Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Recent Advances in Speciation Analyses of Tobacco and other Important Economic Crops

Author(s): Zhiping Jiang, Zhizhang Tian*, Chuntao Zhang, Dengke Li, Ruoxin Wu, Nan Tian, Lixia Xing and Lichao Ma

Volume 18, Issue 5, 2022

Published on: 01 December, 2020

Page: [518 - 528] Pages: 11

DOI: 10.2174/1573411017999201201115234

Price: $65

Abstract

Background: Speciation analysis is defined as the identification and/or measurement of the quantities of one or more individual chemical species in a sample. The knowledge of elemental species provides more complete information about mobility, bioavailability and the impact of elements on ecological systems or biological organisms. It is no longer sufficient to quantitate the total elemental content of samples to define toxicity or essentiality. Thus speciation analysis is of vital importance and generally offers a better understanding of a specific element.

Discussion: Thorough speciation scheme consisting of sampling, sample preparation, species analysis and evaluation was described. Special emphasis is placed on recent speciation analysis approaches, including both direct and coupling methods. An updated summary of advantages and limitations of the various methods as well as an illustrative comparison is presented. Certain elements and species of interest are briefly mentioned and practical examples of speciation applications in tobacco and other important economic crops are also discussed.

Aim/Conclusion: This review aims to offer comprehensive knowledge about elemental speciation and provide readers with valuable information. Many strategies have been developed for the determination of multiple elemental species in tobacco and other important economic crops. Nevertheless, it is an eternal pursuit to establish speciation methods which can balance accuracy, agility as well as universality.

Keywords: Chemical species, speciation analysis, direct methods, coupling methods, tobacco, heavy metal.

Graphical Abstract

[1]
Templeton, D.M.; Ariese, F.; Cornelis, R.; Danielsson, L.G.; Muntau, H.; Van Leeuwen, H.P.; Lobinski, R. Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC Recommendations 2000). Pure Appl. Chem., 2000, 72(8), 1453-1470.
[http://dx.doi.org/10.1351/pac200072081453]
[2]
Templeton, D.M.; Fujishiro, H. Terminology of elemental speciation-An IUPAC perspective. Coord. Chem. Rev., 2017, 352, 424-431.
[http://dx.doi.org/10.1016/j.ccr.2017.02.002]
[3]
Caruso, J.A.; Ackley, K.L.; Sutton, K.L. Introduction. Comprehensive Analytical Chemistry; Elsevier: Amsterdam, 2000, Vol. 33, pp. 1-6.
[4]
Caruso, J.A.; Klaue, B.; Michalke, B.; Rocke, D.M. Group assessment: elemental speciation. Ecotoxicol. Environ. Saf., 2003, 56(1), 32-44.
[http://dx.doi.org/10.1016/S0147-6513(03)00048-4] [PMID: 12915138]
[5]
Vela, N.P.; Olson, L.K.; Caruso, J.A. Elemental speciation with plasma mass spectrometry. Anal. Chem., 1993, 65(13), 585A-597A.
[http://dx.doi.org/10.1021/ac00061a719] [PMID: 8368533]
[6]
Begerow, J.; Jermann, E.; Keles, T.; Ranft, U.; Dunemann, L. Passive sampling for volatile organic compounds (VOCs) in air at environmentally relevant concentration levels. Fresenius J. Anal. Chem., 1995, 351(6), 549-554.
[http://dx.doi.org/10.1007/BF00322731]
[7]
Batley, G.E. Trace element speciation analytical methods and problems; CRC press, 1989.
[8]
Gardiner, P.E. Considerations in the preparation of biological and environmental reference materials for use in the study of the chemical speciation of trace elements. Fresenius J. Anal. Chem., 1993, 345(2-4), 287-290.
[http://dx.doi.org/10.1007/BF00322612]
[9]
Bolaños, P.P.; Frenich, A.G.; Vidal, J.L. Application of gas chromatography-triple quadrupole mass spectrometry in the quantification-confirmation of pesticides and polychlorinated biphenyls in eggs at trace levels. J. Chromatogr. A, 2007, 1167(1), 9-17.
[http://dx.doi.org/10.1016/j.chroma.2007.08.019] [PMID: 17764679]
[10]
Zhang, X.; Gao, H.; Zhang, L.; Liu, D.; Ye, X. Extraction of essential oil from discarded tobacco leaves by solvent extraction and steam distillation, and identification of its chemical composition. Ind. Crops Prod., 2012, 39, 162-169.
[http://dx.doi.org/10.1016/j.indcrop.2012.02.029]
[11]
Wang, Z.; Cui, Z. Determination of arsenic species in solid matrices utilizing supercritical fluid extraction coupled with gas chromatography after derivatization with thioglycolic acid n-butyl ester. J. Sep. Sci., 2016, 39(23), 4568-4576.
[http://dx.doi.org/10.1002/jssc.201600510] [PMID: 27731541]
[12]
Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta, 2011, 703(1), 8-18.
[http://dx.doi.org/10.1016/j.aca.2011.07.018] [PMID: 21843670]
[13]
Liao, Q.G.; Zhou, Y.M.; Luo, L.G.; Wang, L.B.; Feng, X.H. Determination of twelve herbicides in tobacco by a combination of solid-liquid-solid dispersive extraction using multi-walled carbon nanotubes, dispersive liquid-liquid micro-extraction, and detection by GC with triple quadrupole mass spectrometry. Mikrochim. Acta, 2014, 181(1-2), 163-169.
[http://dx.doi.org/10.1007/s00604-013-1086-4]
[14]
Almeida, T.S.; de Andrade, R.M.; de Gois, J.S.; Borges, D.L. Development of a simple and fast ultrasound-assisted extraction method for trace element determination in tobacco samples using ICP-MS. Int. J. Environ. Anal. Chem., 2014, 94(8), 756-764.
[http://dx.doi.org/10.1080/03067319.2014.891107]
[15]
Wan Ibrahim, W.A.; Abd Ali, L.I.; Sulaiman, A.; Sanagi, M.M.; Aboul-Enein, H.Y. Application of solid-phase extraction for trace elements in environmental and biological samples: a review. Crit. Rev. Anal. Chem., 2014, 44(3), 233-254.
[http://dx.doi.org/10.1080/10408347.2013.855607] [PMID: 25391563]
[16]
Kim, M.S.; Kang, T.W.; Pyo, H.; Yoon, J.; Choi, K.; Hong, J. Determination of organochlorine pesticides in sediment using graphitized carbon black solid-phase extraction and gas chromatography/mass spectrometry. J. Chromatogr. A, 2008, 1208(1-2), 25-33.
[http://dx.doi.org/10.1016/j.chroma.2008.08.067] [PMID: 18789449]
[17]
Michel, F.; Barrey, E.; Stenerson, K.; Shimelis, O.; Ye, M. Improved sample preparation and HPLC/MS determination of pesticides in fat-rich vegetables. J. AOAC Int., 2003, 86(2), 412-431.
[PMID: 12723926]
[18]
Zhou, T.; Xiao, X.; Li, G. Hybrid field-assisted solid-liquid-solid dispersive extraction for the determination of organochlorine pesticides in tobacco with gas chromatography. Anal. Chem., 2012, 84(1), 420-427.
[http://dx.doi.org/10.1021/ac202798w] [PMID: 22092268]
[19]
Abdolmohammad-Zadeh, H.; Mohammad-Rezaei, R.; Salimi, A. Preconcentration of mercury(II) using a magnetite@carbon/dithizone nanocomposite, and its quantification by anodic stripping voltammetry. Mikrochim. Acta, 2019, 187(1), 2.
[http://dx.doi.org/10.1007/s00604-019-3937-0] [PMID: 31797055]
[20]
Richtera, L.; Nguyen, H.V.; Hynek, D.; Kudr, J.; Adam, V. Electrochemical speciation analysis for simultaneous determination of Cr(iii) and Cr(vi) using an activated glassy carbon electrode. Analyst (Lond.), 2016, 141(19), 5577-5585.
[http://dx.doi.org/10.1039/C6AN00983B] [PMID: 27435634]
[21]
Afkhami, A.; Madrakian, T.; Sabounchei, S.J.; Rezaei, M.; Samiee, S.; Pourshahbaz, M. Construction of a modified carbon paste electrode for the highly selective simultaneous electrochemical determination of trace amounts of mercury (II) and cadmium (II). Sens. Actuators B Chem., 2012, 161(1), 542-548.
[http://dx.doi.org/10.1016/j.snb.2011.10.073]
[22]
Cui, L.; Wu, J.; Ju, H. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron., 2015, 63, 276-286.
[http://dx.doi.org/10.1016/j.bios.2014.07.052] [PMID: 25108108]
[23]
Li, Y.; Zhang, J.; Xu, C.; Zhou, Y. Crosslinked chitosan nanofiber mats fabricated by one-step electrospinning and ion-imprinting methods for metal ions adsorption. Sci. China Chem., 2016, 59(1), 95-105.
[http://dx.doi.org/10.1007/s11426-015-5526-3]
[24]
Zhang, B.; Chen, J.; Zhu, H.; Yang, T.; Zou, M.; Zhang, M.; Du, M. Facile and green fabrication of size-controlled AuNPs/CNFs hybrids for the highly sensitive simultaneous detection of heavy metal ions. Electrochim. Acta, 2016, 196, 422-430.
[http://dx.doi.org/10.1016/j.electacta.2016.02.163]
[25]
Xu, H.; Zheng, Q.; Yang, P.; Liu, J.; Xing, S.; Jin, L. Electrochemical synthesis of silver nanoparticles-coated gold nanoporous film electrode and its application to amperometric detection for trace Cr (VI). Sci. China Chem., 2011, 54(6), 1004-1010.
[http://dx.doi.org/10.1007/s11426-011-4261-7]
[26]
Wang, W.; Deng, Y.; Li, S.; Liu, H.; Lu, Z.; Zhang, L.; Lin, L.; Xu, L. A novel acetylcholine bioensor and its electrochemical behavior. J. Biomed. Nanotechnol., 2013, 9(4), 736-740.
[http://dx.doi.org/10.1166/jbn.2013.1577] [PMID: 23621036]
[27]
Afkhami, A.; Bagheri, H.; Khoshsafar, H.; Saber-Tehrani, M.; Tabatabaee, M.; Shirzadmehr, A. Simultaneous trace-levels determination of Hg(II) and Pb(II) ions in various samples using a modified carbon paste electrode based on multi-walled carbon nanotubes and a new synthesized Schiff base. Anal. Chim. Acta, 2012, 746, 98-106.
[http://dx.doi.org/10.1016/j.aca.2012.08.024] [PMID: 22975186]
[28]
Palisoc, S.T.; Valeza, N.; Natividad, M.T. Fabrication of an effective gold nanoparticle/graphene/Nafion® modified glassy carbon electrode for high sensitive detection of trace Cd2+, Pb2+ and Cu2+ in tobacco and tobacco products. Int. J. Electrochem. Sci., 2017, 12, 3859-3872.
[http://dx.doi.org/10.20964/2017.05.14]
[29]
Afkhami, A.; Soltani-Felehgari, F.; Madrakian, T.; Ghaedi, H.; Rezaeivala, M. Fabrication and application of a new modified electrochemical sensor using nano-silica and a newly synthesized Schiff base for simultaneous determination of Cd2+, Cu2+ and Hg2+ ions in water and some foodstuff samples. Anal. Chim. Acta, 2013, 771, 21-30.
[http://dx.doi.org/10.1016/j.aca.2013.02.031] [PMID: 23522108]
[30]
Jovanovski, V.; Hočevar, S.B.; Ogorevc, B. Bismuth electrodes in contemporary electroanalysis. Curr. Opin. Electrochem, 2017, 3(1), 114-122.
[http://dx.doi.org/10.1016/j.coelec.2017.07.008]
[31]
Caruso, R.V.; O’Connor, R.J.; Stephens, W.E.; Cummings, K.M.; Fong, G.T. Toxic metal concentrations in cigarettes obtained from U.S. smokers in 2009: results from the International Tobacco Control (ITC) United States survey cohort. Int. J. Environ. Res. Public Health, 2013, 11(1), 202-217.
[http://dx.doi.org/10.3390/ijerph110100202] [PMID: 24452255]
[32]
O’Connor, R.J.; Schneller, L.M.; Caruso, R.V.; Stephens, W.E.; Li, Q.; Yuan, J.; Fong, G.T. Toxic metal and nicotine content of cigarettes sold in China, 2009 and 2012. Tob. Control, 2015, 24(Suppl. 4), iv55-iv59.
[http://dx.doi.org/10.1136/tobaccocontrol-2014-051804] [PMID: 25335903]
[33]
Majewska, U.; Piotrowska, M.; Sychowska, I.; Banaś, D.; Kubala-Kukuś, A.; Wudarczyk-Moćko, J.; Stabrawa, I.; Gózdz, S. Multielemental. Analysis of tobacco plant and tobacco products by TXRF. J. Anal. Toxicol., 2018, 42(6), 409-416.
[http://dx.doi.org/10.1093/jat/bky016] [PMID: 29566234]
[34]
Cuello, S.; Entwisle, J.; Benning, J.; Liu, C.; Coburn, S.; McAdam, K.G.; Braybrook, J.; Goenaga-Infante, H. Complementary HPLC-ICP-MS and synchrotron X-ray absorption spectroscopy for speciation analysis of chromium in tobacco samples. J. Anal. At. Spectrom., 2016, 31(9), 1818-1829.
[http://dx.doi.org/10.1039/C5JA00442J]
[35]
Donner, E.; Ryan, C.G.; Howard, D.L.; Zarcinas, B.; Scheckel, K.G.; McGrath, S.P.; de Jonge, M.D.; Paterson, D.; Naidu, R.; Lombi, E. A multi-technique investigation of copper and zinc distribution, speciation and potential bioavailability in biosolids. Environ. Pollut., 2012, 166, 57-64.
[http://dx.doi.org/10.1016/j.envpol.2012.02.012] [PMID: 22475551]
[36]
Saadawi, R.; Figueroa, J.A.L.; Hanley, T.; Caruso, J. The hookah series part 1: total metal analysis in hookah tobacco (narghile, shisha)-an initial study. Anal. Methods, 2012, 4(11), 3604-3611.
[http://dx.doi.org/10.1039/c2ay26065d]
[37]
Musharraf, S.G.; Shoaib, M.; Siddiqui, A.J.; Najam-Ul-Haq, M.; Ahmed, A. Quantitative analysis of some important metals and metalloids in tobacco products by inductively coupled plasma-mass spectrometry (ICP-MS). Chem. Cent. J., 2012, 6(1), 56.
[http://dx.doi.org/10.1186/1752-153X-6-56] [PMID: 22709464]
[38]
Chen, S.; Li, J.; Lu, D.; Zhang, Y. Dual extraction based on solid phase extraction and solidified floating organic drop microextraction for speciation of arsenic and its distribution in tea leaves and tea infusion by electrothermal vaporization ICP-MS. Food Chem., 2016, 211, 741-747.
[http://dx.doi.org/10.1016/j.foodchem.2016.05.101] [PMID: 27283691]
[39]
Harms, J.; Schwedt, G. Applications of capillary electrophoresis in element speciation analysis of plant and food extracts. Fresenius J. Anal. Chem., 1994, 350(1-2), 93-100.
[http://dx.doi.org/10.1007/BF00326260]
[40]
Michalke, B. Quality control in speciation investigations. Fresenius J. Anal. Chem., 1994, 350(1-2), 2-6.
[http://dx.doi.org/10.1007/BF00326243]
[41]
Quevauviller, P. CRMs for quality control of determinations of chemical forms of elements in support to EU legislation. Anal. Bioanal. Chem., 1996, 354(5-6), 515-520.
[http://dx.doi.org/10.1007/s0021663540515] [PMID: 15067438]
[42]
Sheikh, R.E.I.; Hassan, W.S.; Youssef, A.M.; Hameed, A.M.; Subaihi, A.; Alharbi, A.; Gouda, A.A. Eco-friendly ultrasound-assisted ionic liquid-based dispersive liquid-liquid microextraction of nickel in water, food and tobacco samples prior to FAAS determination. Int. J. Environ. Anal. Chem., 2020, 1-12.
[http://dx.doi.org/10.1080/03067319.2020.1727461]
[43]
Dias, Fde S.; Bonsucesso, J.S.; Oliveira, L.C.; dos Santos, W.N. Preconcentration and determination of copper in tobacco leaves samples by using a minicolumn of sisal fiber (Agave sisalana) loaded with Alizarin fluorine blue by FAAS. Talanta, 2012, 89, 276-279.
[http://dx.doi.org/10.1016/j.talanta.2011.12.027] [PMID: 22284492]
[44]
do Lago, A.C.; Marchioni, C.; Mendes, T.V.; Wisniewski, C.; Fadini, P.S.; Luccas, P.O. Ion imprinted polymer for preconcentration and determination of ultra-trace cadmium, employing flow injection analysis with thermo spray flame furnace atomic absorption spectrometry. Appl. Spectrosc., 2016, 70(11), 1842-1850.
[http://dx.doi.org/10.1177/0003702816658669] [PMID: 27449370]
[45]
Li, G.; Wu, D.; Wang, Y.; Xie, W.; Zhang, X.; Liu, B. Determination of the volatiles from tobacco by capillary gas chromatography with atomic emission detection and mass spectrometry. J. Sep. Sci., 2012, 35(2), 334-340.
[http://dx.doi.org/10.1002/jssc.201100732] [PMID: 22180172]
[46]
Masson, P. Imaging of elements in leaves of tobacco by solid sampling-electrothermal vaporization-inductively coupled plasma-optical emission spectrometry. Spectroc. Acta. Pt. B-Atom. Spectr, 2014, 102, 24-27.
[47]
Chen, B.; Krachler, M.; Shotyk, W. Determination of antimony in plant and peat samples by hydride generation-atomic fluorescence spectrometry (HG-AFS). J. Anal. At. Spectrom., 2003, 18(10), 1256-1262.
[http://dx.doi.org/10.1039/b306597a]
[48]
Yang, Q.; Gan, W.; Deng, Y.; Sun, H. Determination of As in tobacco by using electrochemical hydride generation at a Nafion® solid polymer electrolyte cell hyphenated with atomic fluorescence spectrometry. Spectroc. Acta Pt. B-Atom. Spectr, 2011, 66(11-12), 855-860.
[49]
Gan, W.E.; Shi, W.W.; Su, Q.D. Simultaneous determination of trace mercury and cadmium in tobacco samples by cold vapor generation-atomic fluorescence spectrometry. J. Anal. At. Spectrom., 2004, 19(7), 911-916.
[http://dx.doi.org/10.1039/b402545h]
[50]
Nascimento, M.S.; Mendes, A.L.G.; Henn, A.S.; Picoloto, R.S.; Mello, P.A.; Flores, E.M. Accurate determination of bromine and iodine in medicinal plants by inductively coupled plasma-mass spectrometry after microwave-induced combustion. Spectrochim. Acta B At. Spectrosc., 2017, 138, 58-63.
[http://dx.doi.org/10.1016/j.sab.2017.10.009]
[51]
Nascimento, M.S.; Mendes, A.L.G.; Henn, A.S.; Picoloto, R.S.; Mello, P.A.; Flores, E.M. Accurate determination of bromine and iodine in medicinal plants by inductively coupled plasma-mass spectrometry after microwave-induced combustion. Spectroc. Acta. Pt. B-Atom. Spectr, 2017, 138, 58-63.
[52]
Cuello-Nuñez, S.; Benning, J.; Liu, C.; Branton, P.; Hu, J.; McAdam, K.G.; Coburn, S.; Braybrook, J.; Goenaga-Infante, H. Fractionation of cadmium in tobacco and cigarette smoke condensate using XANES and sequential leaching with ICP-MS/MS. Anal. Bioanal. Chem., 2018, 410(26), 6795-6806.
[http://dx.doi.org/10.1007/s00216-018-1265-6] [PMID: 30094791]
[53]
Mayer-Helm, B.; Hofbauer, L.; Müller, J. Method development for the determination of selected pesticides on tobacco by high-performance liquid chromatography-electrospray ionisation-tandem mass spectrometry. Talanta, 2008, 74(5), 1184-1190.
[http://dx.doi.org/10.1016/j.talanta.2007.08.033] [PMID: 18371768]
[54]
Ouerdane, L.; Aureli, F.; Flis, P.; Bierla, K.; Preud’homme, H.; Cubadda, F.; Szpunar, J. Comprehensive speciation of low-molecular weight selenium metabolites in mustard seeds using HPLC-electrospray linear trap/Orbitrap tandem mass spectrometry. Metallomics, 2013, 5(9), 1294-1304.
[http://dx.doi.org/10.1039/c3mt00113j] [PMID: 23925428]
[55]
Li, Z.; Yang, G.; Wang, B.; Jiang, C.; Yin, J. Determination of transition metal ions in tobacco as their 2-(2-quinolinylazo)-5-dimethylaminophenol derivatives using reversed-phase liquid chromatography with UV-VIS detection. J. Chromatogr. A, 2002, 971(1-2), 243-248.
[http://dx.doi.org/10.1016/S0021-9673(02)01040-3] [PMID: 12350120]
[56]
Rodríguez, V.M.; Jiménez-Capdeville, M.E.; Giordano, M. The effects of arsenic exposure on the nervous system. Toxicol. Lett., 2003, 145(1), 1-18.
[http://dx.doi.org/10.1016/S0378-4274(03)00262-5] [PMID: 12962969]
[57]
Rossman, T.G. Mechanism of arsenic carcinogenesis: an integrated approach. Mutat. Res-Fund. Mol. Med., 2003, 533(1-2), 37-65.
[PMID: 12765338]
[58]
Vercoutere, K.; Cornelis, R.; Mees, L.; Quevauviller, P. Certification of the contents of the chromium(III) and chromium(VI) species and total chromium in a lyophilised solution (CRM 544). Analyst (Lond.), 1998, 123(5), 965-969.
[http://dx.doi.org/10.1039/a705040b]
[59]
Järup, L. Hazards of heavy metal contamination. Br. Med. Bull., 2003, 68, 167-182.
[http://dx.doi.org/10.1093/bmb/ldg032] [PMID: 14757716]
[60]
Ercal, N.; Gurer-Orhan, H.; Aykin-Burns, N. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr. Top. Med. Chem., 2001, 1(6), 529-539.
[http://dx.doi.org/10.2174/1568026013394831] [PMID: 11895129]
[61]
van Leeuwen, H.P.; Town, R.M.; Buffle, J.; Cleven, R.F.; Davison, W.; Puy, J.; van Riemsdijk, W.H.; Sigg, L. Dynamic speciation analysis and bioavailability of metals in aquatic systems. Environ. Sci. Technol., 2005, 39(22), 8545-8556.
[http://dx.doi.org/10.1021/es050404x] [PMID: 16323747]
[62]
Bernhard, D.; Rossmann, A.; Wick, G. Metals in cigarette smoke. IUBMB Life, 2005, 57(12), 805-809.
[http://dx.doi.org/10.1080/15216540500459667] [PMID: 16393783]
[63]
Clemens, S.; Palmgren, M.G.; Krämer, U. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci., 2002, 7(7), 309-315.
[http://dx.doi.org/10.1016/S1360-1385(02)02295-1] [PMID: 12119168]
[64]
Michalke, B. Element speciation definitions, analytical methodology, and some examples. Ecotoxicol. Environ. Saf., 2003, 56(1), 122-139.
[http://dx.doi.org/10.1016/S0147-6513(03)00056-3] [PMID: 12915146]
[65]
Li, D.; Fan, G.; Ye, H.; Yao, H.; Lu, Y.; Zhang, C.; Ma, L.; Xing, L. Analysis of selenium in tobacco by high performance liquid chromatography inductively coupled plasma mass spectrometry. J. Anal Sci, 2016, 32(6), 836-840.
[66]
Tian, Z.; Xing, L.; Li, D.; Ma, L.; Wu, R.; Tian, N.; Zhang, C. Speciation of tin in tobacco by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). Anal. Lett., 2020, 53(15), 2501-2516.
[http://dx.doi.org/10.1080/00032719.2020.1746325]
[67]
Rabinowitz, M.B. Stable isotopes of lead for source identification. J. Toxicol. Clin. Toxicol., 1995, 33(6), 649-655.
[http://dx.doi.org/10.3109/15563659509010623] [PMID: 8523487]
[68]
Piadé, J.J.; Jaccard, G.; Dolka, C.; Belushkin, M.; Wajrock, S. Differences in cadmium transfer from tobacco to cigarette smoke, compared to arsenic or lead. Toxicol. Rep., 2014, 2, 12-26.
[http://dx.doi.org/10.1016/j.toxrep.2014.11.005] [PMID: 28962333]
[69]
Zhang, C.; Lu, Y.; Li, H.; Li, D.; Ma, L.; Meng, Q.; Yao, H.; Ye, H. Speciation analysis of arsenic in tobacco by HPLC-ICP-MS. Chin. J. Anal. Lab, 2014, 33(10), 1233-1236.
[70]
Iwai, T.; Chiba, K.; Narukawa, T. Arsenic speciation and cadmium determination in tobacco leaves, ash and smoke. Anal. Sci., 2016, 32(9), 957-962.
[http://dx.doi.org/10.2116/analsci.32.957] [PMID: 27682400]
[71]
Campbell, R.C.; Stephens, W.E.; Finch, A.A.; Geraki, K. Controls on the valence species of arsenic in tobacco smoke: XANES investigation with implications for health and regulation. Environ. Sci. Technol., 2014, 48(6), 3449-3456.
[http://dx.doi.org/10.1021/es4039243] [PMID: 24521490]
[72]
Vonderheide, A.P.; Wrobel, K.; Kannamkumarath, S.S. B’Hymer, C.; Montes-Bayón, M.; Ponce De León, C.; Caruso, J.A. Characterization of selenium species in Brazil nuts by HPLC-ICP-MS and ES-MS. J. Agric. Food Chem., 2002, 50(20), 5722-5728.
[http://dx.doi.org/10.1021/jf0256541] [PMID: 12236705]
[73]
Shah, M.; Kannamkumarath, S.S.; Wuilloud, J.C.; Wuilloud, R.G.; Caruso, J.A. Identification and characterization of selenium species in enriched green onion (Allium fistulosum) by HPLC-ICP-MS and ESI-ITMS. J. Anal. At. Spectrom., 2004, 19(3), 381-386.
[http://dx.doi.org/10.1039/b312320k]
[74]
Cubadda, F.; Aureli, F.; Ciardullo, S.; D’Amato, M.; Raggi, A.; Acharya, R.; Reddy, R.A.; Prakash, N.T. Changes in selenium speciation associated with increasing tissue concentrations of selenium in wheat grain. J. Agric. Food Chem., 2010, 58(4), 2295-2301.
[http://dx.doi.org/10.1021/jf903004a] [PMID: 20102199]
[75]
Habila, M.; Unsal, Y.E.; Alothman, Z.A.; Shabaka, A.; Tuzen, M.; Soylak, M. Speciation of chromium in natural waters, tea, and soil with membrane filtration flame atomic absorption spectrometry. Anal. Lett., 2015, 48(14), 2258-2271.
[http://dx.doi.org/10.1080/00032719.2015.1025278]
[76]
Li, D.; Fan, G.; Yao, H.; Lu, Y.; Zhang, C.; Ma, L.; Xing, L. Speciation analysis of chromium in tobacco by HPLC-ICP-MS. Acta.Tabacar. Sinica,. 2016, 22(2), 1-7.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy