Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Basic Biology of Trypanosoma cruzi

Author(s): Aline A. Zuma, Emile dos Santos Barrias and Wanderley de Souza*

Volume 27, Issue 14, 2021

Published on: 03 December, 2020

Page: [1671 - 1732] Pages: 62

DOI: 10.2174/1381612826999201203213527

Price: $65

Abstract

The present review addresses basic aspects of the biology of the pathogenic protozoa Trypanosoma cruzi and some comparative information of Trypanosoma brucei. Like eukaryotic cells, their cellular organization is similar to that of mammalian hosts. However, these parasites present structural particularities. That is why the following topics are emphasized in this paper: developmental stages of the life cycle in the vertebrate and invertebrate hosts; the cytoskeleton of the protozoa, especially the sub-pellicular microtubules; the flagellum and its attachment to the protozoan body through specialized junctions; the kinetoplast-mitochondrion complex, including its structural organization and DNA replication; glycosome and its role in the metabolism of the cell; acidocalcisome, describing its morphology, biochemistry, and functional role; cytostome and the endocytic pathway; the organization of the endoplasmic reticulum and Golgi complex; the nucleus, describing its structural organization during interphase and division; and the process of interaction of the parasite with host cells. The unique characteristics of these structures also make them interesting chemotherapeutic targets. Therefore, further understanding of cell biology aspects contributes to the development of drugs for chemotherapy.

Keywords: Cell biology, drug targets, phylogeny, kinetoplastid, trypanosomatids, Trypanosoma cruzi, Trypanosoma brucei, ultrastructure.

[1]
Hoare CA. The Trypanosomes of Mammals. Oxford: Blackwell 1972.
[2]
Simarro PP, Cecchi G, Franco JR, et al. Risk for human African trypanosomiasis, Central Africa, 2000-2009. Emerg Infect Dis 2011; 17(12): 2322-4.
[http://dx.doi.org/10.3201/eid1712.110921] [PMID: 22172322]
[3]
Chagas C. Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz 1909; 1(2): 159-218.
[http://dx.doi.org/10.1590/S0074-02761909000200008]
[4]
Coura JR, Viñas PA. Chagas disease: a new worldwide challenge. Nature 2010; 465(7301): S6-7.
[http://dx.doi.org/10.1038/nature09221] [PMID: 20571554]
[5]
Zingales B. Trypanosoma cruzi genetic diversity: Something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop 2018; 184: 38-52.
[http://dx.doi.org/10.1016/j.actatropica.2017.09.017] [PMID: 28941731]
[6]
Gaunt MW, Yeo M, Frame IA, et al. Mechanism of genetic exchange in American trypanosomes. Nature 2003; 421(6926): 936-9.
[http://dx.doi.org/10.1038/nature01438] [PMID: 12606999]
[7]
Bingle LE, Eastlake JL, Bailey M, Gibson WC. A novel GFP approach for the analysis of genetic exchange in trypanosomes allowing the in situ detection of mating events. Microbiology (Reading) 2001; 147(Pt 12): 3231-40.
[http://dx.doi.org/10.1099/00221287-147-12-3231] [PMID: 11739755]
[8]
Gibson W, Stevens J. Genetic exchange in the trypanosomatidae. Adv Parasitol 1999; 43: 1-46.
[http://dx.doi.org/10.1016/S0065-308X(08)60240-7] [PMID: 10214689]
[9]
de Souza W. Cell biology of Trypanosoma cruzi. Int Rev Cytol 1984; 86: 197-283.
[http://dx.doi.org/10.1016/S0074-7696(08)60180-1] [PMID: 6368447]
[10]
De Souza W. Basic cell biology of Trypanosoma cruzi. Curr Pharm Des 2002; 8(4): 269-85.
[http://dx.doi.org/10.2174/1381612023396276] [PMID: 11860366]
[11]
Souza Wd. Electron microscopy of trypanosomes-a historical view. Mem Inst Oswaldo Cruz 2008; 103(4): 313-25.
[http://dx.doi.org/10.1590/S0074-02762008000400001] [PMID: 18660983]
[12]
Gürtler RE, Cardinal MV. Reservoir host competence and the role of domestic and commensal hosts in the transmission of Trypanosoma cruzi. Acta Trop 2015; 151: 32-50.
[http://dx.doi.org/10.1016/j.actatropica.2015.05.029] [PMID: 26051910]
[13]
Teixeira DE, Benchimol M, Crepaldi PH, et al. Atlas didático: Ciclo de vida do Trypanosoma cruzi. Rio de Janeiro: Fundação CECIERJ, Consórcio CEDERJ 2011.
[14]
Buscaglia CA, Di Noia JM. Trypanosoma cruzi clonal diversity and the epidemiology of Chagas’ disease. Microbes Infect 2003; 5(5): 419-27.
[http://dx.doi.org/10.1016/S1286-4579(03)00050-9] [PMID: 12737998]
[15]
Belew AT, Junqueira C, Rodrigues-Luiz GF, et al. Comparative transcriptome profiling of virulent and non-virulent Trypanosoma cruzi underlines the role of surface proteins during infection. PLoS Pathog 2017; 13(12)
[http://dx.doi.org/10.1371/journal.ppat.1006767] [PMID: 29240831]
[16]
Gourbière S, Dorn P, Tripet F, Dumonteil E. Genetics and evolution of triatomines: from phylogeny to vector control. Heredity 2012; 108(3): 190-202.
[http://dx.doi.org/10.1038/hdy.2011.71] [PMID: 21897436]
[17]
Guhl F. Geographical distribution of Chagas disease. Am. Trypanosom. Chagas Dis 2017; pp. 89-112.
[18]
Vallejo GA, Guhl F, Schaub GA. Triatominae-Trypanosoma cruzi/T. rangeli: Vector-parasite interactions. Acta Trop 2009; 110(2-3): 137-47.
[http://dx.doi.org/10.1016/j.actatropica.2008.10.001] [PMID: 18992212]
[19]
Melo RFP, Guarneri AA, Silber AM. The Influence of Environmental Cues on the Development of Trypanosoma cruzi in Triatominae Vector. Front Cell Infect Microbiol 2020; 10: 27.
[http://dx.doi.org/10.3389/fcimb.2020.00027] [PMID: 32154185]
[20]
Brack C. Elektronmikroskopische Untersuchungen zum Lebenszyklus von Trypanosoma cruzi. Acta Trop 1968; 25: 289-356.
[PMID: 4388645]
[21]
Brener Z. A new aspect of Trypanosoma cruzi life-cycle in the invertebrate host. J Protozool 1972; 19(1): 23-7.
[http://dx.doi.org/10.1111/j.1550-7408.1972.tb03408.x] [PMID: 4550452]
[22]
Ferreira RT, Melandre AM, Cabral ML, Branquinho MR, Cardarelli-Leite P. Extraction of Trypanosoma cruzi DNA from food: a contribution to the elucidation of acute Chagas disease outbreaks. Rev Soc Bras Med Trop 2016; 49(2): 190-5.
[http://dx.doi.org/10.1590/0037-8682-0414-2015] [PMID: 27192588]
[23]
Kessler RL, Pavoni DP, Krieger MA, Probst CM. Trypanosoma cruzi specific mRNA amplification by in vitro transcription improves parasite transcriptomics in host-parasite RNA mixtures. BMC Genomics 2017; 18(1): 793.
[http://dx.doi.org/10.1186/s12864-017-4163-y] [PMID: 29037144]
[24]
Guarneri AA, Lorenzo MG. Triatomine physiology in the context of trypanosome infection. J Insect Physiol 2017; 97: 66-76.
[http://dx.doi.org/10.1016/j.jinsphys.2016.07.005] [PMID: 27401496]
[25]
Alves CR, Albuquerque-Cunha JM, Mello CB, et al. Trypanosoma cruzi: attachment to perimicrovillar membrane glycoproteins of Rhodnius prolixus. Exp Parasitol 2007; 116(1): 44-52.
[http://dx.doi.org/10.1016/j.exppara.2006.11.012] [PMID: 17250827]
[26]
Alves MJ, Colli W. Trypanosoma cruzi: adhesion to the host cell and intracellular survival. IUBMB Life 2007; 59(4-5): 274-9.
[http://dx.doi.org/10.1080/15216540701200084] [PMID: 17505965]
[27]
Uehara LA, Moreira OC, Oliveira AC, et al. Cruzipain promotes Trypanosoma cruzi adhesion to Rhodnius prolixus midgut. PLoS Negl Trop Dis 2012; 6(12)
[http://dx.doi.org/10.1371/journal.pntd.0001958] [PMID: 23272264]
[28]
Rebello KM, Uehara LA, Ennes-Vidal V, et al. Participation of Trypanosoma cruzi gp63 molecules on the interaction with Rhodnius prolixus. Parasitology 2019; 146(8): 1075-82.
[http://dx.doi.org/10.1017/S0031182019000441] [PMID: 31057143]
[29]
Schaub GA. Trypanosoma cruzi: quantitative studies of development of two strains in small intestine and rectum of the vector Triatoma infestans. Exp Parasitol 1989; 68(3): 260-73.
[http://dx.doi.org/10.1016/0014-4894(89)90108-2] [PMID: 2649388]
[30]
Garcia ES, Azambuja P. Development and interactions of Trypanosoma cruzi within the insect vector. Parasitol Today 1991; 7(9): 240-4.
[http://dx.doi.org/10.1016/0169-4758(91)90237-I] [PMID: 15463507]
[31]
Kleffmann T, Schmidt J, Schaub GA. Attachment of Trypanosoma cruzi epimastigotes to hydrophobic substrates and use of this property to separate stages and promote metacyclogenesis. J Eukaryot Microbiol 1998; 45(5): 548-55.
[http://dx.doi.org/10.1111/j.1550-7408.1998.tb05115.x] [PMID: 9783457]
[32]
Gonzales-Perdomo M, Romero P, Goldenberg S. Cyclic AMP and adenylate cyclase activators stimulate Trypanosoma cruzi differentiation. Exp Parasitol 1988; 66(2): 205-12.
[http://dx.doi.org/10.1016/0014-4894(88)90092-6] [PMID: 2840306]
[33]
Ferreira CM, Stiebler R, Saraiva FM, et al. Heme crystallization in a Chagas disease vector acts as a redox-protective mechanism to allow insect reproduction and parasite infection. PLoS Negl Trop Dis 2018; 12(7)
[http://dx.doi.org/10.1371/journal.pntd.0006661] [PMID: 30036366]
[34]
Fernández-Presas AM, Zavala JT, Fauser IB, Merchant MT, Guerrero LR, Willms K. Ultrastructural damage of Trypanosoma cruzi epimastigotes exposed to decomplemented immune sera. Parasitol Res 2001; 87(8): 619-25.
[http://dx.doi.org/10.1007/s004360100409] [PMID: 11510997]
[35]
Ferguson MA, Brimacombe JS, Brown JR, et al. The GPI biosynthetic pathway as a therapeutic target for African sleeping sickness. Biochim Biophys Acta 1999; 1455(2-3): 327-40.
[http://dx.doi.org/10.1016/S0925-4439(99)00058-7] [PMID: 10571022]
[36]
Previato JO. alpha-2,3-sialyllactitol is a donor substrate for Trypanosoma cruzi trans-sialidase. Glycobiology 2004; 14(10): 25G.
[http://dx.doi.org/10.1093/glycob/cwh124] [PMID: 15382323]
[37]
El-Sayed NM, Myler PJ, Blandin G, et al. Comparative genomics of trypanosomatid parasitic protozoa. Science 2005; 309(5733): 404-9.
[http://dx.doi.org/10.1126/science.1112181] [PMID: 16020724]
[38]
Berná L, Rodriguez M, Chiribao ML, et al. Expanding an expanded genome: long-read sequencing of Trypanosoma cruzi. Microb Genom 2018; 4(5)
[http://dx.doi.org/10.1099/mgen.0.000177] [PMID: 29708484]
[39]
Gumiel M, Da Mota FF. Characterization of the microbiota in the guts of Triatoma brasiliensis and Triatoma pseudomaculata infected by Trypanosoma cruzi in natural conditions using culture independent methods. Parasit Vectors 2015; 24(8): 245.
[40]
Azambuja P, Garcia ES, Ratcliffe NA. Gut microbiota and parasite transmission by insect vectors. Trends Parasitol 2005; 21(12): 568-72.
[http://dx.doi.org/10.1016/j.pt.2005.09.011] [PMID: 16226491]
[41]
Castro DP, Seabra SH, Garcia ES, de Souza W, Azambuja P. Trypanosoma cruzi: ultrastructural studies of adhesion, lysis and biofilm formation by Serratia marcescens. Exp Parasitol 2007; 117(2): 201-7.
[http://dx.doi.org/10.1016/j.exppara.2007.04.014] [PMID: 17570364]
[42]
Buarque DS, Gomes CM, Araújo RN, et al. A new antimicrobial protein from the anterior midgut of Triatoma infestans mediates Trypanosoma cruzi establishment by controlling the microbiota. Biochimie 2016; 123: 138-43.
[http://dx.doi.org/10.1016/j.biochi.2016.02.009] [PMID: 26905205]
[43]
de Oliveira ABB, Alevi KCC, Imperador CHL, Madeira FF, Azeredo-Oliveira MTV. Parasite-Vector Interaction of Chagas Disease: A Mini-Review. Am J Trop Med Hyg 2018; 98(3): 653-5.
[http://dx.doi.org/10.4269/ajtmh.17-0657] [PMID: 29514731]
[44]
Moreira BP, Fonseca CK, Hammarton TC, Baqui MM. Giant FAZ10 is required for flagellum attachment zone stabilization and furrow positioning in Trypanosoma brucei. J Cell Sci 2017; 130(6): 1179-93.
[http://dx.doi.org/10.1242/jcs.194308] [PMID: 28193733]
[45]
Mesquita RD, Vionette-Amaral RJ, Lowenberger C, et al. Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc Natl Acad Sci USA 2015; 112(48): 14936-41.
[http://dx.doi.org/10.1073/pnas.1506226112] [PMID: 26627243]
[46]
Vieira CB, Praça YR, Bentes KLDS, et al. Triatomines: Trypanosomatids, Bacteria, and Viruses Potential Vectors? Front Cell Infect Microbiol 2018; 8: 405.
[http://dx.doi.org/10.3389/fcimb.2018.00405] [PMID: 30505806]
[47]
Neves DP. Influência da temperatura na evolução do Trypanosoma cruzi em triatomineos. Rev Inst Med Trop São Paulo 1971; 13(3): 155-61.
[PMID: 4935141]
[48]
Catalá SS, Gorla DE, Basombrio MA. Vectorial transmission of Trypanosoma cruzi: an experimental field study with susceptible and immunized hosts. Am J Trop Med Hyg 1992; 47(1): 20-6.
[http://dx.doi.org/10.4269/ajtmh.1992.47.20] [PMID: 1636879]
[49]
Asin S, Catalá S. Development of Trypanosoma cruzi in Triatoma infestans: influence of temperature and blood consumption. J Parasitol 1995; 81(1): 1-7.
[http://dx.doi.org/10.2307/3283997] [PMID: 7876960]
[50]
Elliot SL, Rodrigues Jde O, Lorenzo MG, Martins-Filho OA, Guarneri AA. Trypanosoma cruzi, etiological agent of Chagas disease, is virulent to its triatomine vector Rhodnius prolixus in a temperature-dependent manner. PLoS Negl Trop Dis 2015; 9(3)
[http://dx.doi.org/10.1371/journal.pntd.0003646] [PMID: 25793495]
[51]
Matthews KR. The developmental cell biology of Trypanosoma brucei. J Cell Sci 2005; 118(Pt 2): 283-90.
[http://dx.doi.org/10.1242/jcs.01649] [PMID: 15654017]
[52]
Matthews KR. Developments in the differentiation of Trypanosoma brucei. Parasitol Today 1999; 15(2): 76-80.
[http://dx.doi.org/10.1016/S0169-4758(98)01381-7] [PMID: 10234191]
[53]
Fenn K, Matthews KR. The cell biology of Trypanosoma brucei differentiation. Curr Opin Microbiol 2007; 10(6): 539-46.
[http://dx.doi.org/10.1016/j.mib.2007.09.014] [PMID: 17997129]
[54]
Gibson W, Bailey M. The development of Trypanosoma brucei within the tsetse fly midgut observed using green fluorescent trypanosomes. Kinetoplastid Biol Dis 2003; 2(1): 1.
[http://dx.doi.org/10.1186/1475-9292-2-1] [PMID: 12769824]
[55]
Silvester E, McWilliam KR, Matthews KR. The Cytological Events and Molecular Control of Life Cycle Development of Trypanosoma brucei in the Mammalian Bloodstream. Pathogens 2017; 6(3): 29.
[http://dx.doi.org/10.3390/pathogens6030029] [PMID: 28657594]
[56]
Roditi I, Schwarz H, Pearson TW, et al. Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of Trypanosoma brucei. J Cell Biol 1989; 108(2): 737-46.
[http://dx.doi.org/10.1083/jcb.108.2.737] [PMID: 2645304]
[57]
Urwyler S, Studer E, Renggli CK, Roditi I. A family of stage-specific alanine-rich proteins on the surface of epimastigote forms of Trypanosoma brucei. Mol Microbiol 2007; 63(1): 218-28.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05492.x] [PMID: 17229212]
[58]
Peacock L, Ferris V, Sharma R, et al. Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly. Proc Natl Acad Sci USA 2011; 108(9): 3671-6.
[http://dx.doi.org/10.1073/pnas.1019423108] [PMID: 21321215]
[59]
Stevens JR. Kinetoplastid phylogenetics, with special reference to the evolution of parasitic trypanosomes. Parasite 2008; 15(3): 226-32.
[http://dx.doi.org/10.1051/parasite/2008153226] [PMID: 18814685]
[60]
Kaufer A, Ellis J, Stark D, et al. The evolution of trypanosomatid taxonomy. Parasit Vectors 2017; 8(10): 287.
[http://dx.doi.org/10.1186/s13071-017-2204-7]
[61]
Maslov DA, Opperdoes FR, Kostygov AY, Hashimi H, Lukeš J, Yurchenko V. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 2019; 146(1): 1-27.
[http://dx.doi.org/10.1017/S0031182018000951] [PMID: 29898792]
[62]
Choi J, El-Sayed NM. Functional genomics of trypanosomatids. Parasite Immunol 2012; 34(2-3): 72-9.
[http://dx.doi.org/10.1111/j.1365-3024.2011.01347.x] [PMID: 22132795]
[63]
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol 2014; 195(2): 115-22.
[http://dx.doi.org/10.1016/j.molbiopara.2014.05.007] [PMID: 24893339]
[64]
Jackson AP. Genome evolution in trypanosomatid parasites. Parasitology 2015; 142(Suppl. 1): S40-56.
[http://dx.doi.org/10.1017/S0031182014000894] [PMID: 25068268]
[65]
Dvorak JA, Hall TE, Crane MS, Engel JC, McDaniel JP, Uriegas R. Trypanosoma cruzi: flow cytometric analysis. I. Analysis of total DNA/organism by means of mithramycin-induced fluorescence. J Protozool 1982; 29(3): 430-7.
[http://dx.doi.org/10.1111/j.1550-7408.1982.tb05427.x] [PMID: 6182288]
[66]
Zingales B, Miles MA, Campbell DA, et al. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol 2012; 12(2): 240-53.
[http://dx.doi.org/10.1016/j.meegid.2011.12.009] [PMID: 22226704]
[67]
Brenière SF, Waleckx E, Barnabé C. Over Six Thousand Trypanosoma cruzi Strains Classified into Discrete Typing Units (DTUs): Attempt at an Inventory. PLoS Negl Trop Dis 2016; 10(8)e0004792
[68]
Guhl F, Ramírez JD. Trypanosoma cruzi I diversity: towards the need of genetic subdivision? Acta Trop 2011; 119(1): 1-4.
[http://dx.doi.org/10.1016/j.actatropica.2011.04.002] [PMID: 21510916]
[69]
Chiurillo MA, Cortez DR, Lima FM, et al. The diversity and expansion of the trans-sialidase gene family is a common feature in Trypanosoma cruzi clade members. Infect Genet Evol 2016; 37: 266-74.
[http://dx.doi.org/10.1016/j.meegid.2015.11.024] [PMID: 26640033]
[70]
Ramírez JD, Hernández C. Trypanosoma cruzi I: Towards the need of genetic subdivision? Part II. Acta Trop 2018; 184: 53-8.
[http://dx.doi.org/10.1016/j.actatropica.2017.05.005] [PMID: 28495405]
[71]
Teixeira SM, de Paiva RM, Kangussu-Marcolino MM, Darocha WD. Trypanosomatid comparative genomics: Contributions to the study of parasite biology and different parasitic diseases. Genet Mol Biol 2012; 35(1): 1-17.
[http://dx.doi.org/10.1590/S1415-47572012005000008] [PMID: 22481868]
[72]
Zingales B, Araujo RG, Moreno M, et al. A novel ABCG-like transporter of Trypanosoma cruzi is involved in natural resistance to benznidazole. Mem Inst Oswaldo Cruz 2015; 110(3): 433-44.
[http://dx.doi.org/10.1590/0074-02760140407] [PMID: 25946152]
[73]
Laurent JP, Barnabe C, Quesney V, Noel S, Tibayrenc M. Impact of clonal evolution on the biological diversity of Trypanosoma cruzi. Parasitology 1997; 114(Pt 3): 213-8.
[http://dx.doi.org/10.1017/S0031182096008414] [PMID: 9075341]
[74]
Revollo S, Oury B, Laurent JP, et al. Trypanosoma cruzi: impact of clonal evolution of the parasite on its biological and medical properties. Exp Parasitol 1998; 89(1): 30-9.
[http://dx.doi.org/10.1006/expr.1998.4216] [PMID: 9603486]
[75]
Telleria J, Biron DG, Brizard JP, et al. Phylogenetic character mapping of proteomic diversity shows high correlation with subspecific phylogenetic diversity in Trypanosoma cruzi. Proc Natl Acad Sci USA 2010; 107(47): 20411-6.
[http://dx.doi.org/10.1073/pnas.1015496107] [PMID: 21059959]
[76]
Molinari J, Moreno SA. Trypanosoma brucei Plimmer & Bradford, 1899 is a synonym of T. evansi (Steel, 1885) according to current knowledge and by application of nomenclature rules. Syst Parasitol 2018; 95(2-3): 249-56.
[http://dx.doi.org/10.1007/s11230-018-9779-z] [PMID: 29411297]
[77]
Camargo EP. Growth and Differentiation in Trypanosoma cruzi. I. Origin of Metacyclic Trypanosomes in Liquid Media. Rev Inst Med Trop São Paulo 1964; 6: 93-100.
[PMID: 14177814]
[78]
Gonçalves CS, Ávila AR, de Souza W, Motta MCM, Cavalcanti DP. Revisiting the Trypanosoma cruzi metacyclogenesis: morphological and ultrastructural analyses during cell differentiation. Parasit Vectors 2018; 11(1): 83.
[http://dx.doi.org/10.1186/s13071-018-2664-4] [PMID: 29409544]
[79]
Goldenberg S, Avila AR. Aspects of Trypanosoma cruzi stage differentiation. Adv Parasitol 2011; 75: 285-305.
[http://dx.doi.org/10.1016/B978-0-12-385863-4.00013-7] [PMID: 21820561]
[80]
Cazzulo JJ. Aerobic fermentation of glucose by trypanosomatids. FASEB J 1992; 6(13): 3153-61.
[http://dx.doi.org/10.1096/fasebj.6.13.1397837] [PMID: 1397837]
[81]
Urbina JA. Intermediary metabolism of Trypanosoma cruzi. Parasitol Today 1994; 10(3): 107-10.
[http://dx.doi.org/10.1016/0169-4758(94)90010-8] [PMID: 15275492]
[82]
Franke de Cazzulo BM, Martínez J, North MJ, Coombs GH, Cazzulo JJ. Effects of proteinase inhibitors on the growth and differentiation of Trypanosoma cruzi. FEMS Microbiol Lett 1994; 124(1): 81-6.
[http://dx.doi.org/10.1111/j.1574-6968.1994.tb07265.x] [PMID: 8001773]
[83]
Contreras VT, Morel CM, Goldenberg S. Stage specific gene expression precedes morphological changes during Trypanosoma cruzi metacyclogenesis. Mol Biochem Parasitol 1985; 14(1): 83-96.
[http://dx.doi.org/10.1016/0166-6851(85)90108-2] [PMID: 3885031]
[84]
Bonaldo MC, Souto-Padron T, de Souza W, Goldenberg S. Cell-substrate adhesion during Trypanosoma cruzi differentiation. J Cell Biol 1988; 106(4): 1349-58.
[http://dx.doi.org/10.1083/jcb.106.4.1349] [PMID: 3283152]
[85]
Ávila AR, Yamada-Ogatta SF, da Silva Monteiro V, et al. Cloning and characterization of the metacyclogenin gene, which is specifically expressed during Trypanosoma cruzi metacyclogenesis. Mol Biochem Parasitol 2001; 117(2): 169-77.
[http://dx.doi.org/10.1016/S0166-6851(01)00346-2] [PMID: 11606227]
[86]
Zimmermann D, Peters W, Schaub GA. Differences in binding of lectin-gold conjugates by Trypanosoma cruzi and Blastocrithidia triatomae (Trypanosomatidae) in the intestine of Triatoma infestans (Reduviidae). Parasitol Res 1987; 74(1): 5-10.
[http://dx.doi.org/10.1007/BF00534924] [PMID: 3125542]
[87]
Bourguignon SC, de Souza W, Souto-Padrón T. Localization of lectin-binding sites on the surface of Trypanosoma cruzi grown in chemically defined conditions. Histochem Cell Biol 1998; 110(5): 527-34.
[http://dx.doi.org/10.1007/s004180050314] [PMID: 9826132]
[88]
Schaub GA, Kleffmann T, Kollien AH, Schmidt J. Hydrophobic attachment of Trypanosoma cruzi to the rectal cuticle of Triatoma infestans and its influence on metacyclogenesis - a review. Tokai J Exp Clin Med 1998; 23(6): 321-7.
[PMID: 10622629]
[89]
Colli W, Alves MJ. Relevant glycoconjugates on the surface of Trypanosoma cruzi. Mem Inst Oswaldo Cruz 1999; 94(Suppl. 1): 37-49.
[http://dx.doi.org/10.1590/S0074-02761999000700004] [PMID: 10677690]
[90]
de Godoy LM, Marchini FK, Pavoni DP, et al. Quantitative proteomics of Trypanosoma cruzi during metacyclogenesis. Proteomics 2012; 12(17): 2694-703.
[http://dx.doi.org/10.1002/pmic.201200078] [PMID: 22761176]
[91]
Andrade LO, Machado CR, Chiari E, et al. Differential tissue distribution of diverse clones of Trypanosoma cruzi in infected mice. Mol Biochem Parasitol 1999; 100(2): 163-72.
[92]
Barrias ES, de Carvalho TM, De Souza W. Trypanosoma cruzi: Entry into Mammalian Host Cells and Parasitophorous Vacuole Formation. Front Immunol 2013; 4: 186.
[http://dx.doi.org/10.3389/fimmu.2013.00186] [PMID: 23914186]
[93]
Stahl P, Meyer T. Novel Insights into the Pathophysiology of Chagas’ Cardiomyopathy. Cardiomyopathies - Types and Treatments 2017.
[http://dx.doi.org/10.5772/65945]
[94]
Ferraz NF, da Veiga FK, Aleixo DL, et al. Biotherapies of rabbit serum modulate the immune response and decrease parasite load in mice infected with Trypanosoma cruzi. J Appl Biomed 2016; (14): 187-97.
[http://dx.doi.org/10.1016/j.jab.2015.11.003]
[95]
Romaña C, Meyer H. Estudo do ciclo evolutivo do Schizotrypanum cruzi em cultura de tecidos de embrião de galinha. Mem Inst Oswaldo Cruz 1942; 37: 19-27.
[http://dx.doi.org/10.1590/S0074-02761942000100003]
[96]
Meyer H, Xavier De Oliveira M. Cultivation of Trypanosoma cruzi in tissue cultures; a 4-year study. Parasitology 1948; 39(1-2): 91-4.
[http://dx.doi.org/10.1017/S0031182000083591] [PMID: 18876881]
[97]
Araújo Jorge TC, Barbosa HS, Moreira AL, De Souza W, Meirelles MN. The interaction of myotropic and macrophagotropic strains of Trypanosoma cruzi with myoblasts and fibers of skeletal muscle. Z Parasitenkd 1986; 72(5): 577-84.
[http://dx.doi.org/10.1007/BF00925477] [PMID: 3535281]
[98]
Velasco JR, Adroher FJ, Osuna A. In vitro survival of amastigote forms of Trypanosoma cruzi in media conditioned by Vero cells. Chemosphere 1990; 21(1-2): 263-8.
[http://dx.doi.org/10.1016/0045-6535(90)90398-D]
[99]
de Souza W, de Carvalho TM, Barrias ES. Review on Trypanosoma cruzi: Host Cell Interaction. Int J Cell Biol 2010; 2010.
[http://dx.doi.org/10.1155/2010/295394] [PMID: 20811486]
[100]
Nogueira NP, Saraiva FM, Sultano PE, et al. Proliferation and differentiation of Trypanosoma cruzi inside its vector have a new trigger: redox status. PLoS One 2015; 10(2)
[http://dx.doi.org/10.1371/journal.pone.0116712] [PMID: 25671543]
[101]
Contreras VT, Araujo-Jorge TC, Bonaldo MC, et al. Biological aspects of the Dm 28c clone of Trypanosoma cruzi after metacyclogenesis in chemically defined media. Mem Inst Oswaldo Cruz 1988; 83(1): 123-33.
[http://dx.doi.org/10.1590/S0074-02761988000100016] [PMID: 3074237]
[102]
Correa V, Briceño J, Zúñiga J, et al. [Trypanosoma cruzi infection in domestic animals in rural sections of the IV Region, Chile]. Bol Chil. Parasitol.37(1-2): 27-8.
[PMID: 6820288]
[103]
Fujita O, Sanabria L, Inchaustti A, De Arias AR, Tomizawa Y, Oku Y. Animal reservoirs for Trypanosoma cruzi infection in an endemic area in Paraguay. J Vet Med Sci 1994; 56(2): 305-8.
[http://dx.doi.org/10.1292/jvms.56.305] [PMID: 8075219]
[104]
Salazar-Schettino PM, Bucio MI, Cabrera M, Bautista J. First case of natural infection in pigs. Review of Trypanosoma cruzi reservoirs in Mexico. Mem Inst Oswaldo Cruz 1997; 92(4): 499-502.
[http://dx.doi.org/10.1590/S0074-02761997000400010] [PMID: 9361743]
[105]
Truc P, Büscher P, Cuny G, et al. Atypical human infections by animal trypanosomes. PLoS Negl Trop Dis 2013; 7(9)
[http://dx.doi.org/10.1371/journal.pntd.0002256] [PMID: 24069464]
[106]
Collier HOJ, Fulton JD, Innes JRM. The oedema of mice infected with Trypanosoma cruzi and the accompanying pathological lesions. Ann Trop Med Parasitol 1942; 36: 137-50.
[http://dx.doi.org/10.1080/00034983.1942.11685149]
[107]
Federici EE, Abelmann WH, Neva FA. Chronic and progressive myocarditis and myositis in c3h mice infected with Trypanosoma cruzi. Am J Trop Med Hyg 1964; 13: 272-80.
[http://dx.doi.org/10.4269/ajtmh.1964.13.272] [PMID: 14125879]
[108]
Schlemper BR Jr, Avila CM, Coura JR, et al. Course of infection and histopathological lesions in mice infected with seventeen Trypanosoma cruzi strains isolated from chronic patients. Rev Soc Bras Med Trop 1983; 16: 23-30.
[http://dx.doi.org/10.1590/S0037-86821983000100004]
[109]
Rossi MA, Gonçalves S, Ribeiro-dos-Santos R. Experimental Trypanosoma cruzi cardiomyopathy in BALB/c mice. The potential role of intravascular platelet aggregation in its genesis. Am J Pathol 1984; 114(2): 209-16.
[PMID: 6230012]
[110]
Camandaroba E, Thé TS, Pessina DH, Andrade SG. Trypanosoma cruzi: clones isolated from the Colombian strain, reproduce the parental strain characteristics, with ubiquitous histotropism. Int J Exp Pathol 2006; 87(3): 209-17.
[http://dx.doi.org/10.1111/j.1365-2613.2006.00476.x] [PMID: 16709229]
[111]
Camandaroba ELP, Pinheiro Lima CM, Andrade SG. Oral transmission of Chagas disease: importance of Trypanosoma cruzi biodeme in the intragastric experimental infection. Rev Inst Med Trop São Paulo 2002; 44(2): 97-103.
[http://dx.doi.org/10.1590/S0036-46652002000200008] [PMID: 12048547]
[112]
Michailowsky V, Silva NM, Rocha CD, Vieira LQ, Lannes-Vieira J, Gazzinelli RT. Pivotal role of interleukin-12 and interferon-gamma axis in controlling tissue parasitism and inflammation in the heart and central nervous system during Trypanosoma cruzi infection. Am J Pathol 2001; 159(5): 1723-33.
[http://dx.doi.org/10.1016/S0002-9440(10)63019-2] [PMID: 11696433]
[113]
Garcia S, Ramos CO, Senra JF, et al. Treatment with benznidazole during the chronic phase of experimental Chagas’ disease decreases cardiac alterations. Antimicrob Agents Chemother 2005; 49(4): 1521-8.
[http://dx.doi.org/10.1128/AAC.49.4.1521-1528.2005] [PMID: 15793134]
[114]
Marinho CR, Nuñez-Apaza LN, Bortoluci KR, et al. Infection by the Sylvio X10/4 clone of Trypanosoma cruzi: relevance of a low-virulence model of Chagas’ disease. Microbes Infect 2009; 11(13): 1037-45.
[http://dx.doi.org/10.1016/j.micinf.2009.07.011] [PMID: 19660570]
[115]
Błyszczuk P. Myocarditis in Humans and in Experimental Animal Models. Front Cardiovasc Med 2019; 6: 64.
[http://dx.doi.org/10.3389/fcvm.2019.00064] [PMID: 31157241]
[116]
Pizzi T, Rubio M, Knierim F. Immunology of Chagas’ disease. Bol Chil Parasitol 1954; 9(2): 35-47.
[PMID: 13189945]
[117]
Lumb G, Shacklett RS, Dawkins WA. The cardiac conduction tissue and its blood supply in the dog. Am J Pathol 1959; 35(3): 467-87.
[PMID: 13649883]
[118]
Mirowski M, Lau SH, Bobb GA, Steiner C, Damato AN. Studies on left atrial automaticity in dogs. Circ Res 1970; 26(3): 317-25.
[http://dx.doi.org/10.1161/01.RES.26.3.317] [PMID: 5415861]
[119]
Guedes PMM, Veloso VM, Tafuri WL, et al. The dog as model for chemotherapy of the Chagas’ disease. Acta Trop 2002; 84(1): 9-17.
[http://dx.doi.org/10.1016/S0001-706X(02)00139-0] [PMID: 12387906]
[120]
Teixeira AR, Teixeira ML, Santos-Buch CA. The immunology of experimental Chagas’ disease. IV. Production of lesions in rabbits similar to those of chronic Chagas’ disease in man. Am J Pathol 1975; 80(1): 163-80.
[PMID: 808136]
[121]
Moreira-Silva A, Ramirez LE, Vargas M, et al. Evaluation of rabbit as a model for Chagas disease: II histopatological studies of the heart, digestive tract and skeletal muscle. Memorias do Inst. Osw. Cruz 1996; 91: 199-202.
[122]
Andrade ZA, Andrade SG. Pathology of experimental Chagas disease in dogs. Mem Inst Oswaldo Cruz 1980; 75(3-4): 77-95.
[http://dx.doi.org/10.1590/S0074-02761980000200008] [PMID: 6815410]
[123]
Chiari E, Tafuri WL, Bambirra EA, et al. The rabbit as a laboratory animal for studies on Chagas’ disease. Research note. Rev Inst Med Trop São Paulo 1980; 22(4): 207-8.
[PMID: 6782639]
[124]
Ramirez LE, Brener Z. Evaluation of the rabbit as a model for Chagas’ disease. I. Parasitological studies. Mem Inst Oswaldo Cruz 1987; 82(4): 531-6.
[http://dx.doi.org/10.1590/S0074-02761987000400010] [PMID: 3149386]
[125]
Bafort JM, Kageruka P, Timperman GT. A new, highly susceptible laboratory animal for Chagas’s disease. Trans R Soc Trop Med Hyg 1973; 67(4): 434-5.
[http://dx.doi.org/10.1016/0035-9203(73)90055-2] [PMID: 4206522]
[126]
Gutteridge WE, Cover B, Gaborak M. Isolation of blood and intracellular forms of Trypansoma cruzi from rats and other rodents and preliminary studies of their metabolism. Parasitology 1978; 76(2): 159-76.
[http://dx.doi.org/10.1017/S0031182000047740] [PMID: 206867]
[127]
Dunn FL, Lambrecht FL, Duplessis R. Trypanosomes of South American Monkeys and Marmosets. Am J Trop Med Hyg 1963; 12: 524-34.
[http://dx.doi.org/10.4269/ajtmh.1963.12.524] [PMID: 14044764]
[128]
Seah SK, Marsden PD, Voller A, Pettitt LE. Experimental Trypanosoma cruzi infection in rhesus monkeys-the acute phase. Trans R Soc Trop Med Hyg 1974; 68(1): 63-9.
[http://dx.doi.org/10.1016/0035-9203(74)90254-5] [PMID: 4206531]
[129]
Marsden PD, Seah SK, Draper CC, Pettitt LE, Miles MA, Voller A. Experimental Trypanosoma cruzi infections in rhesus monkeys. II. The early chronic phase. Trans R Soc Trop Med Hyg 1976; 70(3): 247-51.
[http://dx.doi.org/10.1016/0035-9203(76)90049-3] [PMID: 824765]
[130]
Miles MA, Marsden PD, Pettitt LE, et al. Experimental Trypanosoma cruzi infection in rhesus monkeys 111. Electrocardiographic and histopathological findings. Trans R Soc Trop Med Hyg 1979; 73(5): 528-32.
[http://dx.doi.org/10.1016/0035-9203(79)90044-0] [PMID: 119339]
[131]
Zabalgoitia M, Ventura J, Anderson L, Carey KD, Williams JT, Vandeberg JL. Morphologic and functional characterization of Chagasic heart disease in non-human primates. Am J Trop Med Hyg 2003; 68(2): 248-52.
[http://dx.doi.org/10.4269/ajtmh.2003.68.248] [PMID: 12641420]
[132]
Cox LA, Olivier M, Spradling-Reeves K, et al. Nonhuman Primates and Translational Research-Cardiovascular Disease. ILAR J 2017; 58(2): 235-50.
[http://dx.doi.org/10.1093/ilar/ilx025]
[133]
Hirumi H, Hirumi K. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J Parasitol 1989; 75(6): 985-9.
[http://dx.doi.org/10.2307/3282883] [PMID: 2614608]
[134]
Yabu Y. An axenic culture system for the transformation of bloodstream forms to procyclic forms of Trypanosoma brucei brucei in vitro. Southeast Asian J Trop Med Public Health 1993; 24(4): 706-11.
[PMID: 7939945]
[135]
Cross GAM, Manning JC. Cultivation of Trypanosoma brucei sspp. in semi-defined and defined media. Parasitology 1973; 67(3): 315-31.
[http://dx.doi.org/10.1017/S0031182000046540] [PMID: 4761771]
[136]
Brun R. Schönenberger. Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta Trop 1979; 36(3): 289-92.
[PMID: 43092]
[137]
Godfrey DG, Lanham SM. Diagnosis of Gambian trypanosomiasis in man by isolating trypanosomes from blood passed through DEAE-cellulose. Bull World Health Organ 1971; 45(1): 13-9.
[PMID: 5316849]
[138]
de Souza W. Macro, micro and nano domains in the membrane of parasitic protozoa. Parasitol Int 2007; 56(3): 161-70.
[http://dx.doi.org/10.1016/j.parint.2007.02.001] [PMID: 17347028]
[139]
Mucci J, Lantos AB, Buscaglia CA, Leguizamón MS, Campetella O. The Trypanosoma cruzi Surface, a Nanoscale Patchwork Quilt. Trends Parasitol 2017; 33(2): 102-12.
[http://dx.doi.org/10.1016/j.pt.2016.10.004] [PMID: 27843019]
[140]
Vickerman K. The mechanism of cyclical development in trypanosomes of the Trypanosoma brucei sub-group: an hypothesis based on ultrastructural observations. Trans R Soc Trop Med Hyg 1962; 56: 487-95.
[http://dx.doi.org/10.1016/0035-9203(62)90072-X] [PMID: 13997060]
[141]
Vickerman K. On the surface coat and flagellar adhesion in trypanosomes. J Cell Sci 1969; 5(1): 163-93.
[PMID: 5353653]
[142]
Perdomo D, Bonhivers M, Robinson DR. The Trypanosome Flagellar Pocket Collar and Its Ring Forming Protein-TbBILBO1. Cells 2016; 5(1): 9.
[http://dx.doi.org/10.3390/cells5010009] [PMID: 26950156]
[143]
Rocha GM, Teixeira DE, Miranda K, Weissmüller G, Bisch PM, de Souza W. Structural changes of the paraflagellar rod during flagellar beating in Trypanosoma cruzi. PLoS One 2010; 5(6)
[http://dx.doi.org/10.1371/journal.pone.0011407] [PMID: 20613980]
[144]
Pimenta PF, de Souza W, Souto-Padrón T, Pinto da Silva P. The cell surface of Trypanosoma cruzi: a fracture-flip, replica-staining label-fracture survey. Eur J Cell Biol 1989; 50(2): 263-71.
[PMID: 2483376]
[145]
De Souza W. Structural organization of the cell surface of pathogenic protozoa. Micron 1995; 26(5): 405-30.
[http://dx.doi.org/10.1016/0968-4328(95)00010-0] [PMID: 8640360]
[146]
Vickerman K, Luckins AG. Localization of variable antigens in the surface coat of Trypanosoma brucei using ferritin conjugated antibody. Nature 1969; 224(5224): 1125-6.
[http://dx.doi.org/10.1038/2241125a0] [PMID: 5353729]
[147]
McCulloch R, Cobbold CA, Figueiredo L, et al. Emerging challenges in understanding trypanosome antigenic variation. Emerg Top Life Sci 2017; 1(6): 585-92.
[http://dx.doi.org/10.1042/ETLS20170104] [PMID: 30271884]
[148]
Engman DM, Krause KH, Blumin JH, Kim KS, Kirchhoff LV, Donelson JE. A novel flagellar Ca2+-binding protein in trypanosomes. J Biol Chem 1989; 264(31): 18627-31.
[PMID: 2681200]
[149]
Emmer BT, Nakayasu ES, Souther C, et al. Global analysis of protein palmitoylation in African trypanosomes. Eukaryot Cell 2011; 10(3): 455-63.
[http://dx.doi.org/10.1128/EC.00248-10] [PMID: 21193548]
[150]
Tull D, Vince JE, Callaghan JM, et al. SMP-1, a member of a new family of small myristoylated proteins in kinetoplastid parasites, is targeted to the flagellum membrane in Leishmania. Mol Biol Cell 2004; 15(11): 4775-86.
[http://dx.doi.org/10.1091/mbc.e04-06-0457] [PMID: 15342784]
[151]
Landfear SM, Ignatushchenko M. The flagellum and flagellar pocket of trypanosomatids. Mol Biochem Parasitol 2001; 115(1): 1-17.
[http://dx.doi.org/10.1016/S0166-6851(01)00262-6] [PMID: 11377735]
[152]
Oberholzer M, Langousis G, Nguyen HT, et al. Independent Analysis of the Flagellum Surface and Matrix Proteomes Provides Insight into Flagellum Signaling in Mammalian-Infectious Trypanosoma brucei. Mol Cell Proteomics 2011; 10(10)
[153]
Höög JL, Lacomble S, Bouchet-Marquis C, et al. 3D Architecture of the Trypanosoma brucei Flagella Connector, a Mobile Transmembrane Junction. PLoS Negl Trop Dis 2016; 10(1)
[http://dx.doi.org/10.1371/journal.pntd.0004312] [PMID: 26820516]
[154]
Briggs LJ, McKean PG, Baines A, et al. The flagella connector of Trypanosoma brucei: an unusual mobile transmembrane junction. J Cell Sci 2004; 117(Pt 9): 1641-51.
[http://dx.doi.org/10.1242/jcs.00995] [PMID: 15075226]
[155]
Varga V, Moreira-Leite F, Portman N, Gull K. Protein diversity in discrete structures at the distal tip of the trypanosome flagellum. Proc Natl Acad Sci USA 2017; 114(32): E6546-55.
[http://dx.doi.org/10.1073/pnas.1703553114] [PMID: 28724725]
[156]
de Souza W, Souto-Padrón T. The paraxial structure of the flagellum of trypanosomatidae. J Parasitol 1980; 66(2): 229-36.
[http://dx.doi.org/10.2307/3280809] [PMID: 6993640]
[157]
Robinson D, Beattie P, Sherwin T, Gull K. Microtubules, tubulin, and microtubule-associated proteins of trypanosomes. Methods Enzymol 1991; 196: 285-99.
[http://dx.doi.org/10.1016/0076-6879(91)96027-O] [PMID: 2034124]
[158]
Kohl L, Sherwin T, Gull K. Assembly of the paraflagellar rod and the flagellum attachment zone complex during the Trypanosoma brucei cell cycle. J Eukaryot Microbiol 1999; 46(2): 105-9.
[http://dx.doi.org/10.1111/j.1550-7408.1999.tb04592.x] [PMID: 10361731]
[159]
Sunter JD, Gull K. The Flagellum Attachment Zone: ‘The Cellular Ruler’ of Trypanosome Morphology. Trends Parasitol 2016; 32(4): 309-24.
[http://dx.doi.org/10.1016/j.pt.2015.12.010] [PMID: 26776656]
[160]
Moreira-Leite FF, Sherwin T, Kohl L, Gull K. A trypanosome structure involved in transmitting cytoplasmic information during cell division. Science 2001; 294(5542): 610-2.
[http://dx.doi.org/10.1126/science.1063775] [PMID: 11641501]
[161]
Prevo B, Scholey JM, Peterman EJG. Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. FEBS J 2017; 284(18): 2905-31.
[http://dx.doi.org/10.1111/febs.14068] [PMID: 28342295]
[162]
Bastin P, Sherwin T, Gull K. Paraflagellar rod is vital for trypanosome motility. Nature 1998; 391(6667): 548.
[http://dx.doi.org/10.1038/35300]
[163]
Bastin P, MacRae TH, Francis SB, Matthews KR, Gull K. Flagellar morphogenesis: protein targeting and assembly in the paraflagellar rod of trypanosomes. Mol Cell Biol 1999; 19(12): 8191-200.
[http://dx.doi.org/10.1128/MCB.19.12.8191] [PMID: 10567544]
[164]
Ginger ML, Collingridge PW, Brown RW, Sproat R, Shaw MK, Gull K. Calmodulin is required for paraflagellar rod assembly and flagellum-cell body attachment in trypanosomes. Protist 2013; 164(4): 528-40.
[http://dx.doi.org/10.1016/j.protis.2013.05.002] [PMID: 23787017]
[165]
Souto-Padrón T, De Souza W. Cytochemical analysis at the fine-structural level of trypanosomatids stained with phosphotungstic acid. J Protozool 1979; 26(4): 551-7.
[http://dx.doi.org/10.1111/j.1550-7408.1979.tb04194.x] [PMID: 94607]
[166]
Souto-Padrón T, de Souza W, Heuser JE. Quick-freeze, deep-etch rotary replication of Trypanosoma cruzi and Herpetomonas megaseliae. J Cell Sci 1984; 69: 167-78.
[PMID: 6386835]
[167]
Sherwin T, Gull K. The cell division cycle of Trypanosoma brucei brucei: timing of event markers and cytoskeletal modulations. Philos Trans R Soc Lond B Biol Sci 1989; 323(1218): 573-88.
[http://dx.doi.org/10.1098/rstb.1989.0037] [PMID: 2568647]
[168]
Sheriff O, Lim LF, He CY. Tracking the biogenesis and inheritance of subpellicular microtubule in Trypanosoma brucei with inducible YFP-α-tubulin. BioMed Res Int 2014; 2014.
[http://dx.doi.org/10.1155/2014/893272] [PMID: 24800253]
[169]
Hu H, Hu L, Yu Z, Chasse AE, Chu F, Li Z. An orphan kinesin in trypanosomes cooperates with a kinetoplastid-specific kinesin to maintain cell morphology by regulating subpellicular microtubules. J Cell Sci 2012; 125(Pt 17): 4126-36.
[http://dx.doi.org/10.1242/jcs.106534] [PMID: 22623724]
[170]
Baines A, Gull K. WCB is a C2 domain protein defining the plasma membrane - sub-pellicular microtubule corset of kinetoplastid parasites. Protist 2008; 159(1): 115-25.
[http://dx.doi.org/10.1016/j.protis.2007.09.001] [PMID: 17951107]
[171]
Lacomble S, Portman N, Gull K. A protein-protein interaction map of the Trypanosoma brucei paraflagellar rod. PLoS One 2009; 4(11)
[http://dx.doi.org/10.1371/journal.pone.0007685] [PMID: 19888464]
[172]
Alcantara CL, Vidal JC, de Souza W, Cunha-E-Silva NL. The cytostome-cytopharynx complex of Trypanosoma cruzi epimastigotes disassembles during cell division. J Cell Sci 2017; 130(1): 164-76.
[http://dx.doi.org/10.1242/jcs.187419] [PMID: 27363990]
[173]
Wheeler RJ, Sunter JD, Gull K. Flagellar pocket restructuring through the Leishmania life cycle involves a discrete flagellum attachment zone. J Cell Sci 2016; 129(4): 854-67.
[http://dx.doi.org/10.1242/jcs.183152] [PMID: 26746239]
[174]
Sahasrabuddhe AA, Bajpai VK, Gupta CM. A novel form of actin in Leishmania: molecular characterisation, subcellular localisation and association with subpellicular microtubules. Mol Biochem Parasitol 2004; 134(1): 105-14.
[http://dx.doi.org/10.1016/j.molbiopara.2003.11.008] [PMID: 14747148]
[175]
Vizcaíno-Castillo A, Osorio-Méndez JF, Rubio-Ortiz M, Manning-Cela RG, Hernández R, Cevallos AM. Trypanosoma cruzi actins: Expression analysis of actin 2. Biochem Biophys Res Commun 2019; 513(2): 347-53.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.007] [PMID: 30961931]
[176]
Cevallos AM, Segura-Kato YX, Merchant-Larios H, et al. Trypanosoma cruzi: multiple actin isovariants are observed along different developmental stages. Exp Parasitol 2011; 127(1): 249-59.
[http://dx.doi.org/10.1016/j.exppara.2010.08.003] [PMID: 20705070]
[177]
Souza LC, Pinho RE, Lima CV, Fragoso SP, Soares MJ. Actin expression in trypanosomatids (Euglenozoa: Kinetoplastea). Mem Inst Oswaldo Cruz 2013; 108(5): 631-6.
[http://dx.doi.org/10.1590/0074-0276108052013015] [PMID: 23903980]
[178]
Corrêa JR, Atella GC, Batista MM, Soares MJ. Transferrin uptake in Trypanosoma cruzi is impaired by interference on cytostome-associated cytoskeleton elements and stability of membrane cholesterol, but not by obstruction of clathrin-dependent endocytosis. Exp Parasitol 2008; 119(1): 58-66.
[http://dx.doi.org/10.1016/j.exppara.2007.12.010] [PMID: 18234197]
[179]
Katta SS, Sahasrabuddhe AA, Gupta CM. Flagellar localization of a novel isoform of myosin, myosin XXI, in Leishmania. Mol Biochem Parasitol 2009; 164(2): 105-10.
[http://dx.doi.org/10.1016/j.molbiopara.2008.12.002] [PMID: 19121339]
[180]
Medalia O, Weber I, Frangakis AS, Nicastro D, Gerisch G, Baumeister W. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 2002; 298(5596): 1209-13.
[http://dx.doi.org/10.1126/science.1076184] [PMID: 12424373]
[181]
De Gaudenzi J, Frasch AC, Clayton C. RNA-binding domain proteins in Kinetoplastids: a comparative analysis. Eukaryot Cell 2005; 4(12): 2106-14.
[http://dx.doi.org/10.1128/EC.4.12.2106-2114.2005] [PMID: 16339728]
[182]
Mugo E, Clayton C. Expression of the RNA-binding protein RBP10 promotes the bloodstream-form differentiation state in Trypanosoma brucei. PLoS Pathog 2017; 13(8)e1006560
[183]
Alves LR, Goldenberg S. RNA-binding proteins related to stress response and differentiation in protozoa. World J Biol Chem 2016; 7(1): 78-87.
[http://dx.doi.org/10.4331/wjbc.v7.i1.78] [PMID: 26981197]
[184]
Krüger T, Hofweber M, Kramer S. SCD6 induces ribonucleoprotein granule formation in trypanosomes in a translation-independent manner, regulated by its Lsm and RGG domains. Mol Biol Cell 2013; 24(13): 2098-111.
[http://dx.doi.org/10.1091/mbc.e13-01-0068] [PMID: 23676662]
[185]
Fritz M, Vanselow J, Sauer N, et al. Novel insights into RNP granules by employing the trypanosome’s microtubule skeleton as a molecular sieve. Nucleic Acids Res 2015; 43(16): 8013-32.
[http://dx.doi.org/10.1093/nar/gkv731] [PMID: 26187993]
[186]
Cassola A. RNA Granules Living a Post-transcriptional Life: the Trypanosomes’ Case. Curr Chem Biol 2011; 5(2): 108-17.
[http://dx.doi.org/10.2174/2212796811105020108] [PMID: 21949551]
[187]
Fidalgo LM, Gille L. Mitochondria and trypanosomatids: targets and drugs. Pharm Res 2011; 28(11): 2758-70.
[http://dx.doi.org/10.1007/s11095-011-0586-3] [PMID: 21935742]
[188]
Ramos TC, Freymüller-Haapalainen E, Schenkman S. Three-dimensional reconstruction of Trypanosoma cruzi epimastigotes and organelle distribution along the cell division cycle. Cytometry A 2011; 79(7): 538-44.
[http://dx.doi.org/10.1002/cyto.a.21077] [PMID: 21567937]
[189]
van Hellemond JJ, Opperdoes FR, Tielens AG. The extraordinary mitochondrion and unusual citric acid cycle in Trypanosoma brucei. Biochem Soc Trans 2005; 33(Pt. 5): 967-71.
[http://dx.doi.org/10.1042/BST0330967] [PMID: 16246022]
[190]
de Souza W, Attias M, Rodrigues JC. Particularities of mitochondrial structure in parasitic protists (Apicomplexa and Kinetoplastida). Int J Biochem Cell Biol 2009; 41(10): 2069-80.
[http://dx.doi.org/10.1016/j.biocel.2009.04.007] [PMID: 19379828]
[191]
Paulin JJ. Crithidia fasciculata: reconstruction of the mitochondrion based on serial thick sections and high-voltage electron microscopy. Exp Parasitol 1977; 41(2): 283-9.
[http://dx.doi.org/10.1016/0014-4894(77)90101-1] [PMID: 321237]
[192]
Menna-Barreto RF, de Castro SL. The double-edged sword in pathogenic trypanosomatids: the pivotal role of mitochondria in oxidative stress and bioenergetics BioMed Res Int 2014; 2014.
[http://dx.doi.org/10.1155/2014/614014] [PMID: 24800243]
[193]
Duarte M, Tomás AM. The mitochondrial complex I of trypanosomatids-an overview of current knowledge. J Bioenerg Biomembr 2014; 46(4): 299-311.
[http://dx.doi.org/10.1007/s10863-014-9556-x] [PMID: 24961227]
[194]
Harada S, Inaoka DK, Ohmori J, Kita K. Diversity of parasite complex II. Biochim Biophys Acta 2013; 1827(5): 658-67.
[http://dx.doi.org/10.1016/j.bbabio.2013.01.005] [PMID: 23333273]
[195]
Vercesi AE, Bernardes CF, Hoffmann ME, et al. Digitonin permeabilization does not affect mitochondrial function and allows the determination of the mitochondrial membrane potential of Trypanosoma cruzi in situ. J Biol Chem 1991; 2666(22): 14431-4.
[196]
Schneider A. Mitochondrial protein import in trypanosomatids: Variations on a theme or fundamentally different? PLoS Pathog 2018; 14(11)e1007351
[197]
Morris JC, Drew ME, Klingbeil MM, et al. Replication of kinetoplast DNA: an update for the new millennium. Int J Parasitol 2001; 31(5-6): 453-8.
[http://dx.doi.org/10.1016/S0020-7519(01)00156-4] [PMID: 11334929]
[198]
Cavalcanti DP, de Souza W. The Kinetoplast of Trypanosomatids: From Early Studies of Electron Microscopy to Recent Advances in Atomic Force Microscopy. Scanning 2018; 2018.
[http://dx.doi.org/10.1155/2018/9603051 ] [PMID: 30018700]
[199]
Liu B, Molina H, Kalume D, Pandey A, Griffith JD, Englund PT. Role of p38 in replication of Trypanosoma brucei kinetoplast DNA. Mol Cell Biol 2006; 26(14): 5382-93.
[http://dx.doi.org/10.1128/MCB.00369-06] [PMID: 16809774]
[200]
Lukes J, Guilbride DL, Votýpka J, Zíková A, Benne R, Englund PT. Kinetoplast DNA network: evolution of an improbable structure. Eukaryot Cell 2002; 1(4): 495-502.
[http://dx.doi.org/10.1128/EC.1.4.495-502.2002] [PMID: 12455998]
[201]
Liu B, Liu Y, Motyka SA, Agbo EE, Englund PT. Fellowship of the rings: the replication of kinetoplast DNA. Trends Parasitol 2005; 21(8): 363-9.
[http://dx.doi.org/10.1016/j.pt.2005.06.008] [PMID: 15967722]
[202]
Jensen RE, Englund PT. Network news: the replication of kinetoplast DNA. Annu Rev Microbiol 2012; 66: 473-91.
[http://dx.doi.org/10.1146/annurev-micro-092611-150057] [PMID: 22994497]
[203]
Simpson L. The Mitochondrial Genome of Kinetoplastid Protozoa: Genomic Organization, Transcription, Replication, and Evolution. Ann Rev Microbiol 1987; p. 41.
[204]
Gerasimov ES, Zamyatnina KA, Matveeva NS, et al. Common structural patterns in the maxicircle divergent region of trypanosomatidae. Pathogens 2020; 9(2)
[http://dx.doi.org/10.3390/pathogens9020100] [PMID: 32033466]
[205]
Borst P. Why kinetoplast DNA networks? Trends Genet 1991; 7(5): 139-41.
[http://dx.doi.org/10.1016/0168-9525(91)90374-Y] [PMID: 1648807]
[206]
Schnaufer A, Domingo GJ, Stuart K. Natural and induced dyskinetoplastic trypanosomatids: how to live without mitochondrial DNA. Int J Parasitol 2002; 32(9): 1071-84.
[http://dx.doi.org/10.1016/S0020-7519(02)00020-6] [PMID: 12117490]
[207]
Woodward R, Gull K. Timing of nuclear and kinetoplast DNA replication and early morphological events in the cell cycle of Trypanosoma brucei. J Cell Sci 1990; 95(Pt 1): 49-57.
[PMID: 2190996]
[208]
Elias MC, da Cunha JP, de Faria FP, Mortara RA, Freymüller E, Schenkman S. Morphological events during the Trypanosoma cruzi cell cycle. Protist 2007; 158(2): 147-57.
[http://dx.doi.org/10.1016/j.protis.2006.10.002] [PMID: 17185034]
[209]
Mensa-Wilmot K, Hoffman B, Wiedeman J, Sullenberger C, Sharma A. Kinetoplast Division Factors in a Trypanosome. Trends Parasitol 2019; 35(2): 119-28.
[http://dx.doi.org/10.1016/j.pt.2018.11.002] [PMID: 30638954]
[210]
Zhao Z, Lindsay ME, Roy Chowdhury A, et al. p166, a link between the trypanosome mitochondrial DNA and flagellum, mediates genome segregation. EMBO J 2008; 27(1): 143-54.
[211]
Schneider A, Ochsenreiter T. Failure is not an option - mitochondrial genome segregation in trypanosomes. J Cell Sci 2018; 131(18)
[212]
Bonhivers M, Landrein N, Decossas M, Robinson DR. A monoclonal antibody marker for the exclusion-zone filaments of Trypanosoma brucei. Parasit Vectors 2008; 1(1): 21.
[http://dx.doi.org/10.1186/1756-3305-1-21] [PMID: 18616805]
[213]
Selvapandiyan A, Kumar P, Salisbury JL, et al. Role of Centrins 2 and 3 in Organelle Segregation and Cytokinesis in Trypanosoma brucei. PLoS One 2012; 7(9)
[214]
Hoeijmakers JHJ, Weijers PJ. The segregation of kinetoplast DNA networks in Trypanosoma brucei. Plasmid 1980; 4(1): 97-116.
[http://dx.doi.org/10.1016/0147-619X(80)90086-4] [PMID: 6927767]
[215]
Liu B, Wang J, Yaffe N, et al. Trypanosomes have six mitochondrial DNA helicases with one controlling kinetoplast maxicircle replication. Mol Cell 2009; 35(4): 490-501.
[http://dx.doi.org/10.1016/j.molcel.2009.07.004] [PMID: 19646907]
[216]
Grams J, Morris JC, Drew ME, Wang Z, Englund PT, Hajduk SL. A trypanosome mitochondrial RNA polymerase is required for transcription and replication. J Biol Chem 2002; 277(19): 16952-9.
[http://dx.doi.org/10.1074/jbc.M200662200] [PMID: 11859084]
[217]
Li Z, Lindsay ME. Identification of a bacterial-like HslVU protease in the mitochondria of Trypanosoma brucei and its role in mitochondrial DNA replication. PLoS Pathog 2008; 4(4)e1000048
[218]
Souto-Padrón T, De Souza W. Ultrastructural localization of basic proteins in Trypanosoma cruzi. J Histochem Cytochem 1978; 26(5): 349-58.
[http://dx.doi.org/10.1177/26.5.77871] [PMID: 77871]
[219]
Avliyakulov NK, Lukes J, Ray DS. Mitochondrial histone-like DNA-binding proteins are essential for normal cell growth and mitochondrial function in Crithidia fasciculata. Eukaryot Cell 2004; 3(2): 518-26.
[http://dx.doi.org/10.1128/EC.3.2.518-526.2004] [PMID: 15075280]
[220]
Beck K, Acestor N, Schulfer A, et al. Trypanosoma brucei Tb927.2.6100 is an essential protein associated with kinetoplast DNA. Eukaryot Cell 2013; 12(7): 970-8.
[http://dx.doi.org/10.1128/EC.00352-12] [PMID: 23650088]
[221]
Cavalcanti DP, Shimada MK, Probst CM, et al. Expression and Subcellular Localization of Kinetoplast-Associated Proteins in the Different Developmental Stages of Trypanosoma cruzi. BMC Microbiol 2009; 9: 120.
[222]
de Souza FSP, Rampazzo R de CP, Manhaes L, et al. Knockout of the gene encoding the kinetoplast-associated protein 3 (KAP3) in Trypanosoma cruzi: effect on kinetoplast organization, cell proliferation and differentiation. Mol Biochem Parasitol 2010; 172(2): 90-8.
[http://dx.doi.org/10.1016/j.molbiopara.2010.03.014] [PMID: 20363262]
[223]
Wang J, Pappas-Brown V, Englund PT, Jensen RE. TbKAP6, a mitochondrial HMG box-containing protein in Trypanosoma brucei, is the first trypanosomatid kinetoplast-associated protein essential for kinetoplast DNA replication and maintenance. Eukaryot Cell 2014; 13(7): 919-32.
[http://dx.doi.org/10.1128/EC.00260-13] [PMID: 24879122]
[224]
Haanstra JR, González-Marcano EB, Gualdrón-López M, Michels PA. Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. Biochim Biophys Acta 2016; 1863(5): 1038-48.
[http://dx.doi.org/10.1016/j.bbamcr.2015.09.015] [PMID: 26384872]
[225]
Islinger M, Voelkl A, Fahimi HD, Schrader M. The peroxisome: an update on mysteries 2.0. Histochem Cell Biol 2018; 150(5): 443-71.
[http://dx.doi.org/10.1007/s00418-018-1722-5] [PMID: 30219925]
[226]
Opperdoes FR, Baudhuin P, Coppens I, et al. Purification, morphometric analysis, and characterization of the glycosomes (microbodies) of the protozoan hemoflagellate Trypanosoma brucei. J Cell Biol 1984; 98(4): 1178-84.
[http://dx.doi.org/10.1083/jcb.98.4.1178] [PMID: 6715405]
[227]
Acosta H, Burchmore R, Naula C, et al. Proteomic analysis of glycosomes from Trypanosoma cruzi epimastigotes. Mol Biochem Parasitol 2019; 229: 62-74.
[http://dx.doi.org/10.1016/j.molbiopara.2019.02.008] [PMID: 30831156]
[228]
Bakker BM, Krauth-Siegel RL, Clayton C, et al. The silicon trypanosome. Parasitology 2010; 137(9): 1333-41.
[http://dx.doi.org/10.1017/S0031182010000466] [PMID: 20444304]
[229]
Banerjee SK, Kessler PS, Saveria T, Parsons M. Identification of trypanosomatid PEX19: functional characterization reveals impact on cell growth and glycosome size and number. Mol Biochem Parasitol 2005; 142(1): 47-55.
[http://dx.doi.org/10.1016/j.molbiopara.2005.03.008] [PMID: 15907560]
[230]
Kalel VC, Schliebs W, Erdmann R. Identification and functional characterization of Trypanosoma brucei peroxin 16. Biochim Biophys Acta 2015; 1853(10 Pt A): 2326-37.
[http://dx.doi.org/10.1016/j.bbamcr.2015.05.024] [PMID: 26025675]
[231]
Banerjee H, Knoblach B, Rachubinski RA. The early-acting glycosome biogenic protein Pex3 is essential for trypanosome viability Life Sci Alliance 2019; 2(4).
[232]
Bauer S, Morris MT. Glycosome biogenesis in trypanosomes and the de novo dilemma. PLoS Negl Trop Dis 2017; 11(4)
[http://dx.doi.org/10.1371/journal.pntd.0005333] [PMID: 28426655]
[233]
Lin S, Voyton C, Morris MT, Ackroyd PC, Morris JC, Christensen KA. pH regulation in glycosomes of procyclic form Trypanosoma brucei. J Biol Chem 2017; 292(19): 7795-805.
[http://dx.doi.org/10.1074/jbc.M117.784173] [PMID: 28348078]
[234]
Dodson HC, Morris MT, Morris JC. Glycerol 3-phosphate alters Trypanosoma brucei hexokinase activity in response to environmental change. J Biol Chem 2011; 286(38): 33150-7.
[http://dx.doi.org/10.1074/jbc.M111.235705] [PMID: 21813651]
[235]
Jamdhade MD, Pawar H, Chavan S, et al. Comprehensive proteomics analysis of glycosomes from Leishmania donovani. OMICS 2015; 19(3): 157-70.
[http://dx.doi.org/10.1089/omi.2014.0163] [PMID: 25748437]
[236]
Güther ML, Urbaniak MD, Tavendale A, Prescott A, Ferguson MA. High-confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics. J Proteome Res 2014; 13(6): 2796-806.
[http://dx.doi.org/10.1021/pr401209w] [PMID: 24792668]
[237]
Neuhaus A, Eggeling C, Erdmann R, Schliebs W. Why do peroxisomes associate with the cytoskeleton? Biochim Biophys Acta 2016; 1863(5): 1019-26.
[http://dx.doi.org/10.1016/j.bbamcr.2015.11.022] [PMID: 26616035]
[238]
Schott MB, Weller SG, Schulze RJ, et al. Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. J Cell Biol 2019; 218(10): 3320-35.
[http://dx.doi.org/10.1083/jcb.201803153] [PMID: 31391210]
[239]
Meyer H, Porter KR. A study of Trypanosoma cruzi with the electron microscope. Parasitology 1954; 44(1-2): 16-23.
[http://dx.doi.org/10.1017/S0031182000018722] [PMID: 13166367]
[240]
Pereira MG, Visbal G, Costa TFR, et al. Trypanosoma cruzi epimastigotes store cholesteryl esters in lipid droplets after cholesterol endocytosis. Mol Biochem Parasitol 2018; 224: 6-16.
[http://dx.doi.org/10.1016/j.molbiopara.2018.07.004] [PMID: 30016698]
[241]
Soares MJ, De Souza MF, De Souza W. Ultrastructural visualization of lipids in trypanosomatids. J Protozool 1987; 34(2): 199-203.
[http://dx.doi.org/10.1111/j.1550-7408.1987.tb03160.x] [PMID: 3108493]
[242]
Dichlberger A, Schlager S, Kovanen PT, Schneider WJ. Lipid droplets in activated mast cells - a significant source of triglyceride-derived arachidonic acid for eicosanoid production. Eur J Pharmacol 2016; 785: 59-69.
[http://dx.doi.org/10.1016/j.ejphar.2015.07.020] [PMID: 26164793]
[243]
Bozza PT, Bakker-Abreu I, Navarro-Xavier RA, Bandeira-Melo C. Lipid body function in eicosanoid synthesis: an update. Prostaglandins Leukot Essent Fatty Acids 2011; 85(5): 205-13.
[http://dx.doi.org/10.1016/j.plefa.2011.04.020] [PMID: 21565480]
[244]
Docampo R, Scott DA, Vercesi AE, Moreno SN. Intracellular Ca2+ storage in acidocalcisomes of Trypanosoma cruzi. Biochem J 1995; 310(Pt 3): 1005-12.
[http://dx.doi.org/10.1042/bj3101005] [PMID: 7575396]
[245]
Vercesi AE. Ca2+ homeostasis and mitochondrial bioenergetics in Trypanosoma cruzi. Braz J Med Biol Res 1994; 27(2): 501-3.
[PMID: 8081272]
[246]
Docampo R, Huang G. Calcium signaling in trypanosomatid parasites. Cell Calcium 2015; 57(3): 194-202.
[http://dx.doi.org/10.1016/j.ceca.2014.10.015] [PMID: 25468729]
[247]
Docampo R, Huang G. Acidocalcisomes of eukaryotes. Curr Opin Cell Biol 2016; 41: 66-72.
[http://dx.doi.org/10.1016/j.ceb.2016.04.007] [PMID: 27125677]
[248]
Lander N, Cordeiro C, Huang G, Docampo R. Polyphosphate and acidocalcisomes. Biochem Soc Trans 2016; 44(1): 1-6.
[http://dx.doi.org/10.1042/BST20150193] [PMID: 26862180]
[249]
Miranda K, Benchimol M, Docampo R, de Souza W. The fine structure of acidocalcisomes in Trypanosoma cruzi. Parasitol Res 2000; 86(5): 373-84.
[http://dx.doi.org/10.1007/s004360050682] [PMID: 10836511]
[250]
Huang G, Docampo R. Proteomic analysis of acidocalcisomes of Trypanosoma brucei uncovers their role in phosphate metabolism, cation homeostasis, and calcium signaling. Commun Integr Biol 2015; 8(2)
[http://dx.doi.org/10.1080/19420889.2015.1017174] [PMID: 26480268]
[251]
Patterson DJ. Contractile vacuoles associated structures: their organization and function. Biol Rev 1980; 46: 55-1.
[http://dx.doi.org/10.1111/j.1469-185X.1980.tb00686.x]
[252]
Allen RD, Naitoh Y. Osmoregulation and contractile vacuoles of protozoa. Int Rev Cytol 2002; 215: 351-94.
[http://dx.doi.org/10.1016/S0074-7696(02)15015-7] [PMID: 11952235]
[253]
Buchmann K, Becker B. The system of contractile vacuoles in the green alga Mesostigma viride (Streptophyta). Protist 2009; 160(3): 427-43.
[http://dx.doi.org/10.1016/j.protis.2009.01.002] [PMID: 19356977]
[254]
Girard-Dias W, Alcântara CL, Cunha-e-Silva N, de Souza W, Miranda K. On the ultrastructural organization of Trypanosoma cruzi using cryopreparation methods and electron tomography. Histochem Cell Biol 2012; 138(6): 821-31.
[http://dx.doi.org/10.1007/s00418-012-1002-8] [PMID: 22872316]
[255]
Heuser J, Zhu Q, Clarke M. Proton pumps populate the contractile vacuoles of Dictyostelium amoebae. J Cell Biol 1993; 121(6): 1311-27.
[http://dx.doi.org/10.1083/jcb.121.6.1311] [PMID: 8509452]
[256]
Fok AK, Aihara MS, Ishida M, Nolta KV, Steck TL, Allen RD. The pegs on the decorated tubules of the contractile vacuole complex of Paramecium are proton pumps. J Cell Sci 1995; 108(Pt 10): 3163-70.
[PMID: 7593277]
[257]
Zeuthen T. From contractile vacuole to leaky epithelia. Coupling between salt and water fluxes in biological membranes. Biochim Biophys Acta 1992; 1113(2): 229-58.
[http://dx.doi.org/10.1016/0304-4157(92)90040-H] [PMID: 1510998]
[258]
Naitoh Y, Tominaga T, Ishida M, Fok A, Aihara M, Allen R. How does the contractile vacuole of Paramecium multimicronucleatum expel fluid? Modelling the expulsion mechanism. J Exp Biol 1997; 200(Pt 4): 713-21.
[PMID: 9318470]
[259]
Jung G, Titus MA, Hammer JA. The Dictyostelium type V myosin MyoJ is responsible for the cortical association and motility of contractile vacuole membranes. J Cell Biol 2009; 186(4): 555-70.
[260]
Linder JC, Staehelin LA. Plasma membrane specializations in a trypanosomatid flagellate. J Ultrastruct Res 1977; 60(2): 246-62.
[http://dx.doi.org/10.1016/S0022-5320(77)80069-5] [PMID: 886643]
[261]
Attias M, Vommaro RC, De Souza W. Computer aided threedimensional reconstruction of the free-living protozoan Bodo sp. (Kinetoplastida: Bodonidae). Cell Struct Funct 196 21(5): 297- 306.
[262]
Montalvetti A, Rohloff P, Docampo R. A functional aquaporin co-localizes with the vacuolar proton pyrophosphatase to acidocalcisomes and the contractile vacuole complex of Trypanosoma cruzi. J Biol Chem 2004; 279(37): 38673-82.
[http://dx.doi.org/10.1074/jbc.M406304200] [PMID: 15252016]
[263]
Rohloff P, Rodrigues CO, Docampo R. Regulatory volume decrease in Trypanosoma cruzi involves amino acid efflux and changes in intracellular calcium. Mol Biochem Parasitol 2003; 126(2): 219-30.
[http://dx.doi.org/10.1016/S0166-6851(02)00277-3] [PMID: 12615321]
[264]
Ulrich PN, Jimenez V, Park M, et al. Identification of contractile vacuole proteins in Trypanosoma cruzi. PLoS One 2011; 6(3)
[http://dx.doi.org/10.1371/journal.pone.0018013] [PMID: 21437209]
[265]
Niyogi S, Jimenez V, Girard-Dias W, de Souza W, Miranda K, Docampo R. Rab32 is essential for maintaining functional acidocalcisomes, and for growth and infectivity of Trypanosoma cruzi. J Cell Sci 2015; 128(12): 2363-73.
[http://dx.doi.org/10.1242/jcs.169466] [PMID: 25964650]
[266]
Niyogi S, Mucci J, Campetella O, Docampo R. Rab11 regulates trafficking of trans-sialidase to the plasma membrane through the contractile vacuole complex of Trypanosoma cruzi. PLoS Pathog 2014; 10(6)
[http://dx.doi.org/10.1371/journal.ppat.1004224] [PMID: 24968013]
[267]
Kollien AH, Schaub GA. The development of Trypanosoma cruzi in triatominae. Parasitol Today 2000; 16(9): 381-7.
[http://dx.doi.org/10.1016/S0169-4758(00)01724-5] [PMID: 10951597]
[268]
Kollien AH, Grospietsch T, Kleffmann T, Zerbst-Boroffka I, Schaub GA. Ionic composition of the rectal contents and excreta of the reduviid bug Triatoma infestans. J Insect Physiol 2001; 47(7): 739-47.
[http://dx.doi.org/10.1016/S0022-1910(00)00170-0] [PMID: 11356421]
[269]
Vieira LL, Lafuente E, Gamarro F, Cabantchik Z. An amino acid channel activated by hypotonically induced swelling of Leishmania major promastigotes. Biochem J 1996; 319(Pt 3): 691-7.
[http://dx.doi.org/10.1042/bj3190691] [PMID: 8920968]
[270]
Blum JJ, Cabantchik ZI, Vieira L. Kinetics of release of amino acids by Leishmania major. Mol Biochem Parasitol 1999; 103(1): 101-4.
[http://dx.doi.org/10.1016/S0166-6851(99)00071-7] [PMID: 10514085]
[271]
Lefurgey A, Gannon M, Blum J, Ingram P. Leishmania donovani amastigotes mobilize organic and inorganic osmolytes during regulatory volume decrease. J Eukaryot Microbiol 2005; 52(3): 277-89.
[http://dx.doi.org/10.1111/j.1550-7408.2005.00030.x] [PMID: 15927005]
[272]
Rohloff P, Docampo R. A contractile vacuole complex is involved in osmoregulation in Trypanosoma cruzi. Exp Parasitol 2008; 118(1): 17-24.
[http://dx.doi.org/10.1016/j.exppara.2007.04.013] [PMID: 17574552]
[273]
Pimenta PF, De Souza W. Fine structure and cytochemistry of the endoplasmic reticulum and its association with the plasma membrane of Leishmania mexicana amazonensis. J Submicrosc Cytol 1985; 17(3): 413-9.
[PMID: 4020925]
[274]
Wang YN, Wang M, Field MC. Trypanosoma brucei: trypanosome-specific endoplasmic reticulum proteins involved in variant surface glycoprotein expression. Exp Parasitol 2010; 125(3): 208-21.
[http://dx.doi.org/10.1016/j.exppara.2010.01.015] [PMID: 20109450]
[275]
Bindereif A, Preußer C. ER stress: how trypanosomes deal with it. Trends Parasitol 2014; 30(12): 549-50.
[http://dx.doi.org/10.1016/j.pt.2014.10.006] [PMID: 25457395]
[276]
Allison H, O’Reilly AJ, Sternberg J, et al. An extensive endoplasmic reticulum-localised glycoprotein family in trypanosomatids. Microb Cell 2014; 1(10): 325-45.
[http://dx.doi.org/10.15698/mic2014.10.170]
[277]
Ooi CP, Smith TK, Gluenz E, et al. Blocking variant surface glycoprotein synthesis alters endoplasmic reticulum exit sites/Golgi homeostasis in Trypanosoma brucei. Traffic 2018; 19(6): 391-405.
[278]
Moreno SN, Docampo R. Calcium regulation in protozoan parasites. Curr Opin Microbiol 2003; 6(4): 359-64.
[http://dx.doi.org/10.1016/S1369-5274(03)00091-2] [PMID: 12941405]
[279]
Bangs JD. Replication of the ERES:Golgi junction in bloodstream-form African trypanosomes. Mol Microbiol 2011; 82(6): 1433-43.
[http://dx.doi.org/10.1111/j.1365-2958.2011.07900.x] [PMID: 22026408]
[280]
Ho HH, He CY, De Graffenried CL, et al. Ordered assembly of the duplicating Golgi in Trypanosoma brucei. Proc Natl Acad Sci USA 2006; 103(2): 7676-81.
[281]
He CY, Ho HH, Malsam J, et al. Golgi duplication in Trypanosoma brucei. J Cell Biol 2004; 165(3): 313-21.
[282]
Yelinek JT, He CY, Warren G. Ultrastructural study of Golgi duplication in Trypanosoma brucei. Traffic 2009; 10(3): 300-6.
[http://dx.doi.org/10.1111/j.1600-0854.2008.00873.x] [PMID: 19207482]
[283]
Alcantara CL, Vidal JC, de Souza W, et al. The three-dimensional structure of the cytostome-cytopharynx complex of Trypanosoma cruzi epimastigotes. J Cell Sci 2014; 127(Pt 10): 2227-37.
[284]
Figueiredo RC, Soares MJ. The Golgi complex of Trypanosoma cruzi epimastigote forms. J Submicrosc Cytol Pathol 1995; 27(2): 209-15.
[PMID: 7757947]
[285]
Morgado-Díaz JA, Nakamura CV, Agrellos OA, et al. Isolation and characterization of the Golgi complex of the protozoan Trypanosoma cruzi. Parasitology 2001; 123(Pt 1): 33-43.
[http://dx.doi.org/10.1017/S0031182001007946] [PMID: 11467781]
[286]
Ramirez IB, de Graffenried CL, Ebersberger I, et al. TbG63, a golgin involved in Golgi architecture in Trypanosoma brucei. J Cell Sci 2008; 121(Pt 9): 1538-46.
[287]
Hoeller D, Volarevic S, Dikic I. Compartmentalization of growth factor receptor signalling. Curr Opin Cell Biol 2005; 17(2): 107-11.
[http://dx.doi.org/10.1016/j.ceb.2005.01.001] [PMID: 15780584]
[288]
Marsh M, Helenius A. Virus entry: open sesame. Cell 2006; 124(4): 729-40.
[http://dx.doi.org/10.1016/j.cell.2006.02.007] [PMID: 16497584]
[289]
de Souza W, Sant’Anna C, Cunha-e-Silva NL. Electron microscopy and cytochemistry analysis of the endocytic pathway of pathogenic protozoa. Prog Histochem Cytochem 2009; 44(2): 67-124.
[http://dx.doi.org/10.1016/j.proghi.2009.01.001] [PMID: 19410686]
[290]
Coppens I, Opperdoes FR, Courtoy PJ, Baudhuin P. Receptor-mediated endocytosis in the bloodstream form of Trypanosoma brucei. J Protozool 1987; 34(4): 465-73.
[http://dx.doi.org/10.1111/j.1550-7408.1987.tb03216.x] [PMID: 2828605]
[291]
Kaksonen M, Toret CP, Drubin DG. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 2005; 123(2): 305-20.
[http://dx.doi.org/10.1016/j.cell.2005.09.024] [PMID: 16239147]
[292]
Mayor S, Pagano RE. Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 2007; 8(8): 603-12.
[http://dx.doi.org/10.1038/nrm2216] [PMID: 17609668]
[293]
Mellman I. Membranes and sorting. Curr Opin Cell Biol 1996; 8(4): 497-8.
[http://dx.doi.org/10.1016/S0955-0674(96)80026-3] [PMID: 8791461]
[294]
Robinson MS, Watts C, Zerial M. Membrane dynamics in endocytosis. Cell 1996; 84(1): 13-21.
[http://dx.doi.org/10.1016/S0092-8674(00)80988-5] [PMID: 8548817]
[295]
Grant BD, Donaldson JG. Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 2009; 10(9): 597-608.
[http://dx.doi.org/10.1038/nrm2755] [PMID: 19696797]
[296]
Gruenberg J. The endocytic pathway: a mosaic of domains. Nat Rev Mol Cell Biol 2001; 2(10): 721-30.
[http://dx.doi.org/10.1038/35096054] [PMID: 11584299]
[297]
Tjelle TE, Brech A, Juvet LK, Griffiths G, Berg T. Isolation and characterization of early endosomes, late endosomes and terminal lysosomes: their role in protein degradation. J Cell Sci 1996; 109(Pt 12): 2905-14.
[PMID: 9013338]
[298]
Soares MJ, de Souza W. Endocytosis of gold-labeled proteins and LDL by Trypanosoma cruzi. Parasitol Res 1991; 77(6): 461-8.
[http://dx.doi.org/10.1007/BF00928410] [PMID: 1656428]
[299]
Kohl L, Gull K. Molecular architecture of the trypanosome cytoskeleton. Mol Biochem Parasitol 1998; 93(1): 1-9.
[http://dx.doi.org/10.1016/S0166-6851(98)00014-0] [PMID: 9662023]
[300]
Milder R, Deane MP. The cytostome of Trypanosoma cruzi and T. conorhini. J Protozool 1969; 16(4): 730-7.
[http://dx.doi.org/10.1111/j.1550-7408.1969.tb02335.x] [PMID: 5362390]
[301]
Porto-Carreiro I, Attias M, Miranda K, De Souza W, Cunha-e-Silva N. Trypanosoma cruzi epimastigote endocytic pathway: cargo enters the cytostome and passes through an early endosomal network before storage in reservosomes. Eur J Cell Biol 2000; 79(11): 858-69.
[http://dx.doi.org/10.1078/0171-9335-00112] [PMID: 11139150]
[302]
Vatarunakamura C, Ueda-Nakamura T, de Souza W. Visualization of the cytostome in Trypanosoma cruzi by high resolution field emission scanning electron microscopy using secondary and backscattered electron imaging. FEMS Microbiol Lett 2005; 242(2): 227-30.
[http://dx.doi.org/10.1016/j.femsle.2004.11.008] [PMID: 15621442]
[303]
Martínez-Palomo A, DeSouza W, Gonzalez-Robles A. Topographical differences in the distribution of surface coat components and intramembrane particles. A cytochemical and freeze-fracture study in culture forms of Trypanosoma cruzi. J Cell Biol 1976; 69(2): 507-13.
[http://dx.doi.org/10.1083/jcb.69.2.507] [PMID: 770483]
[304]
De Souza W, Martínez-Palomo A, González-Robles A. The cell surface of Trypanosoma cruzi: cytochemistry and freeze-fracture. J Cell Sci 1978; 33: 285-99.
[PMID: 363731]
[305]
Alcantara CL, de Souza W, da Cunha E, Silva NL, Silva NL. Tridimensional Electron Microscopy Analysis of the Early Endosomes and Endocytic Traffic in Trypanosoma cruzi Epimastigotes. Protist 2018; 169(6): 887-910.
[http://dx.doi.org/10.1016/j.protis.2018.09.004] [PMID: 30447618]
[306]
Okuda K, Esteva M, Segura EL, Bijovsy AT. The cytostome of Trypanosoma cruzi epimastigotes is associated with the flagellar complex. Exp Parasitol 1999; 92(4): 223-31.
[http://dx.doi.org/10.1006/expr.1999.4419] [PMID: 10425150]
[307]
Chasen NM, Coppens I, Etheridge RD. Identification and Localization of the First Known Proteins of the Trypanosoma cruzi Cytostome Cytopharynx Endocytic Complex. Front Cell Infect Microbiol 2020; 9: 445.
[http://dx.doi.org/10.3389/fcimb.2019.00445] [PMID: 32010635]
[308]
Vidal JC, Alcantara CL, de Souza W, Cunha-E-Silva NL. Loss of the cytostome-cytopharynx and endocytic ability are late events in Trypanosoma cruzi metacyclogenesis. J Struct Biol 2016; 196(3): 319-28.
[http://dx.doi.org/10.1016/j.jsb.2016.07.018] [PMID: 27480509]
[309]
Araripe JR, Ramos FP, Cunha e Silva NL, et al. Characterization of a RAB5 homologue in Trypanosoma cruzi. Biochem Biophys Res Commun 2005; 329(2): 638-45.
[http://dx.doi.org/10.1016/j.bbrc.2005.02.021] [PMID: 15737633]
[310]
Cazzulo JJ, Cazzulo Franke MC, Martínez J, Franke de Cazzulo BM. Some kinetic properties of a cysteine proteinase (cruzipain) from Trypanosoma cruzi. Biochim Biophys Acta 1990; 1037(2): 186-91.
[http://dx.doi.org/10.1016/0167-4838(90)90166-D] [PMID: 2407295]
[311]
Monteiro AC, Abrahamson M, Lima AP, et al. Identification, characterization and localization of chagasin, a tight-binding cysteine protease inhibitor in Trypanosoma cruzi. J Cell Sci 2001; 114(Pt 21): 3933-42.
[312]
Santos CC, Sant’anna C, Terres A, et al. Chagasin, the endogenous cysteine-protease inhibitor of Trypanosoma cruzi, modulates parasite differentiation and invasion of mammalian cells. J Cell Sci 2005; 118(Pt 5): 901-15.
[313]
Parussini F, García M, Mucci J, et al. Characterization of a lysosomal serine carboxypeptidase from Trypanosoma cruzi. Mol Biochem Parasitol 2003; 131(1): 11-23.
[http://dx.doi.org/10.1016/S0166-6851(03)00175-0] [PMID: 12967708]
[314]
Soares MJ, De Souza W. Cytoplasmic organelles of trypanosomatids: a cytochemical and stereological study. J Submicrosc Cytol Pathol 1988; 20(2): 349-61.
[PMID: 3135113]
[315]
Sant’Anna C, Parussini F, Lourenço D, de Souza W, Cazzulo JJ, Cunha-e-Silva NL. All Trypanosoma cruzi developmental forms present lysosome-related organelles. Histochem Cell Biol 2008; 130(6): 1187-98.
[http://dx.doi.org/10.1007/s00418-008-0486-8] [PMID: 18696100]
[316]
Pereira MG, Nakayasu ES, Sant’Anna C, et al. Trypanosoma cruzi epimastigotes are able to store and mobilize high amounts of cholesterol in reservosome lipid inclusions. PLoS One 2011; 6(7)
[http://dx.doi.org/10.1371/journal.pone.0022359] [PMID: 21818313]
[317]
Vidal JC, Alcantara CL. DE Souza W, Cunha-E-Silva NL. Lysosome-like compartments of Trypanosoma cruzi trypomastigotes may originate directly from epimastigote reservosomes. Parasitology 2017; 144(6): 841-50.
[http://dx.doi.org/10.1017/S0031182016002602] [PMID: 28077187]
[318]
Meyer H, de Souza W. On the fine structure of Trypanosoma cruzi in tissue cultures of pigment epithelium from the chick embryo. Uptake of melanin granules by the parasite. J Protozool 1973; 20(5): 590-3.
[http://dx.doi.org/10.1111/j.1550-7408.1973.tb03580.x] [PMID: 4128532]
[319]
Waghabi MC, Keramidas M, Bailly S, et al. Uptake of host cell transforming growth factor-beta by Trypanosoma cruzi amastigotes in cardiomyocytes: potential role in parasite cycle completion. Am J Pathol 2005; 167(4): 993-1003.
[http://dx.doi.org/10.1016/S0002-9440(10)61189-3] [PMID: 16192635]
[320]
Batista CM, Kessler RL, Eger I, Soares MJ. Trypanosoma cruzi Intracellular Amastigotes Isolated by Nitrogen Decompression Are Capable of Endocytosis and Cargo Storage in Reservosomes. PLoS One 2015; 10(6)
[http://dx.doi.org/10.1371/journal.pone.0130165] [PMID: 26057131]
[321]
Lalonde RG, Holbein BE. Role of iron in Trypanosoma cruzi infection of mice. J Clin Invest 1984; 73(2): 470-6.
[http://dx.doi.org/10.1172/JCI111233] [PMID: 6421877]
[322]
Loo VG, Lalonde RG. Role of iron in intracellular growth of Trypanosoma cruzi. Infect Immun 1984; 45(3): 726-30.
[http://dx.doi.org/10.1128/IAI.45.3.726-730.1984] [PMID: 6381312]
[323]
Lima MF, Villalta F. Trypanosoma cruzi receptors for human transferrin and their role. Mol Biochem Parasitol 1990; 38(2): 245-52.
[http://dx.doi.org/10.1016/0166-6851(90)90027-J] [PMID: 2183049]
[324]
Liendo A, Visbal G, Piras MM, Piras R, Urbina JA. Sterol composition and biosynthesis in Trypanosoma cruzi amastigotes. Mol Biochem Parasitol 1999; 104(1): 81-91.
[http://dx.doi.org/10.1016/S0166-6851(99)00129-2] [PMID: 10589983]
[325]
Zoltner M, Leung KF, Alsford S, Horn D, Field MC. Modulation of the Surface Proteome through Multiple Ubiquitylation Pathways in African Trypanosomes. PLoS Pathog 2015; 11(10)
[http://dx.doi.org/10.1371/journal.ppat.1005236] [PMID: 26492041]
[326]
Cernikova L, Faso C, Hehl AB. Roles of Phosphoinositides and Their binding Proteins in Parasitic Protozoa. Trends Parasitol 2019; 35(12): 996-1008.
[http://dx.doi.org/10.1016/j.pt.2019.08.008] [PMID: 31615721]
[327]
Schmuñis GA, Szarfman A, De Souza W, Langembach T. Trypanosoma cruzi: antibody-induced mobility of surface antigens. Exp Parasitol 1980; 50(1): 90-102.
[http://dx.doi.org/10.1016/0014-4894(80)90011-9] [PMID: 6993217]
[328]
Gonçalves MFL, Umezawa ES, Katzin AM, et al. Trypanosoma cruzi: shedding of surface antigens as membrane vesicles. Exp Parasitol 1991; 72(1): 43-53.
[http://dx.doi.org/10.1016/0014-4894(91)90119-H] [PMID: 1993464]
[329]
Trocoli Torrecilhas AC, Tonelli RR, Pavanelli WR, et al. Trypanosoma cruzi: parasite shed vesicles increase heart parasitism and generate an intense inflammatory response. Microbes Infect 2009; 11(1): 29-39.
[http://dx.doi.org/10.1016/j.micinf.2008.10.003] [PMID: 19028594]
[330]
Neves RF, Fernandes AC, Meyer-Fernandes JR, Souto-Padrón T. Trypanosoma cruzi-secreted vesicles have acid and alkaline phosphatase activities capable of increasing parasite adhesion and infection. Parasitol Res 2014; 113(8): 2961-72.
[http://dx.doi.org/10.1007/s00436-014-3958-x] [PMID: 24906990]
[331]
Garcia ES, Genta FA, de Azambuja P, Schaub GA. Interactions between intestinal compounds of triatomines and Trypanosoma cruzi. Trends Parasitol 2010; 26(10): 499-505.
[http://dx.doi.org/10.1016/j.pt.2010.07.003] [PMID: 20801082]
[332]
Bayer-Santos E, Aguilar-Bonavides C, Rodrigues SP, et al. Proteomic analysis of Trypanosoma cruzi secretome: characterization of two populations of extracellular vesicles and soluble proteins. J Proteome Res 2013; 12(2): 883-97.
[http://dx.doi.org/10.1021/pr300947g] [PMID: 23214914]
[333]
Fernandez-Calero T, Garcia-Silva R, Pena A, et al. Profiling of small RNA cargo of extracellular vesicles shed by Trypanosoma cruzi reveals a specific extracellular signature. Mol Biochem Parasitol 2015; 199(1-2): 19-28.
[http://dx.doi.org/10.1016/j.molbiopara.2015.03.003] [PMID: 25795082]
[334]
Cestari I, Ansa-Addo E, Deolindo P, Inal JM, Ramirez MI. Trypanosoma cruzi immune evasion mediated by host cell-derived microvesicles. J Immunol 2012; 188(4): 1942-52.
[http://dx.doi.org/10.4049/jimmunol.1102053] [PMID: 22262654]
[335]
Ramirez MI, Deolindo P, de Messias-Reason IJ, et al. Dynamic flux of microvesicles modulate parasite-host cell interaction of Trypanosoma cruzi in eukaryotic cells. Cell Microbiol 2017; 19(4)
[http://dx.doi.org/10.1111/cmi.12672] [PMID: 27665486]
[336]
Nogueira P, Ribeiro K, Silveira CO, et al. Vesicles from different Trypanosoma cruzi strains trigger differential innate and chronic immune response. J Extrac Ves 2015; 26(4): 28734.
[http://dx.doi.org/10.3402/jev.v4.28734]
[337]
Borges BC, Uehara IA, Dias LO, Brígido PC, da Silva CV, Silva MJ. Mechanism of infectivity and evasion derived from microvesicles cargo produced by Trypanosoma cruzi. Front Cell Infect Microbiol 2016; 6: 161.
[http://dx.doi.org/10.3389/fcimb.2016.00161] [PMID: 27921011]
[338]
Bayer-Santos E, Lima FM, Ruiz JC, Almeida IC, da Silveira JF. Characterization of the small RNA content of Trypanosoma cruzi extracellular vesicles. Mol Biochem Parasitol 2014; 193(2): 71-4.
[http://dx.doi.org/10.1016/j.molbiopara.2014.02.004] [PMID: 24583081]
[339]
Szempruch AJ, Sykes SE, Kieft R, et al. Extracellular Vesicles from Trypanosoma brucei Mediate Virulence Factor Transfer and Cause Host Anemia. Cell 2016; 164(1-2): 246-57.
[http://dx.doi.org/10.1016/j.cell.2015.11.051] [PMID: 26771494]
[340]
Schepilewsky E. Fadenförmige Anhängsel bei den Trypanosomen. - Zbl. Bakt. I Abt. Orig 1912; 65: 79-83.
[341]
Babudieri B, Tomasini N. Fine struttura dei trypanosomi. -. Parassitologia 1962; 4: 89-95.
[342]
Geiger A, Hirtz C, Bécue T, et al. Exocytosis and protein secretion in Trypanosoma. BMC Microbiol 2010; 10: 20.
[http://dx.doi.org/10.1186/1471-2180-10-20] [PMID: 20102621]
[343]
Wright KA, Lumsden WHR, Hales H. The formation of filopodium-like processes by Trypanosoma (Trypanozoon) brucei. J Cell Sci 1970; 6(1): 285-97.
[PMID: 4907042]
[344]
Ellis DS, Ormerod WE, Lumsden WH. Filaments of Trypanosoma brucei: some notes on differences in origin and structure in two strains of Trypanosoma (Trypanozoon) brucei rhodesiense. Acta Trop 1976; 33(2): 151-68.
[PMID: 8975]
[345]
Eliaz D, Kannan S, Shaked H, et al. Exosome secretion affects social motility in Trypanosoma brucei. PLoS Pathog 2017; 13(3)
[http://dx.doi.org/10.1371/journal.ppat.1006245] [PMID: 28257521]
[346]
Elias MC, Faria M, Mortara RA, et al. Chromosome localization changes in the Trypanosoma cruzi nucleus. Eukaryot Cell 2002; 1(6): 944-53.
[http://dx.doi.org/10.1128/EC.1.6.944-953.2002] [PMID: 12477795]
[347]
Thiry M. Nucleic acid compartmentalization within the cell nucleus by in situ transferase-immunogold techniques. Microsc Res Tech 1995; 31(1): 4-21.
[http://dx.doi.org/10.1002/jemt.1070310103] [PMID: 7542939]
[348]
Motta MCM, de Souza W, Thiry M. Immunocytochemical detection of DNA and RNA in endosymbiont-bearing trypanosomatids. FEMS Microbiol Lett 2003; 221(1): 17-23.
[http://dx.doi.org/10.1016/S0378-1097(03)00087-9] [PMID: 12694905]
[349]
Martínez-Calvillo S, Florencio-Martínez LE, Nepomuceno-Mejía T. Nucleolar Structure and Function in Trypanosomatid Protozoa. Cells 2019; 8(8): 5.
[http://dx.doi.org/10.3390/cells8050421]
[350]
Solari AJ. The 3-dimensional fine structure of the mitotic spindle in Trypanosoma cruzi. Chromosoma 1980; 78(2): 239-55.
[http://dx.doi.org/10.1007/BF00328395] [PMID: 6993129]
[351]
Ogbadoyi E, Ersfeld K, Robinson D, Sherwin T, Gull K. Architecture of the Trypanosoma brucei nucleus during interphase and mitosis. Chromosoma 2000; 108(8): 501-13.
[http://dx.doi.org/10.1007/s004120050402] [PMID: 10794572]
[352]
Zuma AA, Cavalcanti DP, Maia MC, de Souza W, Motta MC. Effect of topoisomerase inhibitors and DNA-binding drugs on the cell proliferation and ultrastructure of Trypanosoma cruzi. Int J Antimicrob Agents 2011; 37(5): 449-56.
[http://dx.doi.org/10.1016/j.ijantimicag.2010.11.031] [PMID: 21292448]
[353]
Das A, Dasgupta A, Sengupta T, Majumder HK. Topoisomerases of kinetoplastid parasites as potential chemotherapeutic targets. Trends Parasitol 2004; 20(8): 381-7.
[http://dx.doi.org/10.1016/j.pt.2004.06.005] [PMID: 15246322]
[354]
Champoux JJ. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 2001; 70: 369-413.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.369] [PMID: 11395412]
[355]
Scocca JR, Shapiro TA. A mitochondrial topoisomerase IA essential for late theta structure resolution in African trypanosomes. Mol Microbiol 2008; 67(4): 820-9.
[http://dx.doi.org/10.1111/j.1365-2958.2007.06087.x] [PMID: 18179422]
[356]
Bakshi RP, Shapiro TA. RNA interference of Trypanosoma brucei topoisomerase IB: both subunits are essential. Mol Biochem Parasitol 2004; 136(2): 249-55.
[http://dx.doi.org/10.1016/j.molbiopara.2004.04.006] [PMID: 15478803]
[357]
Tse YC, Kirkegaard K, Wang JC. Covalent bonds between protein and DNA. Formation of phosphotyrosine linkage between certain DNA topoisomerases and DNA. J Biol Chem 1980; 255(12): 5560-5.
[PMID: 6155377]
[358]
Fragoso SP, Goldenberg S. Cloning and characterization of the gene encoding Trypanosoma cruzi DNA topoisomerase II. Mol Biochem Parasitol 1992; 55(1-2): 127-34.
[http://dx.doi.org/10.1016/0166-6851(92)90133-5] [PMID: 1331785]
[359]
Das BB, Sengupta T, Ganguly A, Majumder HK. Topoisomerases of kinetoplastid parasites: why so fascinating? Mol Microbiol 2006; 62(4): 917-27.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05428.x] [PMID: 17042788]
[360]
Monneret C. Histone deacetylase inhibitors. Eur J Med Chem 2005; 40(1): 1-13.
[http://dx.doi.org/10.1016/j.ejmech.2004.10.001] [PMID: 15642405]
[361]
Martínez-Iglesias O, Ruiz-Llorente L, Sánchez-Martínez R, García L, Zambrano A, Aranda A. Histone deacetylase inhibitors: mechanism of action and therapeutic use in cancer. Clin Transl Oncol 2008; 10(7): 395-8.
[http://dx.doi.org/10.1007/s12094-008-0221-x] [PMID: 18628067]
[362]
Legartová S, Stixová L, Strnad H, et al. Basic nuclear processes affected by histone acetyltransferases and histone deacetylase inhibitors. Epigenomics 2013; 5(4): 379-96.
[http://dx.doi.org/10.2217/epi.13.38] [PMID: 23895652]
[363]
Alsford S, Horn D. Trypanosomatid histones. Mol Microbiol 2004; 53(2): 365-72.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04151.x] [PMID: 15228519]
[364]
Janzen CJ, Fernandez JP, Deng H, Diaz R, Hake SB, Cross GA. Unusual histone modifications in Trypanosoma brucei. FEBS Lett 2006; 580(9): 2306-10.
[http://dx.doi.org/10.1016/j.febslet.2006.03.044] [PMID: 16580668]
[365]
da Cunha JP, Nakayasu ES, de Almeida IC, Schenkman S. Post-translational modifications of Trypanosoma cruzi histone H4. Mol Biochem Parasitol 2006; 150(2): 268-77.
[http://dx.doi.org/10.1016/j.molbiopara.2006.08.012] [PMID: 17010453]
[366]
Heywood P, Weinman D. Mitosis in the hemoflagellate Trypanosoma cyclops. J Protozool 1978; 25(3 Pt 2): 287-92.
[http://dx.doi.org/10.1111/j.1550-7408.1978.tb03892.x] [PMID: 722651]
[367]
Spadiliero B, Sánchez F, Slezynger TC, Henríquez DA. Differences in the nuclear chromatin among various stages of the life cycle of Trypanosoma cruzi. J Cell Biochem 2002; 84(4): 832-9.
[http://dx.doi.org/10.1002/jcb.10088] [PMID: 11835407]
[368]
Dey A, Chakrabarti K. Current perspectives of telomerase structure and function in eukaryotes with emerging views on telomerase in human parasites. Int J Mol Sci 2018; 19(2): 333.
[369]
De Araujo-Jorge TC, Barbosa HS, Meirelles MN. Trypanosoma cruzi recognition by macrophages and muscle cells: perspectives after a 15-year study. Mem Inst Oswaldo Cruz 1992; 87(Suppl. 5): 43-56.
[http://dx.doi.org/10.1590/S0074-02761992000900006] [PMID: 1342716]
[370]
de Araújo-Jorge TC. The biology of Trypanosoma cruzi-macrophage interaction. Mem Inst Oswaldo Cruz 1989; 84(4): 441-62.
[http://dx.doi.org/10.1590/S0074-02761989000400001] [PMID: 2487443]
[371]
Burleigh BA. Host cell signaling and Trypanosoma cruzi invasion: do all roads lead to lysosomes? Sci STKE 2005; 2005(293): pe36.
[PMID: 16030288]
[372]
Rodríguez A, Rioult MG, Ora A, Andrews NW. A trypanosome-soluble factor induces IP3 formation, intracellular Ca2+ mobilization and microfilament rearrangement in host cells. J Cell Biol 1995; 129(5): 1263-73.
[http://dx.doi.org/10.1083/jcb.129.5.1263] [PMID: 7775573]
[373]
Barrias ES, Reignault LC, De Souza W, Carvalho TM. Dynasore, a dynamin inhibitor, inhibits Trypanosoma cruzi entry into peritoneal macrophages. PLoS One 2010; 5(1)
[http://dx.doi.org/10.1371/journal.pone.0007764] [PMID: 20098746]
[374]
de Carvalho TM, de Souza W. Early events related with the behaviour of Trypanosoma cruzi within an endocytic vacuole in mouse peritoneal macrophages. Cell Struct Funct 1989; 14(4): 383-92.
[http://dx.doi.org/10.1247/csf.14.383] [PMID: 2553278]
[375]
Ruiz RC, Favoreto S Jr, Dorta ML, et al. Infectivity of Trypanosoma cruzi strains is associated with differential expression of surface glycoproteins with differential Ca2+ signalling activity. Biochem J 1998; 330(Pt 1): 505-11.
[http://dx.doi.org/10.1042/bj3300505] [PMID: 9461549]
[376]
Neira I, Silva FA, Cortez M, Yoshida N. Involvement of Trypanosoma cruzi metacyclic trypomastigote surface molecule gp82 in adhesion to gastric mucin and invasion of epithelial cells. Infect Immun 2003; 71(1): 557-61.
[http://dx.doi.org/10.1128/IAI.71.1.557-561.2003] [PMID: 12496211]
[377]
Franco FR, Paranhos-Bacallà GS, Yamauchi LM, Yoshida N, da Silveira JF. Characterization of a cDNA clone encoding the carboxy-terminal domain of a 90-kilodalton surface antigen of Trypanosoma cruzi metacyclic trypomastigotes. Infect Immun 1993; 61(10): 4196-201.
[http://dx.doi.org/10.1128/IAI.61.10.4196-4201.1993] [PMID: 8406808]
[378]
Cortez C, Martins RM, Alves RM, et al. Differential infectivity by the oral route of Trypanosoma cruzi lineages derived from Y strain. PLoS Negl Trop Dis 2012; 6(10)
[http://dx.doi.org/10.1371/journal.pntd.0001804] [PMID: 23056658]
[379]
Nogueira NF, Gonzalez MS, Gomes JE, et al. Trypanosoma cruzi: involvement of glycoinositolphospholipids in the attachment to the luminal midgut surface of Rhodnius prolixus. Exp Parasitol 2007; 116(2): 120-8.
[http://dx.doi.org/10.1016/j.exppara.2006.12.014] [PMID: 17306256]
[380]
Malaga S, Yoshida N. Targeted reduction in expression of Trypanosoma cruzi surface metacyclic trypomastigote surface molecule gp82 in adhesion to gastric mucin. Microbiol 2001; 4(11): 701-11.
[381]
Pereira ME, Zhang K, Gong Y, Herrera EM, Ming M. Invasive phenotype of Trypanosoma cruzi restricted to a population expressing trans-sialidase. Infect Immun 1996; 64(9): 3884-92.
[http://dx.doi.org/10.1128/IAI.64.9.3884-3892.1996] [PMID: 8751943]
[382]
Previato JO, Andrade AF, Pessolani MC, Mendonça-Previato L. Incorporation of sialic acid into Trypanosoma cruzi macromolecules. A proposal for a new metabolic route. Mol Biochem Parasitol 1985; 16(1): 85-96.
[http://dx.doi.org/10.1016/0166-6851(85)90051-9] [PMID: 2412116]
[383]
Souto-Padrón T, Campetella OE, Cazzulo JJ, de Souza W. Cysteine proteinase in Trypanosoma cruzi: immunocytochemical localization and involvement in parasite-host cell interaction. J Cell Sci 1990; 96(Pt 3): 485-90.
[PMID: 2229199]
[384]
Schenkman S, Jiang MS, Hart GW, Nussenzweig V. A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells. Cell 1991; 65(7): 1117-25.
[http://dx.doi.org/10.1016/0092-8674(91)90008-M] [PMID: 1712251]
[385]
Schenkman S, Eichinger D. Trypanosoma cruzi trans-sialidase and cell invasion. Parasitol Today 1993; 9(6): 218-22.
[http://dx.doi.org/10.1016/0169-4758(93)90017-A] [PMID: 15463763]
[386]
Ribeiro KS, Vasconcellos CI, Soares RP, et al. Proteomic analysis reveals different composition of extracellular vesicles released by two Trypanosoma cruzi strains associated with their distinct interaction with host cells. J Extracell Vesicles 2018; 7(1)
[http://dx.doi.org/10.1080/20013078.2018.1463779] [PMID: 29696081]
[387]
Alves MJ, Abuin G, Kuwajima VY, Colli W. Partial inhibition of trypomastigote entry into cultured mammalian cells by monoclonal antibodies against a surface glycoprotein of Trypanosoma cruzi. Mol Biochem Parasitol 1986; 21(1): 75-82.
[http://dx.doi.org/10.1016/0166-6851(86)90081-2] [PMID: 3534565]
[388]
Todeschini AR, Dias WB, Girard MF, et al. Enzimatically inactive trans-sialidase from T. cruzi infection. J Biol Chem 2004; 275: 32182-6.
[389]
San Francisco J, Barría I, Gutiérrez B, et al. Decreased cruzipain and gp85/trans-sialidase family protein expression contributes to loss of Trypanosoma cruzi trypomastigote virulence. Microbes Infect 2017; 19(1): 55-61.
[http://dx.doi.org/10.1016/j.micinf.2016.08.003] [PMID: 27553285]
[390]
Pascuale CA, Burgos JM, Postan M, et al. Inactive trans-Sialidase Expression in iTS-null Trypanosoma cruzi Generates Virulent Trypomastigotes. Front Cell Infect Microbiol 2017; 7: 430.
[http://dx.doi.org/10.3389/fcimb.2017.00430] [PMID: 29046868]
[391]
Pinazo MJ, Thomas MC, Bustamante J, Almeida IC, Lopez MC, Gascon J. Biomarkers of therapeutic responses in chronic Chagas disease: state of the art and future perspectives. Mem Inst Oswaldo Cruz 2015; 110(3): 422-32.
[http://dx.doi.org/10.1590/0074-02760140435] [PMID: 25946151]
[392]
Pineda MA, Cuervo H, Fresno M, Soto M, Bonay P. Lack of galectin-3 prevents cardiac fibrosis and effective immune responses in a murine model of Trypanosoma cruzi infection. J Infect Dis 2015; 212(7): 1160-71.
[http://dx.doi.org/10.1093/infdis/jiv185] [PMID: 25805753]
[393]
Benatar AF, García GA, Bua J, et al. Galectin-1 Prevents Infection and Damage Induced by Trypanosoma cruzi on Cardiac Cells. PLoS Negl Trop Dis 2015; 9(10)
[http://dx.doi.org/10.1371/journal.pntd.0004148] [PMID: 26451839]
[394]
Reignault LC, Barrias ES, Soares Medeiros LC, de Souza W, de Carvalho TM. Structures containing galectin-3 are recruited to the parasitophorous vacuole containing Trypanosoma cruzi in mouse peritoneal macrophages. Parasitol Res 2014; 113(6): 2323-33.
[http://dx.doi.org/10.1007/s00436-014-3887-8] [PMID: 24760627]
[395]
da Silva AA, Teixeira TL, Teixeira SC, et al. Galectin-3: A Friend but Not a Foe during Trypanosoma cruzi Experimental Infection. Front Cell Infect Microbiol 2017; 7: 463.
[http://dx.doi.org/10.3389/fcimb.2017.00463] [PMID: 29164071]
[396]
Magdesian MH, Tonelli RR, Fessel MR, et al. A conserved domain of the gp85/trans-sialidase family activates host cell extracellular signal-regulated kinase and facilitates Trypanosoma cruzi infection. Exp Cell Res 2007; 313(1): 210-8.
[http://dx.doi.org/10.1016/j.yexcr.2006.10.008] [PMID: 17101128]
[397]
Martins NO, Souza RT, Cordero EM, et al. Molecular Characterization of a Novel Family of Trypanosoma cruzi Surface Membrane Proteins (TcSMP) Involved in Mammalian Host Cell Invasion. PLoS Negl Trop Dis 2015; 9(11)
[http://dx.doi.org/10.1371/journal.pntd.0004216] [PMID: 26565791]
[398]
Dvorak JA, Schmunis GA. Trypanosoma cruzi: interaction with mouse peritoneal macrophages. Exp Parasitol 1972; 32(2): 289-300.
[http://dx.doi.org/10.1016/0014-4894(72)90036-7] [PMID: 4560412]
[399]
Nogueira N, Cohn Z. Trypanosoma cruzi: mechanism of entry and intracellular fate in mammalian cells. J Exp Med 1976; 143(6): 1402-20.
[http://dx.doi.org/10.1084/jem.143.6.1402] [PMID: 775012]
[400]
Martins RM, Alves RM, Macedo S, Yoshida N. Starvation and rapamycin differentially regulate host cell lysosome exocytosis and invasion by Trypanosoma cruzi metacyclic forms. Cell Microbiol 2011; 13(7): 943-54.
[http://dx.doi.org/10.1111/j.1462-5822.2011.01590.x] [PMID: 21501360]
[401]
Tardieux I, Webster P, Ravesloot J, et al. Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell 1992; 71(7): 1117-30.
[http://dx.doi.org/10.1016/S0092-8674(05)80061-3] [PMID: 1473148]
[402]
Reddy A, Caler EV, Andrews NW. Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell 2001; 106(2): 157-69.
[http://dx.doi.org/10.1016/S0092-8674(01)00421-4] [PMID: 11511344]
[403]
Tam C, Idone V, Devlin C, et al. Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. J Cell Biol 2010; 189(6): 1027-38.
[http://dx.doi.org/10.1083/jcb.201003053] [PMID: 20530211]
[404]
Couto NF, Pedersane D, Rezende L, et al. LAMP-2 absence interferes with plasma membrane repair and decreases T. cruzi host cell invasion. PLoS Negl Trop Dis 2017; 11(6)
[http://dx.doi.org/10.1371/journal.pntd.0005657] [PMID: 28586379]
[405]
Hissa B, Andrade Lde O. Trypasonoma cruzi uses a specific subset of host cell lysosomes for cell invasion. Parasitol Int 2015; 64(2): 135-8.
[http://dx.doi.org/10.1016/j.parint.2014.11.005] [PMID: 25463313]
[406]
Motta FN, Bastos IM, Faudry E, et al. The Trypanosoma cruzi virulence factor oligopeptidase B (OPBTc) assembles into an active and stable dimer. PLoS One 2012; 7(1)
[http://dx.doi.org/10.1371/journal.pone.0030431] [PMID: 22276197]
[407]
Cortez C, Real F, Yoshida N. Lysosome biogenesis/scattering increases host cell susceptibility to invasion by Trypanosoma cruzi metacyclic forms and resistance to tissue culture trypomastigotes. Cell Microbiol 2016; 18(5): 748-60.
[http://dx.doi.org/10.1111/cmi.12548] [PMID: 26572924]
[408]
Wilkowsky SE, Barbieri MA, Stahl PD, Isola EL. Regulation of Trypanosoma cruzi invasion of nonphagocytic cells by the endocytically active GTPases dynamin, Rab5, and Rab7. Biochem Biophys Res Commun 2002; 291(3): 516-21.
[http://dx.doi.org/10.1006/bbrc.2002.6474] [PMID: 11855818]
[409]
de Meirelles MN, de Araújo Jorge TC, de Souza W. Interaction of Trypanosoma cruzi with macrophages in vitro: dissociation of the attachment and internalization phases by low temperature and cytochalasin B. Z Parasitenkd 1982; 68(1): 7-14.
[http://dx.doi.org/10.1007/BF00926652] [PMID: 6753392]
[410]
Rosestolato CT, Dutra Jda M, De Souza W, de Carvalho TM. Participation of host cell actin filaments during interaction of trypomastigote forms of Trypanosoma cruzi with host cells. Cell Struct Funct 2002; 27(2): 91-8.
[http://dx.doi.org/10.1247/csf.27.91] [PMID: 12207050]
[411]
Tyler KM, Luxton GW, Applewhite DA, Murphy SC, Engman DM. Responsive microtubule dynamics promote cell invasion by Trypanosoma cruzi. Cell Microbiol 2005; 7(11): 1579-91.
[http://dx.doi.org/10.1111/j.1462-5822.2005.00576.x] [PMID: 16207245]
[412]
Zhao X, Kumar P, Shah-Simpson S, et al. Host microtubule plus-end binding protein CLASP1 influences sequential steps in the Trypanosoma cruzi infection process. Cell Microbiol 2013; 15(4): 571-84.
[http://dx.doi.org/10.1111/cmi.12056] [PMID: 23107073]
[413]
Cueto JÁ, Vanrell MC, Salassa BN, et al. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors required during Trypanosoma cruzi parasitophorous vacuole development. Cell Microbiol 2017; 19(6)
[http://dx.doi.org/10.1111/cmi.12713] [PMID: 27992096]
[414]
Romano PS, Arboit MA, Vázquez CL, Colombo MI. The autophagic pathway is a key component in the lysosomal dependent entry of Trypanosoma cruzi into the host cell. Autophagy 2009; 5(1): 6-18.
[http://dx.doi.org/10.4161/auto.5.1.7160] [PMID: 19115481]
[415]
Casassa AF, Vanrell MC, Colombo MI, Gottlieb RA, Romano PS. Autophagy plays a protective role against Trypanosoma cruzi infection in mice. Virulence 2019; 10(1): 151-65.
[http://dx.doi.org/10.1080/21505594.2019.1584027] [PMID: 30829115]
[416]
Carvalho TMU, De Souza W, Coimbra ES. Internalization of components of the host cell plasma membrane during infection by Trypanosoma cruzi. Mem Inst Oswaldo Cruz 1999; 94(Suppl. 1): 143-7.
[http://dx.doi.org/10.1590/S0074-02761999000700016] [PMID: 10677702]
[417]
Rittig MG, Schröppel K, Seack KH, et al. Coiling phagocytosis of trypanosomatids and fungal cells. Infect Immun 1998; 66(9): 4331-9.
[http://dx.doi.org/10.1128/IAI.66.9.4331-4339.1998] [PMID: 9712785]
[418]
Barrias ES, Dutra JM, De Souza W, Carvalho TM. Participation of macrophage membrane rafts in Trypanosoma cruzi invasion process. Biochem Biophys Res Commun 2007; 363(3): 828-34.
[http://dx.doi.org/10.1016/j.bbrc.2007.09.068] [PMID: 17904520]
[419]
Barrias E, Reignault L, de Carvalho TMU, de Souza W. Clathrin coated pit dependent pathway for Trypanosoma cruzi internalization into host cells. Acta Trop 2019; 199.
[http://dx.doi.org/10.1016/j.actatropica.2019.105057] [PMID: 31202818]
[420]
Romano PS, Cueto JÁ, Casassa AF, Vanrell MC, Gottlieb RA, Colombo MI. Molecular and cellular mechanisms involved in the Trypanosoma cruzi/host cell interplay. IUBMB Life 2012; 64(5): 387-96.
[http://dx.doi.org/10.1002/iub.1019] [PMID: 22454195]
[421]
Burleigh BA, Woolsey AM. Cell signalling and Trypanosoma cruzi invasion. Cell Microbiol 2002; 4(11): 701-11.
[http://dx.doi.org/10.1046/j.1462-5822.2002.00226.x] [PMID: 12427093]
[422]
Scharfstein J, Schmitz V, Morandi V, et al. Host cell invasion by Trypanosoma cruzi is potentiated by activation of bradykinin B(2) receptors. J Exp Med 2000; 192(9): 1289-300.
[http://dx.doi.org/10.1084/jem.192.9.1289] [PMID: 11067878]
[423]
Ferrão PM, d’Avila-Levy CM, Araujo-Jorge TC, et al. Cruzipain Activates Latent TGF-β from Host Cells during T. cruzi Invasion. PLoS One 2015; 10(5)
[http://dx.doi.org/10.1371/journal.pone.0124832] [PMID: 25938232]
[424]
Hall BS, Pereira MA. Dual role for transforming growth factor β-dependent signaling in Trypanosoma cruzi infection of mammalian cells. Infect Immun 2000; 68(4): 2077-81.
[http://dx.doi.org/10.1128/IAI.68.4.2077-2081.2000] [PMID: 10722604]
[425]
Hall BF, Furtado GC, Joiner KA. Characterization of host cell-derived membrane proteins of the vacuole surrounding different intracellular forms of Trypanosoma cruzi in J774 cells. Evidence for phagocyte receptor sorting during the early stages of parasite entry. J Immunol 1991; 147(12): 4313-21.
[PMID: 1753102]
[426]
Volpini X, Ambrosio LF, Fozzatti L, et al. Trypanosoma cruzi Exploits Wnt Signaling Pathway to Promote Its Intracellular Replication in Macrophages. Front Immunol 2018; 9: 859.
[http://dx.doi.org/10.3389/fimmu.2018.00859] [PMID: 29743880]
[427]
Huynh KK, Kay JG, Stow JL, Grinstein S. Fusion, fission, and secretion during phagocytosis. Physiology (Bethesda) 2007; 22: 366-72.
[http://dx.doi.org/10.1152/physiol.00028.2007] [PMID: 18073409]
[428]
Reignault LC, Alcantara CL, Barrias ES, de Souza W. 3D reconstruction of Trypanosoma cruzi-macrophage interaction shows the recruitment of host cell organelles towards parasitophorous vacuoles during its biogenesis. J Struct Biol 2019; 205(2): 133-46.
[http://dx.doi.org/10.1016/j.jsb.2018.12.010] [PMID: 30660625]
[429]
Meirelles MN, Juliano L, Carmona E, et al. Inhibitors of the major cysteinyl proteinase (GP57/51) impair host cell invasion and arrest the intracellular development of Trypanosoma cruzi in vitro. Mol Biochem Parasitol 1992; 52(2): 175-84.
[http://dx.doi.org/10.1016/0166-6851(92)90050-T] [PMID: 1620157]
[430]
Engel JC, Torres C, Hsieh I, Doyle PS, McKerrow JH. Upregulation of the secretory pathway in cysteine protease inhibitor-resistant Trypanosoma cruzi. J Cell Sci 2000; 113(Pt 8): 1345-54.
[PMID: 10725218]
[431]
Baum SG, Wittner M, Nadler JP, et al. Taxol, a microtubule stabilizing agent, blocks the replication of Trypanosoma cruzi. Proc Natl Acad Sci USA 1981; 78(7): 4571-5.
[http://dx.doi.org/10.1073/pnas.78.7.4571] [PMID: 6117077]
[432]
Dantas AP, Barbosa HS, De Castro SL. Biological and ultrastructural effects of the anti-microtubule agent taxol against Trypanosoma cruzi. J Submicrosc Cytol Pathol 2003; 35(3): 287-94.
[PMID: 14690177]
[433]
Vannier-Santos MA, De Castro SL. Electron microscopy in antiparasitic chemotherapy: a (close) view to a kill. Curr Drug Targets 2009; 10(3): 246-60.
[http://dx.doi.org/10.2174/138945009787581168] [PMID: 19275561]
[434]
Duschak VG, Couto AS. Cruzipain, the major cysteine protease of Trypanosoma cruzi: a sulfated glycoprotein antigen as relevant candidate for vaccine development and drug target. A review. Curr Med Chem 2009; 16(24): 3174-202.
[http://dx.doi.org/10.2174/092986709788802971] [PMID: 19689291]
[435]
Sajid M, Robertson SA, Brinen LS, McKerrow JH. Cruzain: the path from target validation to the clinic. Adv Exp Med Biol 2011; 712: 100-15.
[http://dx.doi.org/10.1007/978-1-4419-8414-2_7] [PMID: 21660661]
[436]
Choe Y, Brinen LS, Price MS, et al. Development of alpha-keto-based inhibitors of cruzain, a cysteine protease implicated in Chagas disease. Bioorg Med Chem 2005; 13(6): 2141-56.
[http://dx.doi.org/10.1016/j.bmc.2004.12.053] [PMID: 15727867]
[437]
Duschak VG. Targets and Patented Drugs for Chemotherapy of Chagas Disease in the Last 15 Years-Period. Recent Pat Antiinfect Drug Discov 2016; 11(2): 74-173.
[http://dx.doi.org/10.2174/1574891X11666161024165304] [PMID: 27784230]
[438]
Monteiro ME, Lechuga G, Lara LS, et al. Synthesis, structure-activity relationship and trypanocidal activity of pyrazole-imidazoline and new pyrazole-tetrahydropyrimidine hybrids as promising chemotherapeutic agents for Chagas disease. Eur J Med Chem 2019; 182.
[http://dx.doi.org/10.1016/j.ejmech.2019.111610] [PMID: 31434040]
[439]
Kalel VC, Mäser P, Sattler M, Erdmann R, Popowicz GM. Come, sweet death: targeting glycosomal protein import for antitrypanosomal drug development. Curr Opin Microbiol 2018; 46: 116-22.
[http://dx.doi.org/10.1016/j.mib.2018.11.003] [PMID: 30481613]
[440]
Urbina JA, Moreno B, Vierkotter S, et al. Trypanosoma cruzi contains major pyrophosphate stores, and its growth in vitro and in vivo is blocked by pyrophosphate analogs. J Biol Chem 1999; 274(47): 33609-15.
[http://dx.doi.org/10.1074/jbc.274.47.33609] [PMID: 10559249]
[441]
Santa-Rita RM, Lira R, Barbosa HS, Urbina JA, de Castro SL. Anti-proliferative synergy of lysophospholipid analogues and ketoconazole against Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae): cellular and ultrastructural analysis. J Antimicrob Chemother 2005; 55(5): 780-4.
[http://dx.doi.org/10.1093/jac/dki087] [PMID: 15790672]
[442]
Rodrigues JC, Attias M, Rodriguez C, Urbina JA, Souza Wd. Ultrastructural and biochemical alterations induced by 22,26-azasterol, a delta(24(25))-sterol methyltransferase inhibitor, on promastigote and amastigote forms of Leishmania amazonensis. Antimicrob Agents Chemother 2002; 46(2): 487-99.
[http://dx.doi.org/10.1128/AAC.46.2.487-499.2002] [PMID: 11796362]
[443]
Vivas J, Urbina JA, de Souza W. Ultrastructural alterations in Trypanosoma (Schizotrypanum) cruzi induced by Delta(24(25)) sterol methyl transferase inhibitors and their combinations with ketoconazole. Int J Antimicrob Agents 1997; 8(1): 1-6.
[http://dx.doi.org/10.1016/S0924-8579(96)00345-7] [PMID: 18611778]
[444]
de Macedo-Silva ST, Urbina JA, de Souza W, Rodrigues JC. In vitro activity of the antifungal azoles itraconazole and posaconazole against Leishmania amazonensis. PLoS One 2013; 8(12)
[http://dx.doi.org/10.1371/journal.pone.0083247] [PMID: 24376670]
[445]
Vercesi AE, Docampo R. Ca2+ transport by digitonin-permeabilized Leishmania donovani. Effects of Ca2+, pentamidine and WR-6026 on mitochondrial membrane potential in situ. Biochem J 1992; 284(Pt 2): 463-7.
[http://dx.doi.org/10.1042/bj2840463] [PMID: 1376113]
[446]
Luque-Ortega JR, Reuther P, Rivas L, Dardonville C. New benzophenone-derived bisphosphonium salts as leishmanicidal leads targeting mitochondria through inhibition of respiratory complex II. J Med Chem 2010; 53(4): 1788-98.
[http://dx.doi.org/10.1021/jm901677h] [PMID: 20128602]
[447]
De Souza EM, Lansiaux A, Bailly C, et al. Phenyl substitution of furamidine markedly potentiates its anti-parasitic activity against Trypanosoma cruzi and Leishmania amazonensis. Biochem Pharmacol 2004; 68(4): 593-600.
[http://dx.doi.org/10.1016/j.bcp.2004.04.019] [PMID: 15276066]
[448]
Silva CF, Meuser MB, De Souza EM, et al. Cellular effects of reversed amidines on Trypanosoma cruzi. Biochem Pharmacol 2007; 73(12): 1939-46.
[http://dx.doi.org/10.1016/j.bcp.2007.03.020] [PMID: 17462605]
[449]
Manchester T, Cavalcanti DP, Zogovich MDE, Souza W, Motta MC. Acriflavine treatment promotes dyskinetoplasty in Trypanosoma cruzi as revealed by ultrastructural analysis. Parasitology 2013; 140(11): 1422-31.
[http://dx.doi.org/10.1017/S0031182013001029] [PMID: 23965822]
[450]
Zuma AA, Cavalcanti DP, Zogovich M, et al. Unveiling the effects of berenil, a DNA-binding drug, on Trypanosoma cruzi: implications for kDNA ultrastructure and replication. Parasitol Res 2015; 114(2): 419-30.
[http://dx.doi.org/10.1007/s00436-014-4199-8] [PMID: 25349143]
[451]
Kerschmann RL, Wolfson JS, McHugh GL, Dickersin GR, Hooper DC, Swartz MN. Novobiocin-induced ultrastructural changes and antagonism of DNA synthesis in Trypanosoma cruzi amastigotes growing in cell-free medium. J Protozool 1989; 36(1): 14-20.
[http://dx.doi.org/10.1111/j.1550-7408.1989.tb02669.x] [PMID: 2651651]
[452]
Gonzales-Perdomo M, de Castro SL, Meirelles MN, Goldenberg S. Trypanosoma cruzi proliferation and differentiation are blocked by topoisomerase II inhibitors. Antimicrob Agents Chemother 1990; 34(9): 1707-14.
[http://dx.doi.org/10.1128/AAC.34.9.1707] [PMID: 2178335]
[453]
Zuma AA, Mendes IC, Reignault LC, et al. How Trypanosoma cruzi handles cell cycle arrest promoted by camptothecin, a topoisomerase I inhibitor. Mol Biochem Parasitol 2014; 193(2): 93-100.
[http://dx.doi.org/10.1016/j.molbiopara.2014.02.001] [PMID: 24530483]
[454]
Chowdhury SR, Godinho JLP, Vinayagam J, et al. Isobenzofuranone derivative JVPH3, an inhibitor of L. donovani topoisomerase II, disrupts mitochondrial architecture in trypanosomatid parasites. Sci Rep 2018; 8(1): 11940.
[http://dx.doi.org/10.1038/s41598-018-30405-w] [PMID: 30093616]
[455]
Motta MCM. Kinetoplast as a potential chemotherapeutic target of trypanosomatids. Curr Pharm Des 2008; 14(9): 847-54.
[http://dx.doi.org/10.2174/138161208784041051] [PMID: 18473834]
[456]
Zuma AA, Santos JO, Mendes I, de Souza W, Machado CR, Motta MCM. Chaetocin-A histone methyltransferase inhibitor-Impairs proliferation, arrests cell cycle and induces nucleolar disassembly in Trypanosoma cruzi. Acta Trop 2017; 170: 149-60.
[http://dx.doi.org/10.1016/j.actatropica.2017.02.007] [PMID: 28185826]
[457]
Moretti NS, da Silva Augusto L, Clemente TM, et al. Characterization of Trypanosoma cruzi Sirtuins as Possible Drug Targets for Chagas Disease. Antimicrob Agents Chemother 2015; 59(8): 4669-79.
[http://dx.doi.org/10.1128/AAC.04694-14] [PMID: 26014945]
[458]
Veiga-Santos P, Reignault LC, Huber K, Bracher F, De Souza W, De Carvalho TM. Inhibition of NAD+-dependent histone deacetylases (sirtuins) causes growth arrest and activates both apoptosis and autophagy in the pathogenic protozoan Trypanosoma cruzi. Parasitology 2014; 141(6): 814-25.
[http://dx.doi.org/10.1017/S0031182013001704] [PMID: 24670415]
[459]
Chatelain E, Ioset JR. Phenotypic screening approaches for Chagas disease drug discovery. Expert Opin Drug Discov 2018; 13(2): 141-53.
[http://dx.doi.org/10.1080/17460441.2018.1417380] [PMID: 29235363]
[460]
Sales Junior PA, Molina I, Fonseca Murta SM, et al. Experimental and Clinical Treatment of Chagas Disease: A Review. Am J Trop Med Hyg 2017; 97(5): 1289-303.
[http://dx.doi.org/10.4269/ajtmh.16-0761] [PMID: 29016289]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy