Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Heterogeneous Palladium Catalysts in the Hydrogenation of the Carbon-carbon Double Bond

Author(s): Stanislav A. Grabovskii*, Timur I. Akchurin and Vladimir A. Dokichev

Volume 25, Issue 2, 2021

Published on: 01 December, 2020

Page: [315 - 329] Pages: 15

DOI: 10.2174/1385272824999201202084812

Price: $65

Abstract

The results of studies over the past ten years in the field of C=C bond hydrogenation in the presence of palladium catalysts deposited on various inorganic and organic carriers such activated carbons, carbon nanotubes, alumina, zeolites, or composite materials based on Al2O3-SiO2, polystyrene, polypropyleneimine, polyamidoamine and hybrid inorganic/ polymer-carriers, are presented. The selectivity and rates of the hydrogenation process are considered and some comparisons are made. Porous supports and containing dendrimers generally retain palladium particles more effectively. Nanosized palladium stabilized by different dendrimers catalyzes the hydrogenation of C=C bonds in polyfunctional compounds chemoselectively without affecting functional groups, such as CHO, C=O, C(O)OR, CN, NO2, and halogens.

Keywords: Catalysis, hydrogenation, palladium, unsaturated compounds, inorganic carriers, organic carriers.

« Previous
Graphical Abstract

[1]
Nishimura, S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis; Wiley: New York, 2001.
[2]
Klabunovskii, E.; Smith, G.V.; Zsigmond, Á. Heterogeneous enantioselective hydrogenation: Theory and Practice; Springer: Dordrecht, 2006.
[http://dx.doi.org/10.1007/978-1-4020-4296-6]
[3]
Irfan, M.; Glasnov, T.N.; Kappe, C.O. Heterogeneous catalytic hydrogenation reactions in continuous-flow reactors. ChemSusChem, 2011, 4(3), 300-316.
[http://dx.doi.org/10.1002/cssc.201000354] [PMID: 21337528]
[4]
Basimova, R.A.; Pavlov, M.L.; Myachin, S.I.; Prokopenko, A.V.; Askarova, A.V.; Kutepov, B.I.; Sychkova, S.A. Selective hydrogenation on palladium-containing catalysts of byproduct phenylacetylene present in industrial fractions of styrene. Petrol. Chem., 2009, 49(5), 360-365.
[http://dx.doi.org/10.1134/S096554410905003X]
[5]
Shao, Z.; Li, C.; Pang, M.; Wang, X.; Liang, C. A facile and controlled route to prepare an eggshell Pd catalyst for selective hydrogenation of phenylacetylene. ChemCatChem, 2010, 2(12), 1555-1558.
[http://dx.doi.org/10.1002/cctc.201000186]
[6]
Klyuev, M.V.; Abdullaev, M.G.; Abdullaeva, Z.S. Palladium catalysts in the synthesis of local anesthetics. Pharm. Chem. J., 2010, 44(8), 446-451.
[http://dx.doi.org/10.1007/s11094-010-0487-5]
[7]
Pritchard, J.; Filonenko, G.A.; van Putten, R.; Hensen, E.J.M.; Pidko, E.A. Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions. Chem. Soc. Rev., 2015, 44(11), 3808-3833.
[http://dx.doi.org/10.1039/C5CS00038F] [PMID: 25941799]
[8]
Thomas, J.M. Handbook of Heterogeneous Catalysi; Ertl, G.; Knözinger, H.; Schüth, F; Weitkamp, J., Ed.; Wiley & Sons: Weinheim, 2008.
[9]
Saudan, L.A. Hydrogenation processes in the synthesis of perfumery ingredients. Acc. Chem. Res., 2007, 40(12), 1309-1319.
[http://dx.doi.org/10.1021/ar700140m] [PMID: 17960898]
[10]
Molnár, Á.; Sárkány, A.; Varga, M. Hydrogenation of carbon–carbon multiple bonds: chemo-, regio- and stereo-selectivity. J. Mol. Catal. Chem., 2001, 173, 185-221.
[http://dx.doi.org/10.1016/S1381-1169(01)00150-9]
[11]
Likholobov, V.A.; Surovikin, V.F.; Plaksin, G.V.; Tsekhanovich, M.S.; Surovikin, Yu.V.; Baklanova, O.N. Nanostructured carbon materials for catalysis and adsorption. Catal. Ind., 2009, 1(1), 11-16.
[http://dx.doi.org/10.1134/S2070050409010024]
[12]
Zhao, X.; Zhao, Y.; Fu, G.; Zheng, N. Origin of the facet dependence in the hydrogenation catalysis of olefins: experiment and theory. Chem. Commun. (Camb.), 2015, 51(60), 12016-12019.
[http://dx.doi.org/10.1039/C5CC03241E] [PMID: 26121144]
[13]
Rylander, P.N. Hydrogenation Methods; Academic Press: New York, 1985.
[14]
Sanfilippo, D.; Rylander, P.N. Hydrogenation and dehydrogenation in Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2009, Vol. 18, pp. 451-471.
[15]
Felpin, F-X.; Fouquet, E. A useful, reliable and safer protocol for hydrogenation and the hydrogenolysis of O-benzyl groups: the in situ preparation of an active Pd(0)/C catalyst with well-defined properties. Chemistry, 2010, 16(41), 12440-12445.
[http://dx.doi.org/10.1002/chem.201001377] [PMID: 20845414]
[16]
Quinn, J.F.; Razzano, D.A.; Golden, K.C.; Gregg, B.T. 1,4-Cyclohexadiene with Pd/C as a rapid, safe transfer hydrogenation system with microwave heating. Tetrahedron Lett., 2008, 49(42), 6137-6140.
[http://dx.doi.org/10.1016/j.tetlet.2008.08.023]
[17]
Liu, Q.; Li, J.; Shen, X-X.; Xing, R-G.; Yang, J.; Liu, Zh.; Zhou, B. Hydrogenation of olefins using Hantzsch ester catalyzed by palladium on carbon. Tetrahedron Lett., 2009, 50(9), 1026-1028.
[http://dx.doi.org/10.1016/j.tetlet.2008.12.062]
[18]
Kuznetsov, B.N. Carbon supports from natural organic materials and carbon-supported palladium catalysts. Kinet. Catal., 2007, 48(4), 573-580.
[http://dx.doi.org/10.1134/S0023158407040167]
[19]
Simakova, I.L.; Solkina, Y.; Deliy, I.; Wärnå, J.; Murzin, D.Yu. Modeling of kinetics and stereoselectivity in liquid-phase α-pinene hydrogenation over Pd/C. Appl. Catal. A Gen., 2009, 356(2), 216-224.
[http://dx.doi.org/10.1016/j.apcata.2009.01.006]
[20]
Selka, A.; Levesque, N.A.; Foucher, D.; Clarisse, O.; Chemat, F.; Touaibia, M. A Comparative study of solvent-free and highly efficient pinene hydrogenation over Pd on carbon, alumina, and silica supports. Org. Process Res. Dev., 2017, 21(1), 60-64.
[http://dx.doi.org/10.1021/acs.oprd.6b00344]
[22]
Mori, A.; Mizusaki, T.; Kawase, M.; Maegawa, T.; Monguchi, Y.; Takao, S.; Takagi, Y.; Sajiki, H. Novel palladium‐on‐parbon/diphenyl sulfide complex for chemoselective hydrogenation: preparation, characterization, and application. Adv. Synth. Catal., 2008, 350(3), 406-410.
[http://dx.doi.org/10.1002/adsc.200700571]
[23]
Mori, A.; Miyakawa, Y.; Ohashi, E.; Haga, T.; Maegawa, T.; Sajiki, H. Pd/C-catalyzed chemoselective hydrogenation in the presence of diphenylsulfide. Org. Lett., 2006, 8(15), 3279-3281.
[http://dx.doi.org/10.1021/ol061147j] [PMID: 16836385]
[24]
Mori, A.; Mizusaki, T.; Miyakawa, Y.; Ohashi, E.; Haga, T.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Chemoselective hydrogenation method catalyzed by Pd/C using diphenylsulfide as a reasonable catalyst poison. Tetrahedron, 2006, 62(51), 11925-11932.
[http://dx.doi.org/10.1016/j.tet.2006.09.094]
[25]
Lin, B.; Zhang, Y.; Zhu, Y.; Zou, Y.; Hu, Y.; Du, X.; Xie, H.; Wang, K.; Zhou, Y. Phosphor-doped graphitic carbon nitride-supported Pd as a highly efficient catalyst for styrene hydrogenation. Catal. Commun., 2020, 144106094
[http://dx.doi.org/10.1016/j.catcom.2020.106094]
[26]
Kosydar, R.; Szewczyk, I.; Natkański, P.; Duraczyńska, D.; Gurgul, J.; Kuśtrowski, P.; Drelinkiewicz, A. New insight into the effect of surface oxidized groups of nanostructured carbon supported Pd catalysts on the furfural hydrogenation. Surf. Interfaces, 2019, 17100379
[http://dx.doi.org/10.1016/j.surfin.2019.100379]
[27]
Osipov, N.N.; Klyuev, M.V. Hydrogenation of unsaturated compounds in the presence of palladium-containing modified carbon nanofibers. Russ. J. Gen. Chem., 2013, 83(5), 928-931.
[http://dx.doi.org/10.1134/S1070363213050071]
[28]
Cattaneo, S.; Trujillo, F.J.S.; Dimitratos, N.; Villa, A. The effect of carbon nanofibers surface properties in hydrogenation and dehydrogenation reactions. Appl. Sci. (Basel), 2019, 9(23), 5061.
[http://dx.doi.org/10.3390/app9235061]
[29]
Vanyorek, L.; Prekob, Á.; Hajdu, V.; Muránszky, G.; Fiser, B.; Sikora, E.; Kristály, F.; Viskolcz, B. Ultrasonic cavitation assisted deposition of catalytically active metals on nitrogen-doped and non-doped carbon nanotubes - a comparative study. J. Mater. Res. Technol., 2020, 9(3), 4283-4291.
[http://dx.doi.org/10.1016/j.jmrt.2020.02.054]
[30]
Morales, M.V.; Guerrero-Ruiz, A.; Castillejos, E.; Asedegbega-Nieto, E.; Rodríguez-Ramos, I. Taking advantage of sulfur impurities present in commercial carbon nanofibers to generate selective palladium catalysts. Carbon, 2020, 157, 120-129.
[http://dx.doi.org/10.1016/j.carbon.2019.10.021]
[31]
Chun, Y.S.; Shin, J.Y.; Song, C.E.; Lee, S.G. Palladium nanoparticles supported onto ionic carbon nanotubes as robust recyclable catalysts in an ionic liquid. Chem. Commun. (Camb.), 2008, 942-944(8), 942-944.
[http://dx.doi.org/10.1039/B715463A] [PMID: 18283343]
[32]
Truong-Huu, T.; Chizari, K.; Janowska, I. Moldovan, M.-S.; Ersen, O.; Nguyen, L.D.; Ledoux, M.J.; Pham-Huu, C.; Begin, D. Few-layer graphene supporting palladium nanoparticles with a fully accessible effective surface for liquid-phase hydrogenation reaction. Catal. Today, 2012, 189(1), 77-82.
[http://dx.doi.org/10.1016/j.cattod.2012.04.005]
[33]
Blanita, G.; Lazar, M.D. Review of graphene-supported metal nanoparticles as new and efficient heterogeneous catalysts. Micro Nanosyst., 2013, 5(2), 138-146.
[http://dx.doi.org/10.2174/1876402911305020009]
[34]
Turova, O.V.; Starodubtseva, E.V.; Vinogradov, M.G.; Sokolov, V.I.; Abramova, N.V.; Vul’, A.Y.A.; Alexenskiy, A.E. Palladium supported on detonation nanodiamond as a highly effective catalyst of the C=C and C≡C bond hydrogenation. Catal. Commun., 2011, 12(7), 577-579.
[http://dx.doi.org/10.1016/j.catcom.2010.12.001]
[35]
Magdalinova, N.A.; Kalmykov, P.A.; Klyuev, M.V. Hydrogenation catalysts based on platinum- and palladium-containing nanodiamonds. Russ. J. Gen. Chem., 2014, 84(1), 33-39.
[http://dx.doi.org/10.1134/S1070363214010083]
[36]
Tungler, A.; Kajtar, M.; Máthé, T.; Toth, G.; Fogassy, E.; Petró, J. Enantioselective hydrogenation of α-β-unsaturated ketones. Catal. Today, 1989, 5(2), 159-171.
[http://dx.doi.org/10.1016/0920-5861(89)80023-9]
[37]
Tungler, A.; Sipos, E.; Hada, V. Heterogeneous catalytic asymmetric hydrogenation of the C=C bond. Curr. Org. Chem., 2006, 10(13), 1569-1583.
[http://dx.doi.org/10.2174/138527206778249595]
[38]
Li, Sh.; Chen, Ch.; Zhan, E.; Liu, Sh-B.; Shen, W. Chirality inversion in enantioselective hydrogenation of isophorone over Pd/MgO catalysts in the presence of (S)-proline: effect of Pd particle size. J. Mol. Catal. Chem., 2009, 304(1-2), 88-94.
[http://dx.doi.org/10.1016/j.molcata.2009.01.029]
[39]
Schäfer, C.; Mhadgut, S.C.; Kugyela, N.; Török, M.; Török, B. Proline-induced enantioselective heterogeneous catalytic hydrogenation of isophorone on basic polymer-supported Pd catalysts. Catal. Sci. Technol., 2015, 5(2), 716-723.
[http://dx.doi.org/10.1039/C4CY00954A]
[40]
Mhadgut, S.C.; Török, M.; Esquibel, J.; Török, B. Highly asymmetric heterogeneous catalytic hydrogenation of isophorone on proline modified base-supported palladium catalysts. J. Catal., 2006, 238(2), 441-448.
[http://dx.doi.org/10.1016/j.jcat.2006.01.004]
[41]
Zhan, E.; Li, Sh.; Xu, Y.; Shen, W. Heterogeneous enantioselective hydrogenation of isophorone over proline modified Pd catalysts. Catal. Commun., 2007, 8(8), 1239-1243.
[http://dx.doi.org/10.1016/j.catcom.2006.11.014]
[42]
McIntosh, A.I.; Watson, D.J.; Burton, J.W.; Lambert, R.M. Heterogeneously catalyzed asymmetric C=C hydrogenation: origin of enantioselectivity in the proline-directed Pd/isophorone system. J. Am. Chem. Soc., 2006, 128(22), 7329-7334.
[http://dx.doi.org/10.1021/ja061104y] [PMID: 16734488]
[43]
Rodríguez-García, L.; Hungerbühler, K.; Baiker, A.; Meemken, F. Enantioselection on heterogeneous noble metal catalyst: proline-induced asymmetry in the hydrogenation of isophorone on Pd catalyst. J. Am. Chem. Soc., 2015, 137(37), 12121-12130.
[http://dx.doi.org/10.1021/jacs.5b07904] [PMID: 26331335]
[44]
Meemken, F.; Baiker, A. Recent progress in heterogeneous asymmetric hydrogenation of C═O and C═C bonds on supported noble metal catalysts. Chem. Rev., 2017, 117(17), 11522-11569.
[http://dx.doi.org/10.1021/acs.chemrev.7b00272] [PMID: 28872309]
[45]
Sugimura, T.; Uchida, T.; Watanabe, J.; Kubota, T.; Okamoto, Y.A.; Misaki, T.; Okuyama, T. Structural requirements for substrate in highly enantioselective hydrogenation over the cinchonidine-modified Pd/C. J. Catal., 2009, 262(1), 57-64.
[http://dx.doi.org/10.1016/j.jcat.2008.11.022]
[46]
Sugimura, T.; Kim, T.Y. Enantioselective hydrogenation in water over chiral modified heterogeneous catalyst admixed with organic solvent. Catal. Lett., 2009, 130, 564-567.
[http://dx.doi.org/10.1007/s10562-009-9907-0]
[47]
Zhan, E.; Chen, C.; Li, Y.; Shen, W. Heterogeneous asymmetric hydrogenation over chiral molecule-modified metal particles. Catal. Sci. Technol., 2015, 5, 650-659.
[http://dx.doi.org/10.1039/C4CY00900B]
[48]
Maris, M.; Huck, W.R.; Mallat, T.; Baiker, A. Palladium-catalyzed asymmetric hydrogenation of furan carboxylic acids. J. Catal., 2003, 219, 52-58.
[http://dx.doi.org/10.1016/S0021-9517(03)00184-2]
[49]
Huck, W.R.; Burgi, T.; Mallat, T.; Baiker, A. Palladium-catalyzed enantioselective hydrogenation of 2-pyrones: evidence for competing reaction mechanisms. J. Catal., 2003, 219, 41-51.
[http://dx.doi.org/10.1016/S0021-9517(03)00166-0]
[50]
Coulston, N.J.; Jeffery, E.L.; Wells, R.P.K.; McMorn, P.; Wells, P.B.; Willock, D.J.; Hutchings, G.J. Enantioselective hydrogenation of N-acetyl dehydrophenylalanine methyl ester using cinchonine-modified Pd/Al2O3 catalysts. J. Catal., 2006, 243, 360-367.
[http://dx.doi.org/10.1016/j.jcat.2006.07.033]
[51]
Garcia-Ortiz, A.; Vidal, J.D.; Iborra, S.; Climent, M.J.; Cored, J.; Ruano, D.; Pérez-Dieste, V.; Concepción, P.; Corma, A. Synthesis of a hybrid Pd0/Pd-carbide/carbon catalyst material with high selectivity for hydrogenation reactions. J. Catal., 2020, 389, 706-713.
[http://dx.doi.org/10.1016/j.jcat.2020.06.036]
[52]
Bogdan, V.I.; Koklin, A.E.; Kalenchuk, A.N.; Kustov, L.M. Hydrogenation of acetylene into ethane–ethene mixtures over modified Pd–alumina catalysts. Mendeleev Commun., 2020, 30(4), 462-464.
[http://dx.doi.org/10.1016/j.mencom.2020.07.018]
[53]
Markov, P.V.; Mashkovsky, I.S.; Bragina, G.O.; Wärnå, J.; Bukhtiyarov, V.I.; Stakheev, A.Y.; Murzin, D.Y. Experimental and theoretical analysis of particle size effect in liquid-phase hydrogenation of diphenylacetylene. Chem. Eng. J., 2021, 404126409
[http://dx.doi.org/10.1016/j.cej.2020.126409]
[54]
Alshaibani, A.M.; Yaakob, Z.; Alsobaai, A.M.; Sahri, M. Optimization of Pd-B/γ-Al2O3 catalyst preparation for palm oil hydrogenation by response surface methodology (RSM). Braz. J. Chem. Eng., 2014, 31(1), 69-78.
[http://dx.doi.org/10.1590/S0104-66322014000100008]
[55]
Alshaibani, A.; Yaakob, Z.; Alsobaai, A.; Sahri, M. Effect of chemically reduced palladium supported catalyst on sunflower oil hydrogenation conversion and selectivity. Arab. J. Chem., 2017, 10(s1), s1188-s1192.
[http://dx.doi.org/10.1016/j.arabjc.2013.02.014]
[56]
Shomchoam, B.; Yoosuk, B. Eco-friendly lubricant by partial hydrogenation of palm oil over Pd/γ-Al2O3 catalyst. Ind. Crops Prod., 2014, 62, 395-399.
[http://dx.doi.org/10.1016/j.indcrop.2014.09.022]
[57]
Koley, P.; Rao, B.S.; Sabri, Y.M.; Bhargava, S.K.; Tardio, J.; Lingaiah, N. Selective conversion of furfural into tetrahydrofurfuryl alcohol using a heteropoly acid-based material as a hydrogenation catalyst. Sustain. Energy Fuels, 2020, 4(9), 4768-4779.
[http://dx.doi.org/10.1039/D0SE00861C]
[58]
Enke, D.; Janowski, F.; Schweiger, W. Porous glasses in the 21st century - a short review. Microporous Mesoporous Mater., 2003, 60(1-3), 19-30.
[http://dx.doi.org/10.1016/S1387-1811(03)00329-9]
[59]
Schmöger, C.; Stolle, A.; Bonrath, W.; Ondruschka, B.; Keller, T.; Jandt, K.D. A practical approach for ambient-pressure hydrogenations using Pd on porous glass. ChemSusChem, 2009, 2(1), 77-82.
[http://dx.doi.org/10.1002/cssc.200800168] [PMID: 19101941]
[60]
Kumar, B.S.; Amali, A.J.; Pitchumani, K. Mesoporous microcapsules through d-glucose promoted hydrothermal self-assembly of colloidal silica: reusable catalytic containers for palladium catalyzed hydrogenation reactions. ACS Sustain. Chem. Eng., 2017, 5(1), 667-674.
[http://dx.doi.org/10.1021/acssuschemeng.6b02025]
[61]
Patil, N.M.; Sasaki, T.; Bhanage, B.M. chemoselective transfer hydrogenation of α,β-unsaturated carbonyls using palladium immobilized ionic liquid catalyst. Catal. Lett., 2014, 144, 1803-1809.
[http://dx.doi.org/10.1007/s10562-014-1362-x]
[62]
Mäki-Arvela, P.; Hájek, J.; Salmi, T.; Murzin, D.Yu. Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts. Appl. Catal. A Gen., 2005, 292, 1-49.
[http://dx.doi.org/10.1016/j.apcata.2005.05.045]
[63]
Long, W.; Brunelli, N.A.; Didas, S.A.; Ping, E.W.; Jones, C.W. Aminopolymer-silica composite-supported Pd catalysts for selective hydrogenation of alkynes. ACS Catal., 2013, 3(8), 1700-1708.
[http://dx.doi.org/10.1021/cs3007395]
[64]
Redjel, A.; Boudjahem, A-G.; Bettahar, M. Effect of palladium precursor and preparation method on the catalytic performance of Pd/SiO2 catalysts for benzene hydrogenation. Particul. Sci. Technol., 2018, 36(6), 710-715.
[http://dx.doi.org/10.1080/02726351.2017.1295294]
[65]
Akchurin, T.I.; Baibulatova, N.Z.; Grabovskii, S.A.; Talipova, P.P.; Galkin, E.G.; Dokichev, V.A. Alkene hydrogenation over palladium supported on a carbon–silica material. Kinet. Catal., 2016, 57(5), 586-591.
[http://dx.doi.org/10.1134/S0023158416050025]
[66]
Akchurin, T.I.; Baibulatov, N.Z.; Dokichev, V.A. Hydrogenation of ketones and esters catalyzed by Pd/C‒SiO2. Russ. J. Gen. Chem., 2018, 88(2), 195-198.
[http://dx.doi.org/10.1134/S1070363218020032]
[67]
Szumełda, T.; Drelinkiewicz, A.; Kosydar, R.; Gurgul, J. Hydrogenation of cinnamaldehyde in the presence of PdAu/C catalysts prepared by the reverse “water-in-oil” microemulsion method. Appl. Catal. A Gen., 2014, 487, 1-15.
[http://dx.doi.org/10.1016/j.apcata.2014.08.036]
[68]
Szewczyk, I.; Kosydar, R.; Natkański, P.; Duraczyńska, D.; Gurgul, J.; Kuśtrowski, P.; Drelinkiewicz, A. Effect of the type of siliceous template and carbon precursor on physicochemical and catalytic properties of mesoporous nanostructured carbon-palladium systems. J. Porous Mater., 2020, 27(1), 1287-1308.
[http://dx.doi.org/10.1007/s10934-020-00896-y]
[69]
Wang, Ji.; Li, Ji.; Wang, Yu.; Luo, G. In situ preparation of Pd/Al2O3–SiO2 composite microspheres by combining a sol-gel process and precipitation process in a microchannel. Chem. Eng. J., 2014, 236, 293-299.
[http://dx.doi.org/10.1016/j.cej.2013.09.055]
[70]
Pandarus, V.; Gingras, G.; Béland, F.; Ciriminna, R.; Pagliaro, M. Selective hydrogenation of vegetable oils over SiliaCat Pd(0). Org. Process Res. Dev., 2012, 16(7), 1307-1311.
[http://dx.doi.org/10.1021/op300115r]
[71]
Scheuermann, G.M.; Thomann, R.; Mülhaupt, R. Catalysts based upon organoclay with tunable polarity and dispersion behavior: new catalysts for hydrogenation, C–C coupling reactions and fluorous biphase catalysis. Catal. Lett., 2009, 132, 355-362.
[http://dx.doi.org/10.1007/s10562-009-0122-9]
[72]
Gong, L-H.; Cai, Y.; Li, X-H.; Zhang, Y-N.; Su, J.; Chen, J-S. Room-temperature transfer hydrogenation and fast separation of unsaturated compounds over heterogeneous catalysts in an aqueous solution of formic acid. Green Chem., 2014, 16(8), 3746-3751.
[http://dx.doi.org/10.1039/C4GC00981A]
[73]
Álvaro, V.F.D.; Johnstone, R.A.W. High surface area Pd, Pt and Ni ion-exchanged Zr, Ti and Sn(IV) phosphates and their application to selective heterogeneous catalytic hydrogenation of alkenes. J. Mol. Catal. Chem., 2008, 280(1-2), 131-141.
[http://dx.doi.org/10.1016/j.molcata.2007.10.031]
[74]
Kantam, M.L.; Kishore, R.; Yadav, Ja.; Sudhakar, M.; Venugopal, A. Chemoselective hydrogenation of the olefinic bonds using a palladium/magnesium‐lanthanum mixed oxide catalyst. Adv. Synth. Catal., 2012, 354(4), 663-669.
[http://dx.doi.org/10.1002/adsc.201100569]
[75]
Yamada, Y.M.A.; Yuyama, Y.; Sato, T.; Fujikawa, S.; Uozumi, Y. A palladium-nanoparticle and silicon-nanowire-array hybrid: a platform for catalytic heterogeneous reactions. Angew. Chem. Int. Ed. Engl., 2014, 53(1), 127-131.
[http://dx.doi.org/10.1002/anie.201308541] [PMID: 24243663]
[76]
Bondarenko, G.N.; Ganina, O.G.; Sharma, R.K.; Beletskaya, I.P. Catalytic activity of Pd catalysts on different supports in hydrogenation of 1-phenylethenylphosphonic acid. Russ. Chem. Bull., 2014, 63(8), 1856-1859.
[http://dx.doi.org/10.1007/s11172-014-0676-6]
[77]
Iwanow, M.; Finkelmeyer, J.; Söldner, A.; Kaiser, M.; Gärtner, T.; Sieber, V.; König, B. Preparation of supported palladium catalysts using deep eutectic solvents. Chemistry, 2017, 23(51), 12467-12470.
[http://dx.doi.org/10.1002/chem.201702790] [PMID: 28787096]
[78]
Karakhanov, E.A.; Maximov, A.L.; Skorkin, V.A.; Zolotukhina, A.V.; Smerdov, A.S.; Tereshchenko, A.Yu. Nanocatalysts based on dendrimers. Pure Appl. Chem., 2009, 81(11), 2013-2023.
[http://dx.doi.org/10.1351/PAC-CON-08-10-15]
[79]
Karakhanov, E.A.; Maksimov, A.L.; Zolotukhina, A.V.; Kardashev, S.V.; Filippova, T.Yu. Palladium nanoparticles on dendrimer-containing supports as catalysts for hydrogenation of unsaturated hydrocarbons. Petrol. Chem., 2012, 52(5), 289-298.
[http://dx.doi.org/10.1134/S0965544112050052]
[80]
Karakhanov, E.A.; Maksimova, A.L.; Zakharian, E.M.; Kardasheva, Yu.S.; Savilov, S.V.; Truhmanova, N.I.; Ivanov, A.O.; Vinokurov, V.A. Palladium nanoparticles encapsulated in a dendrimer networks as catalysts for the hydrogenation of unsaturated hydrocarbons. J. Mol. Catal. Chem., 2015, 397, 1-18.
[http://dx.doi.org/10.1016/j.molcata.2014.10.018]
[81]
Karakhanov, E.A.; Maximov, A.L.; Zakharyan, E.M.; Zolotukhina, A.V.; Ivanov, A.O. Palladium nanoparticles on dendrimer-containing supports as catalysts for hydrogenation of unsaturated hydrocarbons. Mol. Cat, 2017, 440, 107-119.
[http://dx.doi.org/10.1016/j.mcat.2017.07.011]
[82]
Karakhanov, E.A.; Boronoev, M.P.; Subbotina, E.S.; Zolotukhina, A.V.; Maximov, A.L.; Filippova, T.Y. Hybrid catalysts based on platinum and palladium nanoparticles for the hydrogenation of terpenes under slurry conditions. Petrol. Chem., 2016, 56, 1114-1122.
[http://dx.doi.org/10.1134/S0965544116120045]
[83]
Kumar, V.K.R.; Gopidas, K.R. Palladium nanoparticle-cored G1-dendrimer stabilized by carbon–Pd bonds: synthesis, characterization and use as chemoselective, room temperature hydrogenation catalyst. Tetrahedron Lett., 2011, 52(24), 3102-3105.
[http://dx.doi.org/10.1016/j.tetlet.2011.04.011]
[84]
Monguchi, Ya.; Wakayama, F.; Ueda, S.; Ito, R.; Takada, H.; Inoue, H.; Nakamura, A.; Sawama, Yo.; Sajiki, H. Amphipathic monolith-supported palladium catalysts for chemoselective hydrogenation and cross-coupling reactions. RSC Adv, 2017, 7(4), 1833-1840.
[http://dx.doi.org/10.1039/C6RA24769E]
[85]
Bhanja, P.; Liu, X.; Modak, A. Pt and Pd nanoparticles immobilized on amine‐functionalized hypercrosslinked porous polymer nanotubes as selective hydrogenation catalyst for α,β‐unsaturated aldehydes. ChemistrySelect, 2017, 2(25), 7535-7543.
[http://dx.doi.org/10.1002/slct.201701761]
[86]
Goszewska, I.; Giziński, D.; Zienkiewicz-Machnik, M.; Lisovytskiy, D.; Nikiforov, K.; Masternak, J.; Śrębowata, A.; Sá, J. A novel nano-palladium catalyst for continuous-flow chemoselective hydrogenation reactions. Catal. Commun., 2017, 94, 65-68.
[http://dx.doi.org/10.1016/j.catcom.2017.02.014]
[87]
Bagal, D.B.; Qureshi, Z.S.; Dhake, K.P.; Khan, Sh.R.; Bhanage, B.M. An efficient and heterogeneous recyclable palladiumcatalyst for chemoselective conjugate reduction of α,β-unsaturated carbonyls in aqueous medium. Green Chem., 2011, 13(6), 1490-1494.
[http://dx.doi.org/10.1039/c1gc15050b]
[88]
Park, C.M.; Kwon, M.S.; Park, J. Palladium nanoparticles in polymers: catalyst for alkene hydrogenation, carbon-carbon cross-coupling reactions, and aerobic alcohol oxidation. Synthesis, 2006, 22, 3790-3794.
[http://dx.doi.org/10.1055/s-2006-950329]
[89]
Zecca, M.; Fišera, R.; Palma, G.; Lora, S.; Hronec, M.; Králik, M. Activity enhancement by the support in the hydrogenation of C=C bonds over polymer-supported palladium catalysts. Chemistry, 2000, 6(11), 1980-1986.
[http://dx.doi.org/10.1002/1521-3765(20000602)6:11<1980:AID-CHEM1980>3.0.CO;2-Z] [PMID: 10894397]
[90]
Biradar, A.V.; Biradar, A.A.; Asefa, T. Silica-dendrimer core-shell microspheres with encapsulated ultrasmall palladium nanoparticles: efficient and easily recyclable heterogeneous nanocatalysts. Langmuir, 2011, 27(23), 14408-14418.
[http://dx.doi.org/10.1021/la203066d] [PMID: 21951192]
[91]
Ren, Zh.; Wang, H-L.; Cai, Y-Q.; Chen, M.; Qian, D-J. Construction of Pd(II)-poly(4-vinylpyridine) multilayers on quartz substrate surface as heterogeneous catalyst for selective hydrogenation of aromatic conjugated alkenes. Mater. Chem. Phys., 2011, 127(1-2), 310-315.
[http://dx.doi.org/10.1016/j.matchemphys.2011.02.011]
[92]
Hagiwara, H.; Nakamura, T.; Hoshi, T.; Suzuki, T. Palladium-supported ionic liquidcatalyst (Pd-SH-SILC) immobilized on mercaptopropyl silica gel as a chemoselective, reusable and heterogeneous catalyst for catalytic hydrogenation. Green Chem., 2011, 13(5), 1133-1137.
[http://dx.doi.org/10.1039/c1gc15217c]
[93]
Chen, Ch.; Lv, G.; Huang, X.; Liao, X.P.; Zhang, W.H.; Shi, B. Bayberry tannin as stabilizer for the synthesis of highly active and reusable heterogeneous Pd catalysts and their application in the catalytic hydrogenation of olefins. Bull. Korean Chem. Soc., 2012, 33(2), 403-408.
[http://dx.doi.org/10.5012/bkcs.2012.33.2.403]
[94]
Mao, H.; Peng, Sh.; Yu, H.; Chen, J.; Zhao, Sh.; Huo, F. Facile synthesis of highly stable heterogeneous catalysts by entrapping metal nanoparticles within mesoporous carbon. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(16), 5847-5851.
[http://dx.doi.org/10.1039/c4ta00131a]
[95]
Karakhanov, E.; Maximov, A.; Kardasheva, Y.; Semernina, V.; Zolotukhina, A.; Ivanov, A.; Abbott, G.; Rosenberg, E.; Vinokurov, V. Pd nanoparticles in dendrimers immobilized on silica-polyamine composites as catalysts for selective hydrogenation. ACS Appl. Mater. Interfaces, 2014, 6(11), 8807-8816.
[http://dx.doi.org/10.1021/am501528a] [PMID: 24766137]
[96]
Ryoo, H-I.; Lee, J.S.; Park, C.B.; Kim, D-P. A microfluidic system incorporated with peptide/Pd nanowires for heterogeneous catalytic reactions. Lab Chip, 2011, 11(3), 378-380.
[http://dx.doi.org/10.1039/C0LC00448K] [PMID: 21152490]
[97]
Nagendiran, A.; Pascanu, V.; Bermejo Gómez, A.; González Miera, G.; Tai, C.W.; Verho, O.; Martín-Matute, B.; Bäckvall, J-E. Mild and selective catalytic hydrogenation of the C=C bond in α,β‐unsaturated carbonyl compounds using supported palladium nanoparticles. Chemistry, 2016, 22(21), 7184-7189.
[http://dx.doi.org/10.1002/chem.201600878] [PMID: 27111403]
[98]
Bakuru, V.R.; Kalidindi, S.B. Synergistic hydrogenation over palladium through the assembly of MIL‐101(Fe) MOF over palladium nanocubes. Chemistry, 2017, 23(65), 16456-16459.
[http://dx.doi.org/10.1002/chem.201704119] [PMID: 28990695]
[99]
Gholampour, N.; Chaemchuen, S.; Hu, Zh-Y.; Mousavi, B.; Tendeloo, G.V.; Verpoort, F. Simultaneous creation of metal nanoparticles in metal organic frameworks via spray drying technique. Chem. Eng. J., 2017, 322, 702-709.
[http://dx.doi.org/10.1016/j.cej.2017.04.085]
[100]
Zhao, Y.; Liu, M.; Fan, B.; Chen, Y.; Lv, W.; Lu, N.; Li, R. Pd nanoparticles supported on ZIF-8 as an efficient heterogeneous catalyst for the selective hydrogenation of cinnamaldehyde. Catal. Commun., 2014, 57, 119-123.
[http://dx.doi.org/10.1016/j.catcom.2014.08.015]
[101]
Liu, P.; Liu, S.; Bian, Sh-W. Core-shell-structured Fe3O4/Pd@ZIF-8 catalyst with magnetic recyclability and size selectivity for the hydrogenation of alkenes. J. Mater. Sci., 2017, 52, 12121-12130.
[http://dx.doi.org/10.1007/s10853-017-1357-2]
[102]
Changwei, X.; Liqiang, C.; Peikang, S.; Yingliang, L. Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem. Commun., 2007, 9(5), 997-1001.
[http://dx.doi.org/10.1016/j.elecom.2006.12.003]
[103]
Zhu, Y.; Kang, Y.; Zou, Z.; Zhou, Q.; Zheng, U.; Xia, B.; Yang, H. A facile preparation of carbonsupported Pd nanoparticles for electrocatalytic oxidation of formic acid. Electrochem. Commun., 2008, 10(5), 802-805.
[http://dx.doi.org/10.1016/j.elecom.2008.02.038]
[104]
Lingling, Z.; Tianhong, L.; Jianchun, B.; Yawen, T.; Cun, L. Preparation method of an ultrafine carbon supported Pd catalyst as an anodic catalyst in a direct formic acid fuel cell. Electrochem. Commun., 2006, 8, 1625-1627.
[http://dx.doi.org/10.1016/j.elecom.2006.07.033]
[105]
Grigoriev, S.; Lyutikova, E.; Martemianov, S.; Fateev, V.; Lebouin, C.; Millet, P. In: Palladium-based electrocatalysts for PEM applications, Proceedings of the 16th World Hydrogen Energy Conference, Lyon, France June13-16,2006, pp. 1-9.
[106]
Jun, Z.; Jinghong, Z.; Tiejun, Z.; Xinggui, Z.; De, C.; Weikang, Y. Carbon nanofiber-supported palladium nanoparticles as potential recyclable catalysts for the Heck reaction. Appl. Catal. A Gen., 2009, 352(1-2), 243-250.
[http://dx.doi.org/10.1016/j.apcata.2008.10.012]
[107]
Keith, C.D.; Bair, S.; Bair, D.L.; Park, R. Process for producing palladium on carbon catalysts. U.S. Patent 3,138,560, June 23,. 1964.
[108]
Anderson, J.A.; McKenna, F-M.; Wells, A.; Linares-Solano, R.P.K. Use of water as a solvent in directing hydrogenation reactions of aromatic acids over Pd/carbon nanofibre catalysts. Catal. Lett., 2007, 119(1-2), 16-20.
[http://dx.doi.org/10.1007/s10562-007-9207-5]
[109]
Lisitsin, A.S.; Gurevich, S.V.; Chuvilin, A.L.; Boronin, A.I.; Bukhtiyarov, V.I.; Likholobov, V.A. Preparation of palladium catalysts via thermal decomposition of supported Pd(0) complexes. React. Kinet. Catal. Lett., 1989, 38(1), 109-114.
[http://dx.doi.org/10.1007/BF02126261]
[110]
Hoogenraad, M.S.; Leeuwarden, R.A.G.M.M.; van Breda Vriesman, G.J.B.; van Broersma, A.; Dillen, A.J.; van Geus, J.W. Metal catalysts supported on a novel carbon support. Stud. Surf. Sci. Catal., 1995, 91, 263-271.
[http://dx.doi.org/10.1016/S0167-2991(06)81762-3]
[111]
Jun-Sheng, Z.; Xin-Sheng, Z.; Ping, L.; Jun, Z.; Xing-Gui, Z.; Wei-Kang, Y. Effect of carbon nanofiber microstructure on oxygen reduction activity of supported palladium. Electrocatalyst Electrochem. Commun., 2007, 9(5), 895-900.
[http://dx.doi.org/10.1016/j.elecom.2006.12.006]
[112]
Markus, H.; Plomp, A.J.; Maki-Arvela, P.; Bitter, J.H.; Murzin, D.Yu. The influence of acidity of carbon nanofibre-supported palladium catalysts in the hydrogenolysis of hydroxymatairesinol. Catal. Lett., 2007, 113(3-4), 141-146.
[http://dx.doi.org/10.1007/s10562-007-9020-1]
[113]
Harada, T.; Ikeda, S.; Miyazaki, M.; Sakata, T.; Mori, H.; Matsumura, M. A simple method for preparing highly active palladium catalysts loaded on various carbon supports for liquid-phase oxidation and hydrogenation reactions. J. Mol. Catal. Chem., 2007, 268, 59-64..
[http://dx.doi.org/10.1016/j.molcata.2006.12.010]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy