Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Review Article

Schiff Base Metal Complexes Precursor for Metal Oxide Nanomaterials: A Review

Author(s): Meghshyam K. Patil, Vijay H. Masand and Atish K. Maldhure*

Volume 17, Issue 4, 2021

Published on: 27 November, 2020

Page: [634 - 645] Pages: 12

DOI: 10.2174/1573413716999201127112204

Price: $65

Abstract

Schiff bases and their complexes are versatile compounds, which have been synthesized from the condensation of carbonyl compounds with amino compounds and exhibit a broad range of applications in biological, medicinal, catalysis, and industrial purposes. Furthermore, Schiff basemetal complexes have been used as a precursors for the synthesis of different metal oxides, which include oxides of iron, cobalt, copper, nickel, manganese, vanadium, cadmium, zinc, mercury, etc. and ferrites such as Fe3O4, ZnFe2O4, and ZnCo2O4. These metal oxides have been utilized for several applications as a catalyst for several organic transformations and for biological activity. This review encompasses different methods of synthesis of metal oxides using Schiff base metal complexes precursor, their characterization, and various applications in detail.

Keywords: Schiff base, metal complexes, metal oxide, nanomaterial, synthesis, characterization, applications.

Graphical Abstract

[1]
Schiff, H. Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen. Justus Liebigs Ann. Chem., 1864, 131, 118-119.
[http://dx.doi.org/10.1002/jlac.18641310113]
[2]
Patai, S. The chemistry of the carbon-nitrogen double bond; Interscience Publishers: London, New York, 1970.
[3]
Vigato, P.A.; Tamburini, S. The challenge of cyclic and acyclic schiff bases and related derivatives. Coord. Chem. Rev., 2004, 248, 1717-2128.
[http://dx.doi.org/10.1016/j.cct.2003.09.003]
[4]
Reddelien, G. Über die Zersetzung von Anilen. (Über die katalytische Wirkungsweise von Halogenwasserstoffsäuren bei Kondensationen, II). Ber. Dtsch. Chem. Ges., 1920, 53, 355-358.
[http://dx.doi.org/10.1002/cber.19200530233]
[5]
Gupta, K.C.; Sutar, A. catalytic activities of schiff base transition metal complexes. Coord. Chem. Rev., 2008, 252, 1420-1450.
[http://dx.doi.org/10.1016/j.ccr.2007.09.005]
[6]
Roy, P.; Manassero, M. Tetranuclear copper(ii)-Schiff-base complexes as active catalysts for oxidation of cyclohexane and toluene. Dalton Trans., 2010, 39(6), 1539-1545.
[http://dx.doi.org/10.1039/B914017D] [PMID: 20104315]
[7]
Maldhure, A.; Pethe, G.; Yaul, A.; Aswar, A. Synthetic, characterization, biological, electrical and catalytic studies of some transition metal complexes of unsymmetrical quadridentate schiff base ligand. J. Korean Chem. Soc., 2015, 59, 215-224.
[http://dx.doi.org/10.5012/jkcs.2015.59.3.215]
[8]
Saghatforoush, L.; Aminkhani, A.; Chalabian, F. Iron(III) Schiff base complexes with asymmetric tetradentate ligands: Synthesis, spectroscopy, and antimicrobial properties. Transit. Met. Chem., 2009, 34, 899-904.
[http://dx.doi.org/10.1007/s11243-009-9279-8]
[9]
Shi, L.; Ge, H-M.; Tan, S-H.; Li, H-Q.; Song, Y-C.; Zhu, H-L.; Tan, R-X. Synthesis and antimicrobial activities of Schiff bases derived from 5-chloro-salicylaldehyde. Eur. J. Med. Chem., 2007, 42(4), 558-564.
[http://dx.doi.org/10.1016/j.ejmech.2006.11.010] [PMID: 17194508]
[10]
Hothi, H.S.; Makkar, A.; Sharma, J.R.; Manrao, M.R. Synthesis and antifungal potential of Co(II) complexes of 1-(2′-hydroxyphenyl) ethylideneanilines. Eur. J. Med. Chem., 2006, 41(2), 253-255.
[http://dx.doi.org/10.1016/j.ejmech.2005.07.016] [PMID: 16256249]
[11]
Maldhure, A.; Aswar, A. Synthesis, physiochemical, thermal, catalytic and electrical studies of Mn(III) VO(IV), MoO2 (VI) and UO2 (VI) complexes with unsymmetrical schiff base ligand. Chem. Sci. Trans., 2014, 755, 1264-1271.
[12]
Maldhure, A.K.; Aswar, A.S. Synthesis, Characterization and Antimicrobial studies of Some transition metal complexes of N-(5-chloro-2-hydroxyacetophenone)- N′-(2-hydroxyacetophenone)-ethylenediamine. Am. J. PharmTech Res., 2013, 3, 462-486.
[13]
Maldhure, A.K.; Aswar, A.S. Electrical conductivity and antimicrobial screening of transition metal complexes of tetradentate unsymmetrical ligand. World J. Chem., 2009, 4, 207-209.
[14]
Morsali, A.; Hossieni, M.H.; Morsali, A. Syntheses and characterization of nano-scale of the MnII complex with 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine (pyterpy): The influence of the nano-structure upon catalytic properties. Inorg. Chim. Acta, 2009, 362, 3427-3432.
[http://dx.doi.org/10.1016/j.ica.2009.03.040]
[15]
Askarinejad, A.; Morsali, A. Syntheses and characterization of CdCO3 and CdO nanoparticles by using a sonochemical method. Mater. Lett., 2008, 62, 478-482.
[http://dx.doi.org/10.1016/j.matlet.2007.05.082]
[16]
Comini, E.; Sberveglieri, G. Metal oxide nanowires as chemical sensors. Mater. Today, 2010, 13, 36-44.
[http://dx.doi.org/10.1016/S1369-7021(10)70126-7]
[17]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, 108(6), 2064-2110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[18]
Bulut, A.; Yurderi, M.; Alal, O.; Kivrak, H.; Kaya, M.; Zahmakiran, M. Synthesis, characterization, and enhanced formic acid electrooxidation activity of carbon supported MnOx promoted Pd nanoparticles. Adv. Powder Technol., 2018, 29, 1409-1416.
[http://dx.doi.org/10.1016/j.apt.2018.03.003]
[19]
Caglar, A.; Ulas, B.; Cogenli, M.S.; Yurtcan, A.B.; Kivrak, H. Synthesis and characterization of Co, Zn, Mn, V modified Pd formic acid fuel cell anode catalysts. J. Electroanal. Chem. (Lausanne Switz.), 2019, 850, 113402.
[http://dx.doi.org/10.1016/j.jelechem.2019.113402]
[20]
Kivrak, H.; Alal, O.; Atbas, D. Efficient and rapid microwave-assisted route to synthesize Pt–MnOx hydrogen peroxide sensor. Electrochim. Acta, 2015, 176, 497-503.
[http://dx.doi.org/10.1016/j.electacta.2015.06.151]
[21]
Look, G.C.; Murphy, M.M.; Campbell, D.A.; Gallop, M.A. Trimethylorthoformate: A mild and effective dehydrating reagent for solution and solid phase imine formation. Tetrahedron Lett., 1995, 36, 2937-2940.
[http://dx.doi.org/10.1016/0040-4039(95)00442-F]
[22]
da Silva, C.M.; da Silva, D.L.; Modolo, L.V.; Alves, R.B.; de Resende, M.A.; Martins, C.V.B.; de Fátima, Â. Schiff bases: A short review of their antimicrobial activities. J. Adv. Res., 2011, 2, 1-8.
[http://dx.doi.org/10.1016/j.jare.2010.05.004]
[23]
Sayed, S.; Shah, S.; Shah, D.; Khan, I.; Ahmad, S.; Ali, U.; Rahman, A.; Wali, A.; University, K.; Kp, M. Synthesis and antioxidant activities of schiff bases and their complexes: An updated review. Biointerface Res. Appl. Chem., 2020, 10, 6936-6963.
[http://dx.doi.org/10.33263/BRIAC106.69366963]
[24]
Ponomarev, G.V. Synthesis and properties of Schiff bases of mesoformylporphyrins. Chem. Heterocycl. Compd., 1996, 32, 1263-1280.
[http://dx.doi.org/10.1007/BF01169958]
[25]
Qin, W.; Long, S.; Panunzio, M.; Biondi, S. Schiff bases: a short survey on an evergreen chemistry tool. Molecules, 2013, 18(10), 12264-12289.
[http://dx.doi.org/10.3390/molecules181012264] [PMID: 24108395]
[26]
Khan, M.I.; Gul, S.; Khan, M.A. Schiff bases and their metallic derivatives: highly versatile molecules with biological and abiological perspective. Stability and Applications of Coordination Compounds; Srivastva, A.N., Ed.; IntechOpen, 2019.
[27]
Maldhure, A.K.; Aswar, A.S. Preparation of zinc oxide nanomaterial using unsymmetrical schiff base complexes. Res Rev.: J. Chem, 2018, 7, 43-47.
[28]
Langheld, K. Über das Verhalten von α-Aminosäuren gegen Natriumhypochlorit. Ber. Dtsch. Chem. Ges., 1909, 42, 2360-2374.
[http://dx.doi.org/10.1002/cber.190904202134]
[29]
Moffett, R.B., Ed.; N.R. Organic syntheses; John Wiley & Sons, Inc.: New York, USA, 1963.
[30]
Taguchi, K.; Westheimer, F.H. Catalysis by molecular sieves in the preparation of ketimines and enamines1. J. Org. Chem., 1971, 36, 1570-1572.
[http://dx.doi.org/10.1021/jo00810a033]
[31]
Love, B.E.; Ren, J. Synthesis of sterically hindered imines. J. Org. Chem., 1993, 58, 5556-5557.
[http://dx.doi.org/10.1021/jo00072a051]
[32]
Shiraishi, Y.; Ikeda, M.; Tsukamoto, D.; Tanaka, S.; Hirai, T. One-pot synthesis of imines from alcohols and amines with TiO2 loading Pt nanoparticles under UV irradiation. Chem. Commun. (Camb.), 2011, 47(16), 4811-4813.
[http://dx.doi.org/10.1039/c0cc05615d] [PMID: 21416066]
[33]
Jiang, L.; Jin, L.; Tian, H.; Yuan, X.; Yu, X.; Xu, Q. Direct and mild palladium-catalyzed aerobic oxidative synthesis of imines from alcohols and amines under ambient conditions. Chem. Commun. (Camb.), 2011, 47(38), 10833-10835.
[http://dx.doi.org/10.1039/c1cc14242a] [PMID: 21869963]
[34]
Kazemnejadi, M.; Shakeri, A.; Mohammadi, M.; Tabefam, M. Direct preparation of oximes and Schiff bases by oxidation of primary benzylic or allylic alcohols in the presence of primary amines using Mn(III) complex of polysalicylaldehyde as an efficient and selective heterogeneous catalyst by molecular oxygen. J. Iran. Chem. Soc., 2017, 14, 1917-1933.
[http://dx.doi.org/10.1007/s13738-017-1131-z]
[35]
Lan, Y-S.; Liao, B-S.; Liu, Y-H.; Peng, S-M.; Liu, S-T. Preparation of imines by oxidative coupling of benzyl alcohols with amines catalysed by dicopper complexes. Eur. J. Org. Chem., 2013, 5160-5164.
[http://dx.doi.org/10.1002/ejoc.201300507]
[36]
Pickard, P.L.; Young, C.W. Ketimines. III. ι-Cyclohexylalkyl Alkyl Type1. J. Am. Chem. Soc., 1951, 73(1), 42-43.
[http://dx.doi.org/10.1021/ja01145a016]
[37]
Porai-Koshits, B.A.; Remizov, A.L. Probl. mekhanizma org. reaktsii. Chem. Abstr., 1956, 50, 16686.
[38]
Pickard, P.L.; Tolbert, T.L. An improved method of ketimine synthesis. J. Org. Chem., 1961, 26, 4886-4888.
[http://dx.doi.org/10.1021/jo01070a025]
[39]
Hart, D.J.; Kanai, K.; Thomas, D.G.; Yang, T.K. Preparation of primary amines and 2-azetidinones via N-(trimethylsilyl)imines. J. Org. Chem., 1983, 48, 289-294.
[http://dx.doi.org/10.1021/jo00151a002]
[40]
Panunzio, M.; Zarantonello, P. Synthesis and Use of N-(Trimethylsilyl)imines. Org. Process Res. Dev., 1998, 2, 49-59.
[http://dx.doi.org/10.1021/op970036k]
[41]
Claisen, L. Ueber eine eigenthümliche Umlagerung. Ber. Dtsch. Chem. Ges., 1896, 29, 2931-2933.
[http://dx.doi.org/10.1002/cber.189602903102]
[42]
Reddelien, G. Uber die Zersetzung von Anilen. Ber. Dtsch. Chem. Ges., 1920, 53, 355-358.
[http://dx.doi.org/10.1002/cber.19200530233]
[43]
Huang, B.; Tian, H.; Lin, S.; Xie, M.; Yu, X.; Xu, Q. Cu(I)/TEMPO-catalyzed aerobic oxidative synthesis of imines directly from primary and secondary amines under ambient and neat conditions. Tetrahedron Lett., 2013, 54, 2861-2864.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.098]
[44]
Zhu, W.; Mena, M.; Jnoff, E.; Sun, N.; Pasau, P.; Ghosez, L. Multicomponent reactions for the synthesis of complex piperidine scaffolds. Angew. Chem. Int. Ed. Engl., 2009, 48(32), 5880-5883.
[http://dx.doi.org/10.1002/anie.200806065] [PMID: 19308937]
[45]
Cozzi, P.G. Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem. Soc. Rev., 2004, 33(7), 410-421.
[http://dx.doi.org/10.1039/B307853C] [PMID: 15354222]
[46]
Golbedaghi, R.; Tabanez, A.M.; Esmaeili, S.; Fausto, R. Biological applications of macrocyclic schiff base ligands and their metal complexes: a survey of the literature (2005–2019). Appl. Organomet. Chem., 2020, 34(10), e5884.
[http://dx.doi.org/10.1002/aoc.5884]
[47]
Yimer, A.M. Review on preparation and description of some first series divalent transition metal complexes with novel schiff’s base ligands. Rev. Catal., 2015, 2, 14-25.
[http://dx.doi.org/10.18488/journal.96/2015.2.1/96.1.14.25]
[48]
Arulmurugan, S.; Kavitha, H.B.R. V., Biological activities of Schiff base and its complexes: A review. Rasayan J. Chem., 2010, 3, 385-410.
[49]
Gurung, R.K.; McMillen, C.D.; Jarrett, W.L.; Holder, A.A. Synthesis, characterization, NMR spectroscopic, and X-ray crystallographic studies of new titanium(IV) Schiff base salen complexes: Formation of intriguing titanium(IV) species. Inorg. Chim. Acta, 2020, 505, 119496.
[http://dx.doi.org/10.1016/j.ica.2020.119496]
[50]
Zhou, Z.; Li, Z.; Quanyong, W.; Liu, B.; Li, K.; Zhao, G.; Zhou, Q.; Tang, C. (Salen)Ti(IV) complex catalyzed asymmetric ring-opening of epoxides using dithiophosphorus acid as the nucleophile. J. Organomet. Chem., 2006, 691, 5790-5797.
[http://dx.doi.org/10.1016/j.jorganchem.2006.09.049]
[51]
Wang, Q.; Song, H.; Zi, G. Synthesis, structure, and catalytic activity of group 4 complexes with new chiral biaryl-based NO2 ligands. J. Organomet. Chem., 2010, 695, 1583-1591.
[http://dx.doi.org/10.1016/j.jorganchem.2010.03.014]
[52]
Ramesh, G.; Daravath, S.; Swathi, M.; Sumalatha, V.; Shiva Shankar, D. Shivaraj, Investigation on Co(II), Ni(II), Cu(II) and Zn(II) complexes derived from quadridentate salen-type Schiff base: Structural characterization, DNA interactions, antioxidant proficiency and biological evaluation. Chem. Data Coll., 2020, 28, 100434.
[53]
Kurchavov, D.S.; Karushev, M.P.; Timonov, A.M. New Nickel(II) complexes with tetradentate schiff bases containing electron-acceptor substituents. Russ. J. Gen. Chem., 2018, 88, 1553-1555.
[http://dx.doi.org/10.1134/S1070363218070332]
[54]
Adão, P.; Barroso, S.; Avecilla, F.; Oliveira, M.C.; Pessoa, J.C. CuII–salan compounds: Synthesis, characterization and evaluation of their potential as oxidation catalysts. J. Organomet. Chem., 2014, 760, 212-223.
[http://dx.doi.org/10.1016/j.jorganchem.2013.10.019]
[55]
Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature, 1985, 318(6042), 162-163.
[http://dx.doi.org/10.1038/318162a0]
[56]
Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348), 56-58.
[http://dx.doi.org/10.1038/354056a0]
[57]
Maldhure, A.K. Synthesis and structural characterization of transition metal compound: New precursor for preparation of Zinc oxide nanoparticles. Der Pharma Chem., 2016, 8(6), 129-134.
[58]
Galini, M.; Salehi, M.; Kubicki, M.; Bayat, M.; Malekshah, R.E. Synthesis, structural characterization, DFT and molecular simulation study of new zinc-Schiff base complex and its application as a precursor for preparation of ZnO nanoparticle. J. Mol. Struct., 2020, 1207, 127715.
[http://dx.doi.org/10.1016/j.molstruc.2020.127715]
[59]
Khalaji, A.D.; Das, D. Thermal stability of copper(II) and nickel(II) Schiff base complexes. J. Therm. Anal. Calorim., 2015, 120, 1529-1534.
[http://dx.doi.org/10.1007/s10973-015-4534-z]
[60]
Chandrakala, M.; Raj Bharath, S.; Maiyalagan, T.; Arockiasamy, S. Synthesis, crystal structure and vapour pressure studies of novel nickel complex as precursor for NiO coating by metalorganic chemical vapour deposition technique. Mater. Chem. Phys., 2017, 201, 344-353.
[http://dx.doi.org/10.1016/j.matchemphys.2017.08.056]
[61]
Alothman, A.A.; Albaqami, M.D. Nano-sized Cu(II) and Zn(II) complexes and their use as a precursor for synthesis of CuO and ZnO nanoparticles: A study on their sonochemical synthesis, characterization, and DNA-binding/cleavage, anticancer, and antimicrobial activities. Appl. Organomet. Chem., 2020, 34(10), e5827.
[http://dx.doi.org/10.1002/aoc.5827]
[62]
Khalaji, A.D.; Izadi, S.; Grivani, G. Nanosize metal schiff base complexes as precursors for the preparation of HgO, Co3O4 and Mn3O4 nanoparticles. Iran. J. Sci. Technol. Trans. A Sci., 2019, 43, 105-109.
[http://dx.doi.org/10.1007/s40995-017-0399-2]
[63]
Abdel-Rahman, L.H.; Abu-Dief, A.M.; El-Khatib, R.M.; Abdel-Fatah, S.M. Some new nano-sized Fe(II), Cd(II) and Zn(II) Schiff base complexes as precursor for metal oxides: Sonochemical synthesis, characterization, DNA interaction, in vitro antimicrobial and anticancer activities. Bioorg. Chem., 2016, 69, 140-152.
[http://dx.doi.org/10.1016/j.bioorg.2016.10.009] [PMID: 27816797]
[64]
Piri, Z.; Moradi–Shoeili, Z.; Assoud, A. Ultrasonic assisted synthesis, crystallographic, spectroscopic studies and biological activity of three new Zn(II), Co(II) and Ni(II) thiosemicarbazone complexes as precursors for nano-metal oxides. Inorg. Chim. Acta, 2019, 484, 338-346.
[http://dx.doi.org/10.1016/j.ica.2018.09.054]
[65]
Ibrahim, E.M.M.; Abdel-Rahman, L.H.; Abu-Dief, A.M.; Elshafaie, A.; Hamdan, S.K.; Ahmed, A.M. The synthesis of CuO and NiO nanoparticles by facile thermal decomposition of metal-Schiff base complexes and an examination of their electric, thermoelectric and magnetic Properties. Mater. Res. Bull., 2018, 107, 492-497.
[http://dx.doi.org/10.1016/j.materresbull.2018.08.020]
[66]
Abbasi, Z.; Salehi, M.; Khaleghian, A.; Kubicki, M. Co(III), V(IV) and Cu(II) complexes of bidentate N,O-donor Schiff base ligands: Characterization, anticancer activities and metal oxide nanoparticles preparation via solid state thermal decomposition. Appl. Organomet. Chem., 2018, 32, e4542.
[http://dx.doi.org/10.1002/aoc.4542]
[67]
Soltanianfard, M.J.; Esmaielzadeh, S.; Parsam, S.; Rahmani Nejad, A. Hydrothermal synthesis of copper (II) and Nickel (II) nano complexes with unsymmetric tetradentate Schiff base ligand. New precursors for preparation of copper (II) and nickel (II) oxides nano-particles. Nanochem. Res., 2018, 3, 197-204.
[68]
Alothman, A.A.; Ammar, R.A.A. Synthesis, characterization, DNA binding/cleavage, and anticancer and antimicrobial activities: Nano-sized Co(II) and Cd(II) complexes and their use as a precursor for CoO and CdO nanoparticles. Appl. Organomet. Chem., 2020, 34(10), e5829.
[http://dx.doi.org/10.1002/aoc.5829]
[69]
Zare, N.; Zabardasti, A.; Mohammadi, A.; Azarbani, F. Synthesis of spherical Fe3O4 nanoparticles from the thermal decomposition of iron (III) nano-structure complex: DFT studies and evaluation of the biological activity. Bioorg. Chem., 2018, 80, 334-346.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.005] [PMID: 29986182]
[70]
Khalaji, A.; Ghorbani, M. Mn2O3 Nanoparticles synthesized from thermal decomposition of manganese(II) schiff base complexes. Acta Phys. Pol. A, 2018, 133, 7-9.
[http://dx.doi.org/10.12693/APhysPolA.133.7]
[71]
Khalaji, A. Nickel Oxide (NiO) nanoparticles prepared by solid-state thermal decomposition of Nickel (II) schiff base precursor. J. Ultrafine Grained Nanostruct. Mater., 2015, 48, 1-4.
[72]
Parveen, S.; Premkumar, T.; Poornima, S.; Govindarajan, S. Catalytic activity of nanocrystalline ZnM2O4 (M = Fe, Co) prepared via simple and facile synthesis of thermal decomposition of mixed metal complexes of Schiff bases generated from α-ketobutyric acid and diaminoguanidine. J. Saudi Chem. Soc., 2019, 23, 691-701.
[http://dx.doi.org/10.1016/j.jscs.2018.11.008]
[73]
Saghatforoush, L.; Mehdizadeh, R.; Chalabian, F. Synthesis of CuO nanoparticles from a new nano-structured copper(II) Schiff base complex by ultrasonic and solvothermal methods: Structural, thermal and antibacterial studies. J. Chem. Pharm. Res., 2011.
[74]
Jaafar, M.; Soltanian Fard, M.J.; Esmaielzadeh, S.; Parsam, S.; Nejad, A. Hydrothermal synthesis of copper (II) and nickel (II) nano-complexes with asymmetric tetradentate Schiff base ligand; A new precursor for preparation of copper (II) and nickel (II) oxide nano-particles. Nanochem Res., 2018, 3, 197-204.
[75]
Mehdizadeh, R.; Chalabian, F. Hydrothermal and sonochemical synthesis of a nano-sizednickel(II) Schiff base complex as a precursor for nano-sizednickel(II) oxide; spectroscopic, catalytic and antibacterialproperties. Transition Metal Chem., 2010, 35, 903-910.
[http://dx.doi.org/10.1007/s11243-010-9410-x]
[76]
Abdel-Rahman, L.H.; Abu-Dief, A.M.; El-Khatib, R.M.; Abdel-Fatah, S.M. Sonochemical synthesis, DNA binding, antimicrobial evaluation and in vitro anticancer activity of three new nano-sized Cu(II), Co(II) and Ni(II) chelates based on tri-dentate NOO imine ligands as precursors for metal oxides. J. Photochem. Photobiol. B, 2016, 162, 298-308.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.06.052] [PMID: 27395793]
[77]
Kafi-Ahmadi, L.; Shirmohammadzadeh, L. Synthesis of Co(II) and Cr(III) salicylidenic Schiff base complexes derived from thiourea as precursors for nano-sized Co3O4 and Cr2O3 and their catalytic, antibacterial properties. J. Nanostruct. Chem., 2017, 7, 179-190.
[http://dx.doi.org/10.1007/s40097-017-0221-x]
[78]
Sufi, R.; Kofinas, P. Magnetic properties and morphology of block copolymer-cobalt oxide nanocomposites. J. Magn. Magn. Mater., 2005, 288, 219-223.
[http://dx.doi.org/10.1016/j.jmmm.2004.09.009]
[79]
El-Zweay, R.; El-Ajaily, M.; Ben-Gweirif, S.; Maihub, A. Preparation, characterization and antibacterial activity of some mixed ligand chelates. J. Chem. Soc. Pak., 2013, 35, 67-71.
[80]
Zou, D.; Xu, C.; Luo, H.; Wang, L.; Ying, T. Synthesis of Co3O4 nanoparticles via an ionic liquid-assisted methodology at room temperature. Mater. Lett., 2008, 62, 1976-1978.
[http://dx.doi.org/10.1016/j.matlet.2007.10.056]
[81]
Tohidiyan, Z.; Sheikhshoaie, I.; Khaleghi, M.; Mague, J.T. A novel copper (II) complex containing a tetradentate Schiff base: Synthesis, spectroscopy, crystal structure, DFT study, biological activity and preparation of its nano-sized metal oxide. J. Mol. Struct., 2017, 1134, 706-714.
[http://dx.doi.org/10.1016/j.molstruc.2017.01.026]
[82]
Nassar, M.Y.; Aly, H.M.; Abdelrahman, E.A.; Moustafa, M.E. Synthesis, characterization, and biological activity of some novel Schiff bases and their Co(II) and Ni(II) complexes: A new route for Co3O4 and NiO nanoparticles for photocatalytic degradation of methylene blue dye. J. Mol. Struct., 2017, 1143, 462-471.
[http://dx.doi.org/10.1016/j.molstruc.2017.04.118]
[83]
Parsaee, Z.; Joukar, B.E.; Afandak, A. Sonochemical synthesis, in vitro evaluation and DFT study of novel phenothiazine base Schiff bases and their nano copper complexes as the precursors for new shaped CuO-NPs. Ultrason. Sonochem., 2018, 40(Pt A), 629-643.
[http://dx.doi.org/10.1016/j.ultsonch.2017.08.010] [PMID: 28946468 ]
[84]
Ponnarasan, V.; Krishnan, A. Studies on pure and divalent metal doped copper oxide nanoparticles. Adv. Stud. Theor. Phys., 2014, 251-258.
[85]
Livage, J.; Babonneau, F.; Sanchez, C. Sol-Gel Chemistry for Optical Materials. Sol-Gel Optics: Processing and Applications; Klein, L.C., Ed.; Springer US: Boston, MA, 1994, pp. 39-58.
[http://dx.doi.org/10.1007/978-1-4615-2750-3_2]
[86]
Bordoloi, A.; Sahoo, S.; Lefebvre, F.; Halligudi, S.B. Heteropoly acid-based supported ionic liquid-phase catalyst for the selective oxidation of alcohols. J. Catal., 2008, 259, 232-239.
[http://dx.doi.org/10.1016/j.jcat.2008.08.010]
[87]
Maity, P.; Gopinath, C.S.; Bhaduri, S.; Lahiri, G.K. Applications of a high performance platinum nanocatalyst for the oxidation of alcohols in water. Green Chem., 2009, 11, 554-561.
[http://dx.doi.org/10.1039/b815948c]
[88]
Al-Saeedi, S.I.; Abdel-Rahman, L.H.; Abu-Dief, A.M.; Abdel-Fatah, S.M.; Alotaibi, T.M.; Alsalme, A.M.; Nafady, A. Catalytic oxidation of benzyl alcohol using nanosized Cu/Ni schiff-base complexes and their metal oxide nanoparticles. Catalysts, 2018, 8, 452.
[http://dx.doi.org/10.3390/catal8100452]
[89]
Abdel-Fatah, S.M.; Díaz-Sánchez, M.; Díaz-García, D.; Prashar, S.; Abdel-Rahman, L.H.; Gómez-Ruiz, S. Nanostructured metal oxides prepared from schiff base metal complexes: study of the catalytic activity in selective oxidation and C–C coupling reactions. J. Inorg. Organomet. Polym. Mater., 2020, 30, 1293-1305.
[http://dx.doi.org/10.1007/s10904-019-01269-y]
[90]
Sine, S.M. End-plate acetylcholine receptor: structure, mechanism, pharmacology, and disease. Physiol. Rev., 2012, 92(3), 1189-1234.
[http://dx.doi.org/10.1152/physrev.00015.2011] [PMID: 22811427]
[91]
Shibli, S.M.A.; Beenakumari, K.S. Electrodeposited Nickel/Platinum alloy as a biosensor for acetyl choline. Electroanalysis, 2006, 18, 465-470.
[http://dx.doi.org/10.1002/elan.200503423]
[92]
Saghatforoush, L.A.; Sanati, S.; Marandi, G.; Hasanzadeh, M. Synthesis, characterization and catalytic activity of cuo nanostructures using schiff base copper complexes as a precursor. J. Nanostruct., 2013, 3, 33-41.
[93]
Hartwig, J.F. Organotransition metal chemistry: from bonding to catalysis; University Science Books, 2010.
[94]
Sonogashira, K. Development of Pd–Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides. J. Organomet. Chem., 2002, 653, 46-49.
[http://dx.doi.org/10.1016/S0022-328X(02)01158-0]
[95]
Drahl, C. In names, history and legacy. Chem. Eng. News, 2010, 88, 31-33.
[http://dx.doi.org/10.1021/cen-v088n020.p031]
[96]
Miyaura, N.; Yamada, K.; Suzuki, A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett., 1979, 20, 3437-3440.
[http://dx.doi.org/10.1016/S0040-4039(01)95429-2]
[97]
King, A.O.; Okukado, N.; Negishi, E-i. Highly general stereo-, regio-, and chemo-selective synthesis of terminal and internal conjugated enynes by the Pd-catalysed reaction of alkynylzinc reagents with alkenyl halides. J. Chem. Soc. Chem. Commun., 1977, 683-684.
[http://dx.doi.org/10.1039/c39770000683]
[98]
Talebian-Kiakalaieh, A.; Amin, N.A.S.; Mazaheri, H. A review on novel processes of biodiesel production from waste cooking oil. Appl. Energy, 2013, 104, 683-710.
[http://dx.doi.org/10.1016/j.apenergy.2012.11.061]
[99]
Almazroia, L.; Shah, R.K.; El-Metwaly, N.M.; Farghaly, T.A. New catalytic approach for nano-sized V(IV), Cr(III), Mn(II) and Fe(III)-triazole complexes: detailed spectral, electrochemical and analytical studies. Res. Chem. Intermed., 2019, 45, 1943-1971.
[http://dx.doi.org/10.1007/s11164-018-03714-y]
[100]
Ahmaruzzaman, M.; Laxmi Gayatri, S. Batch adsorption of 4-nitrophenol by acid activated jute stick char: Equilibrium, kinetic and thermodynamic studies. Chem. Eng. J., 2010, 158, 173-180.
[http://dx.doi.org/10.1016/j.cej.2009.12.027]
[101]
Bukowska, B.; Michałowicz, J.; Krokosz, A.; Sicińska, P. Comparison of the effect of phenol and its derivatives on protein and free radical formation in human erythrocytes (in vitro). Blood Cells Mol. Dis., 2007, 39(3), 238-244.
[http://dx.doi.org/10.1016/j.bcmd.2007.06.003] [PMID: 17651993]
[102]
Coccia, F.; Tonucci, L.; Bosco, D.; Bressan, M.; d’Alessandro, N. One-pot synthesis of lignin-stabilised platinum and palladium nanoparticles and their catalytic behaviour in oxidation and reduction reactions. Green Chem., 2012, 14, 1073-1078.
[http://dx.doi.org/10.1039/c2gc16524d]
[103]
Kong, X-K.; Sun, Z-Y.; Chen, M.; Chen, C-L.; Chen, Q-W. Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energy Environ. Sci., 2013, 6, 3260-3266.
[http://dx.doi.org/10.1039/c3ee40918j]
[104]
Liu, H.; Feng, Z.; Wang, J.; Zhang, L.; Su, D. Facile synthesis of Pd nanoparticles encapsulated into hollow carbon nanospheres with robust catalytic performance. Catal. Today, 2016, 260, 55-59.
[http://dx.doi.org/10.1016/j.cattod.2015.04.003]
[105]
Sutar, R.S.; Barkul, R.P.; Patil, M.K. Reduction of p-nitrophenol to p-aminophenol by using NiO catalysts: A comparative study. Eur. Chem. Bull., 2019, 8, 34-37.
[http://dx.doi.org/10.17628/ecb.2019.8.34-37]
[106]
Kong, X.; Zhu, H.; Chen, C.; Huang, G.; Chen, Q. Insights into the reduction of 4-nitrophenol to 4-aminophenol on catalysts. Chem. Phys. Lett., 2017, 684, 148-152.
[http://dx.doi.org/10.1016/j.cplett.2017.06.049]
[107]
Chinnappan, A.; Tamboli, A.H.; Chung, W-J.; Kim, H. Green synthesis, characterization and catalytic efficiency of hypercross-linked porous polymeric ionic liquid networks towards 4-nitrophenol reduction. Chem. Eng. J., 2016, 285, 554-561.
[http://dx.doi.org/10.1016/j.cej.2015.10.032]
[108]
Menumerov, E.; Hughes, R.A.; Neretina, S. Catalytic reduction of 4-nitrophenol: a quantitative assessment of the role of dissolved oxygen in determining the induction time. Nano Lett., 2016, 16(12), 7791-7797.
[http://dx.doi.org/10.1021/acs.nanolett.6b03991] [PMID: 27960449]
[109]
Ayodhya, D.; Veerabhadram, G. Facile thermal fabrication of CuO nanoparticles from Cu(II)-Schiff base complexes and its catalytic reduction of 4-nitrophenol, antioxidant, and antimicrobial studies. Chem. Data Collect., 2019, 23, 100259.
[http://dx.doi.org/10.1016/j.cdc.2019.100259]
[110]
Aazam, E.S.; El-Said, W.A. Synthesis of copper/nickel nanoparticles using newly synthesized Schiff-base metals complexes and their cytotoxicity/catalytic activities. Bioorg. Chem., 2014, 57, 5-12.
[http://dx.doi.org/10.1016/j.bioorg.2014.07.004] [PMID: 25159596]
[111]
Patil, M.K.; Bajaj, H.C.; Tayade, R.J. Synthesis and characterization of tantalum based photocatalysts and application for methylene blue degradation. Mater. Sci. Forum, 2016, 855, 147-155.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.855.147]
[112]
Sutar, R.S.; Barkul, R.P.; Delekar, S.D.; Patil, M.K. Sunlight assisted photocatalytic degradation of organic pollutants using g-C3N4-TiO2 nanocomposites. Arab. J. Chem., 2020, 13, 4966-4977.
[http://dx.doi.org/10.1016/j.arabjc.2020.01.019]
[113]
Sutar, R.S.; Barkul, R.P.; Patil, M.K. Visible light assisted photocatalytic degradation of methylene blue dye and mixture of dyes using ZrO2-TiO2 nanocomposites. Curr. Nanosci., 2020, 16, 1-10.
[http://dx.doi.org/10.2174/1573413716999200605154956]
[114]
Karthikeyan, C.; Arunachalam, P.; Ramachandran, K.; Al-Mayouf, A.M.; Karuppuchamy, S. Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. J. Alloys Compd., 2020, 828, 154281.
[http://dx.doi.org/10.1016/j.jallcom.2020.154281]
[115]
Wang, C.; Gao, S.; Zhu, J.; Xia, X.; Wang, M.; Xiong, Y. Enhanced activation of peroxydisulfate by strontium modified BiFeO3 perovskite for ciprofloxacin degradation. J. Environ. Sci. (China), 2021, 99, 249-259.
[http://dx.doi.org/10.1016/j.jes.2020.04.026]
[116]
Cai, C.; Kang, S.; Xie, X.; Liao, C.; Duan, X.; Dionysiou, D.D. Efficient degradation of bisphenol A in water by heterogeneous activation of peroxymonosulfate using highly active cobalt ferrite nanoparticles. J. Hazard. Mater., 2020, 399, 122979.
[PMID: 32497686]
[117]
Gao, Y.; Zou, D. Efficient degradation of levofloxacin by a microwave–3D ZnCo2O4/activated persulfate process: Effects, degradation intermediates, and acute toxicity. Chem. Eng. J., 2020, 393, 124795.
[118]
Patil, M.K.; Shaikh, S.; Ganesh, I. Recent advances on TiO2 thin film based photocatalytic applications (A Review). Curr. Nanosci., 2015, 11, 271-285.
[http://dx.doi.org/10.2174/1573413711666150212235054]
[119]
Barkul, R.P.; Shaikh, F-N.A.; Delekar, S.D.; Patil, M.K. Visible light active ce-doped TiO2 nanoparticles for photocatalytic degradation of methylene blue. Curr. Nanosci., 2017, 13, 110-116.
[http://dx.doi.org/10.2174/1573413712666160824151102]
[120]
Karakitsou, K.E.; Verykios, X.E. Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage. J. Phys. Chem., 1993, 97, 1184-1189.
[http://dx.doi.org/10.1021/j100108a014]
[121]
Ahmed, M.A.; El-Katori, E.E.; Gharni, Z.H. Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method. J. Alloys Compd., 2013, 553, 19-29.
[http://dx.doi.org/10.1016/j.jallcom.2012.10.038]
[122]
Moztahida, M.; Lee, D.S. Photocatalytic degradation of methylene blue with P25/graphene/polyacrylamide hydrogels: Optimization using response surface methodology. J. Hazard. Mater., 2020, 400, 123314.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123314] [PMID: 32947714]
[123]
Alibrahim, K.A.; Al-Fawzan, F.F.; Refat, M.S. Chemical preparation of nanostructures of Ni(II), Pd(II), and Ru(III) Oxides by thermal decomposition of new metallic 4-Aminoantipyrine derivatives. Catalytic Activity of the Oxides. Russ. J. Gen. Chem., 2019, 89, 2528-2533.
[http://dx.doi.org/10.1134/S1070363219120326]
[124]
Xia, S.; Zhang, L.; Zhou, X.; Shao, M.; Pan, G.; Ni, Z. Fabrication of highly dispersed Ti/ZnO–Cr2O3 composite as highly efficient photocatalyst for naphthalene degradation. Appl. Catal. B, 2015, 176-177, 266-277.
[http://dx.doi.org/10.1016/j.apcatb.2015.04.008]
[125]
Gold, K.; Slay, B.; Knackstedt, M.; Gaharwar, A.K. Antimicrobial activity of metal and metal-oxide based nanoparticles. Adv. Ther., 2018, 1, 1700033.
[http://dx.doi.org/10.1002/adtp.201700033]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy