strain-Induced Bond Localization (SIBL) in oxidation of vitamin E. Chemistry, 2004, 11(1), 280-287.
[http://dx.doi.org/10.1002/chem.200400265] [PMID: 15551323]

© 2025 Bentham Science Publishers | Privacy Policy