Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

The Effects on Angiogenesis of Relevant Inorganic Chemotherapeutics

Author(s): Tiziano Marzo and Diego La Mendola*

Volume 21, Issue 1, 2021

Published on: 26 November, 2020

Page: [73 - 86] Pages: 14

DOI: 10.2174/1568026620666201126163436

Price: $65

Abstract

Angiogenesis is a key process allowing the formation of blood vessels. It is crucial for all the tissues and organs, ensuring their function and growth. Angiogenesis is finely controlled by several mechanisms involving complex interactions between pro- or antiangiogenic factors, and an imbalance in this control chain may result in pathological conditions. Metals as copper, zinc and iron cover an essential role in regulating angiogenesis, thus therapies having physiological metals as target have been proposed. In addition, some complexes of heavier metal ions (e.g., Pt, Au, Ru) are currently used as established or experimental anticancer agents targeting genomic or non-genomic targets. These molecules may affect the angiogenic mechanisms determining different effects that have been only poorly and non-systematically investigated so far. Accordingly, in this review article, we aim to recapitulate the impact on the angiogenic process of some reference anticancer drugs, and how it is connected to the overall pharmacological effects. In addition, we highlight how the activity of these drugs can be related to the role of biological essential metal ions. Overall, this may allow a deeper description and understanding of the antineoplastic activity of both approved or experimental metal complexes, providing important insights for the synthesis of new inorganic drugs able to overcome resistance and recurrence phenomena.

Keywords: Anticancer metallodrugs, Angiogenesis, Inorganic drugs, Gold, Platinum, Arsenic, Ruthenium, Antimicrobial matallodrugs.

Graphical Abstract

[1]
Adair, T.H.; Montani, J-P. Angiogenesis; Morgan & Claypool Life Sciences: San Rafael, CA, 2010.
[2]
Kolte, D.; McClung, J.A.; Aronow, W.S. Vasculogenesis and Angiogenesis.Translational Research in Coronary Artery Disease: Pathophysiology to Treatment; Elsevier Inc., 2016, pp. 49-65.
[http://dx.doi.org/10.1016/B978-0-12-802385-3.00006-1]
[3]
Burri, P.H.; Hlushchuk, R.; Djonov, V. Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Developmental Dynamics., 2004, 231, 474-488.
[4]
Kir, D.; Schnettler, E.; Modi, S.; Ramakrishnan, S. Regulation of angiogenesis by MicroRNAs in cardiovascular diseases. Angiogenesis, 2018, 21, 699-710.
[5]
Yang, D.; Jin, C.; Ma, H.; Huang, M.; Shi, G. P.; Wang, J.; Xiang, M. EphrinB2/EphB4 pathway in postnatal angiogenesis: a potential therapeutic target for ischemic cardiovascular disease.angiogenesis, 2016, 19, 297-309.
[6]
Xiao, Y.; Liu, Y.; Liu, J.; Kang, Y.J. The association between myocardial fibrosis and depressed capillary density in rat model of left ventricular hypertrophy. Cardiovasc. Toxicol., 2018, 18(4), 304-311.
[http://dx.doi.org/10.1007/s12012-017-9438-7] [PMID: 29204738]
[7]
Ko, S.H.; Bandyk, D.F. Therapeutic angiogenesis for critical limb ischemia. Seminars in Vascular Surgery, 2014, 27, 23-31.
[8]
Kang, Y.J. Copper and Homocysteine in Cardiovascular Diseases.In: Pharmacology and Therapeutics; Elsevier Inc.: Amsterdam, 2011, pp. 321-331.
[9]
Elshabrawy, H.A.; Chen, Z.; Volin, M.V.; Ravella, S.; Virupannavar, S.; Shahrara, S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis, 2015, 18, 433-448.
[10]
Knod, J.L.; Crawford, K.; Dusing, M.; Collins, M.H.; Chernoguz, A.; Frischer, J.S. Angiogenesis and vascular endothelial growth factor-a expression associated with inflammation in Pediatric Crohn’s disease. J. Gastrointest. Surg., 2016, 20(3), 624-630.
[http://dx.doi.org/10.1007/s11605-015-3002-1] [PMID: 26530519]
[11]
Capitão, M.; Soares, R. Angiogenesis and inflammation crosstalk in diabetic retinopathy. J. Cell. Biochem., 2016, 117(11), 2443-2453.
[http://dx.doi.org/10.1002/jcb.25575] [PMID: 27128219]
[12]
Varricchi, G.; Granata, F.; Loffredo, S.; Genovese, A.; Marone, G. Angiogenesis and lymphangiogenesis in inflammatory skin disorders. J. American Acad. Dermatol., 2015, 73, 144-153.
[13]
Samimi, M.; Pourhanifeh, M.H.; Mehdizadehkashi, A.; Eftekhar, T.; Asemi, Z. The role of inflammation, oxidative stress, angiogenesis, and apoptosis in the pathophysiology of endometriosis: Basic science and new insights based on gene expression. J. Cell. Physiol., 2019, 234(11), 19384-19392.
[http://dx.doi.org/10.1002/jcp.28666] [PMID: 31004368]
[14]
Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease.In: Nature Medicine; Nature Publishing Group, London,, 1995, 1, pp. 27-30.
[15]
Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov., 2007, 6(4), 273-286.
[http://dx.doi.org/10.1038/nrd2115] [PMID: 17396134]
[16]
Folkman, J. Angiogenesis. Annu. Rev. Med., 2006, 57(1), 1-18.
[http://dx.doi.org/10.1146/annurev.med.57.121304.131306] [PMID: 16409133]
[17]
Viallard, C.; Larrivée, B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis, 2017, 20, 409-426.
[18]
Zhu, X.D.; Tang, Z.Y.; Sun, H.C. Targeting angiogenesis for liver cancer: past, present, and future. Genes and Diseases, 2020, 7, 328-335.
[19]
Siren, P.M.A.; Siren, M.J. Systemic zinc redistribution and dyshomeostasis in cancer cachexia. J. Cachexia Sarcopenia Muscle, 2010, 1(1), 23-33.
[http://dx.doi.org/10.1007/s13539-010-0009-z] [PMID: 21475700]
[20]
Orlov, A.P.; Orlova, M.A.; Trofimova, T.P.; Kalmykov, S.N.; Kuznetsov, D.A. The role of zinc and its compounds in leukemia. J. Biol. Inorg. Chem., 2018, 23, 347-362.
[21]
Kardos, J.; Héja, L.; Simon, Á.; Jablonkai, I.; Kovács, R.; Jemnitz, K. Copper signalling: causes and consequences biological sciences biochemistry and cell biology. Cell Communication and Signaling,71, 2018.
[22]
Denoyer, D.; Masaldan, S.; La Fontaine, S.; Cater, M.A. Targeting copper in cancer therapy: ‘copper that cancer. Metallomics, 2015, 7, 1459-1476.
[23]
Wang, Y.; Yu, L.; Ding, J.; Chen, Y. Iron metabolism in cancer. Int. J. Mol. Sci., 2018, 20(1), 95.
[http://dx.doi.org/10.3390/ijms20010095] [PMID: 30591630]
[24]
Mendola, D.; Giacomelli, C.; Rizzarelli, E. Intracellular bioinorganic chemistry and cross talk among different -omics. Curr. Top. Med. Chem., 2016, 16(27), 3103-3130.
[http://dx.doi.org/10.2174/1568026616666160715164212] [PMID: 27426868]
[25]
Brewer, G.J. Copper lowering therapy with tetrathiomolybdate as an antiangiogenic strategy in cancer. Curr. Cancer Drug Targets, 2005, 5(3), 195-202.
[http://dx.doi.org/10.2174/1568009053765807] [PMID: 15892619]
[26]
Komoto, K.; Nomoto, T.; Muttaqien, S. El, ; Takemoto, H.; Matsui, M.; Miura, Y.; Nishiyama, N. Iron chelation cancer therapy using hydrophilic block copolymers conjugated with deferoxamine. Cancer Sci, 2020. (ePub ahead of Print)
[http://dx.doi.org/ 10.1111/cas.14607]
[27]
Lopez, J.; Ramchandani, D.; Vahdat, L. Copper depletion as a therapeutic strategy in cancer.Met. Ions Life Sci., 2019. (ePub ahead of Print),
[28]
Khan, G.; Merajver, S. Copper chelation in cancer therapy using tetrathiomolybdate: an evolving paradigm. ExpertOpinion Investigational Drugs, 2009, 18(4), 541-548.
[29]
Denoyer, D.; Clatworthy, S.A.S.; Cater, M.A. Copper complexes in cancer therapy. In: Metallo-Drugs: Development and Action of Anticancer Agents; Sigel, A.; Sigel, H.; Freisinger, E.; Sigel, R.K.O., Eds.; De Gruyter: Berlin, Boston, 2018, Vol. 18, pp. 469-506.
[http://dx.doi.org/10.1515/9783110470734-022]
[30]
Magrì, A.; Grasso, G.; Corti, F.; Finetti, F.; Greco, V.; Santoro, A.M.; Sciuto, S.; La Mendola, D.; Morbidelli, L.; Rizzarelli, E. Peptides derived from the histidine-proline rich glycoprotein bind copper ions and exhibit anti-angiogenic properties. Dalton Trans., 2018, 47(28), 9492-9503.
[http://dx.doi.org/10.1039/C8DT01560K] [PMID: 29963662]
[31]
Weekley, C.M.; He, C. Developing drugs targeting transition metal homeostasis. Curr. Opin. Chem. Biol., 2017, 37, 26-32.
[32]
Denoyer, D.; Pearson, H.B.; Clatworthy, S.A.S.; Smith, Z.M.; Francis, P.S.; Llanos, R.M.; Volitakis, I.; Phillips, W.A.; Meggyesy, P.M.; Masaldan, S.; Cater, M.A. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution. Oncotarget, 2016, 7(24), 37064-37080.
[http://dx.doi.org/10.18632/oncotarget.9245] [PMID: 27175597]
[33]
Bonaccorso, C.; Grasso, G.; Musso, N.; Barresi, V.; Condorelli, D.F.; La Mendola, D.; Rizzarelli, E. Water soluble glucose derivative of thiocarbohydrazone acts as ionophore with cytotoxic effects on tumor cells. J. Inorg. Biochem., 2018, 182, 92-102.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.01.019] [PMID: 29452884]
[34]
Bonaccorso, C.; Marzo, T.; La Mendola, D. Biological applications of thiocarbohydrazones and their metal complexes: a perspective review. Pharmaceuticals (Basel), 2020, 13(1), 4.
[http://dx.doi.org/10.3390/ph13010004] [PMID: 31881715]
[35]
Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Advances in copper complexes as anticancer agents. Chemical Reviews, 2014, 114(1), 815-862.
[36]
Ceramella, J.; Mariconda, A.; Iacopetta, D.; Saturnino, C.; Barbarossa, A.; Caruso, A.; Rosano, C.; Sinicropi, M.S.; Longo, P. From coins to cancer therapy: gold, silver and copper complexes targeting human topoisomerases. Bioorganic and Medicinal Chemistry Letters, 2020, 30(3)126905
[37]
Naletova; Cucci; D’Angeli; Anfuso; Magrì; La Mendola; Lupo; Satriano. A tunable nanoplatform of nanogold functionalised with angiogenin peptides for anti-angiogenic therapy of brain tumours. Cancers (Basel), 2019, 11(9), 1322.
[http://dx.doi.org/10.3390/cancers11091322]
[38]
Biersack, B.; Schobert, R. Current state of platinum complexes for the treatment of advanced and drug-resistant breast cancers.In: Advances in Experimental Medicine and Biology; Springer: New York LLC,; , 2019, Vol. 1152, pp. 253-270.
[39]
Marzo, T.; Ferraro, G.; Merlino, A.; Messori, L. .protein metalation by inorganic anticancer drugs. In: Encyclopedia of Inorganic and Bioinorganic Chemistry; Wiley: Hoboken, , 2020; pp. 1-17.
[http://dx.doi.org/10.1002/9781119951438.eibc2747]
[40]
Vyas, A.; Duvvuri, U.; Kiselyov, K. Copper-dependent ATP7B up-regulation drives the resistance of TMEM16A-overexpressing head-and-neck cancer models to platinum toxicity. Biochem. J., 2019, 476(24), 3705-3719.
[http://dx.doi.org/10.1042/BCJ20190591] [PMID: 31790150]
[41]
Masoud, G.N.; Li, W. HIF-1α Pathway: Role, Regulation and Intervention for Cancer Therapy. Acta Pharmaceutica Sinica B, 2015, 5(5), 378-389.
[42]
Zuazo-Gaztelu, I.; Casanovas, O. Unraveling the Role of Angiogenesis in Cancer Ecosystems. Front. Oncol., 2018, 8, 248.
[43]
Loizzi, V.; Del Vecchio, V.; Gargano, G.; De Liso, M.; Kardashi, A.; Naglieri, E.; Resta, L.; Cicinelli, E.; Cormio, G. Biological pathways involved in tumor angiogenesis and bevacizumab based anti-angiogenic therapy with special references to ovarian cancer. Int. J. Mol. Sci., 2017, 18(9), 1967.
[http://dx.doi.org/10.3390/ijms18091967] [PMID: 28906427]
[44]
Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology, 2005, 69(3)(Suppl. 3), 4-10.
[http://dx.doi.org/10.1159/000088478] [PMID: 16301830]
[45]
Jackson, A.L.; Davenport, S.M.; Herzog, T.J.; Coleman, R.L. Targeting angiogenesis: vascular endothelial growth factor and related signaling pathways. Transl. Cancer Res., 2015, 4(1), 70-83.
[http://dx.doi.org/10.21037/3837]
[46]
Kieran, M.W.; Kalluri, R.; Cho, Y.J. The VEGF pathway in cancer and disease: responses, resistance, and the path forward. Cold Spring Harb. Perspect. Med., 2012, 2(12)
[http://dx.doi.org/10.1101/cshperspect.a006593] [PMID: 23209176]
[47]
Li, Y.L.; Zhao, H.; Ren, X.B. Relationship of VEGF/VEGFR with immune and cancer cells: staggering or forward? Cancer Biol. Med., 2016, 13(2), 206-214.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2015.0070] [PMID: 27458528]
[48]
Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in signaling and disease: beyond discovery and development. Cell, 2019, 176(6), 1248-1264.
[49]
Saghiri, M.A.; Asatourian, A.; Orangi, J.; Sorenson, C.M.; Sheibani, N. Functional role of inorganic trace elements in angiogenesis-part I: N, Fe, Se, P, Au, and Ca. Crit. Rev. Oncol. Hematol., 2015, 96(1), 129-142.
[50]
Ohara, T.; Noma, K.; Urano, S.; Watanabe, S.; Nishitani, S.; Tomono, Y.; Kimura, F.; Kagawa, S.; Shirakawa, Y.; Fujiwara, T. A novel synergistic effect of iron depletion on antiangiogenic cancer therapy. Int. J. Cancer, 2013, 132(11), 2705-2713.
[http://dx.doi.org/10.1002/ijc.27943] [PMID: 23161652]
[51]
Eckard, J.; Dai, J.; Wu, J.; Jian, J.; Yang, Q.; Chen, H.; Costa, M.; Frenkel, K.; Huang, X. Effects of cellular iron deficiency on the formation of vascular endothelial growth factor and angiogenesis. Iron deficiency and angiogenesis. Cancer Cell Int., 2010, 10(1), 28.
[http://dx.doi.org/10.1186/1475-2867-10-28] [PMID: 20723262]
[52]
Jian, J.; Yang, Q.; Dai, J.; Eckard, J.; Axelrod, D.; Smith, J.; Huang, X. Effects of iron deficiency and iron overload on angiogenesis and oxidative stress-a potential dual role for iron in breast cancer. Free Radic. Biol. Med., 2011, 50(7), 841-847.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.12.028] [PMID: 21193031]
[53]
Ferrara, N.; Adamis, A.P. Ten years of anti-vascular endothelial growth factor therapy. Nature Reviews Drug Discovery., 2016, 48(5), 385-403.
[54]
Katayama, Y.; Uchino, J.; Chihara, Y.; Tamiya, N.; Kaneko, Y.; Yamada, T.; Takayama, K. Tumor neovascularization and developments in therapeutics. Cancers (Basel), 2019, 11(3), 316.
[http://dx.doi.org/10.3390/cancers11030316] [PMID: 30845711]
[55]
He, W.; James Kang, Y. Ischemia-induced copper loss and suppression of angiogenesis in the pathogenesis of myocardial infarction. Cardiovasc. Toxicol., 2013, 13(1), 1-8.
[http://dx.doi.org/10.1007/s12012-012-9174-y] [PMID: 22644803]
[56]
Sen, C.K.; Khanna, S.; Venojarvi, M.; Trikha, P.; Christopher Ellison, E.; Hunt, T.K.; Roy, S. Copper-induced vascular endothelial growth factor expression and wound healing. Am. J. Physiol. -. Hear. Circ. Physiol., 2002, 282, 1821-1827.
[57]
Kornblatt, A.P.; Nicoletti, V.G.; Travaglia, A. The Neglected Role of Copper Ions in Wound Healing. J. Inorg. Biochem., 2016, 1-8. ePub ahead of print
[58]
Borkow, G. Using copper to improve the well-being of the skin. Curr. Chem. Biol., 2014, 8(2), 89-102.
[http://dx.doi.org/10.2174/2212796809666150227223857] [PMID: 26361585]
[59]
Blockhuys, S.; Wittung-Stafshede, P. Roles of copper-binding proteins in breast cancer. Int. J. Mol. Sci., 2017, 18(4), 871.
[http://dx.doi.org/10.3390/ijms18040871] [PMID: 28425924]
[60]
Rath, S.N.; Brandl, A.; Hiller, D.; Hoppe, A.; Gbureck, U.; Horch, R.E.; Boccaccini, A.R.; Kneser, U. Bioactive copper-doped glass scaffolds can stimulate endothelial cells in co-culture in combination with mesenchymal stem cells. PLoS One, 2014, 9(12)
[http://dx.doi.org/10.1371/journal.pone.0113319] [PMID: 25470000]
[61]
Li, Q.F.; Ding, X.Q.; Kang, Y.J. Copper promotion of angiogenesis in isolated rat aortic ring: role of vascular endothelial growth factor. J. Nutr. Biochem., 2014, 25(1), 44-49.
[http://dx.doi.org/10.1016/j.jnutbio.2013.08.013] [PMID: 24314864]
[62]
Grasso, G.; Santoro, A.M.; Magrì, A.; La Mendola, D.; Tomasello, M.F.; Zimbone, S.; Rizzarelli, E. The inorganic perspective of vegf: interactions of cu(2+) with peptides encompassing a recognition domain of the vegf receptor. J. Inorg. Biochem., 2016, 159, 149-158.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.03.004] [PMID: 27015654]
[63]
Zimbone, S.; Santoro, A.M.; La Mendola, D.; Giacomelli, C.; Trincavelli, M.L.; Tomasello, M.F.; Milardi, D.; García-Viñuales, S.; Sciacca, M.F.M.; Martini, C.; Grasso, G. The ionophoric activity of a pro-apoptotic vegf165 fragment on huvec cells. Int. J. Mol. Sci., 2020, 21(8), 2866.
[http://dx.doi.org/10.3390/ijms21082866] [PMID: 32325956]
[64]
Tsai, C.Y.; Finley, J.C.; Ali, S.S.; Patel, H.H.; Howell, S.B. Copper influx transporter 1 is required for FGF, PDGF and EGF-induced MAPK signaling. Biochem. Pharmacol., 2012, 84(8), 1007-1013.
[http://dx.doi.org/10.1016/j.bcp.2012.07.014] [PMID: 22842628]
[65]
Sivaraja, V.; Kumar, T.K.S.; Rajalingam, D.; Graziani, I.; Prudovsky, I.; Yu, C. Copper binding affinity of S100A13, a key component of the FGF-1 nonclassical copper-dependent release complex. Biophys. J., 2006, 91(5), 1832-1843.
[http://dx.doi.org/10.1529/biophysj.105.079988] [PMID: 16766622]
[66]
Badet, J.; Soncin, F.; Guitton, J.D.; Lamare, O.; Cartwright, T.; Barritault, D. Specific binding of angiogenin to calf pulmonary artery endothelial cells. Proc. Natl. Acad. Sci. USA, 1989, 86(21), 8427-8431.
[http://dx.doi.org/10.1073/pnas.86.21.8427] [PMID: 2813401]
[67]
Soncin, F.; Guitton, J.D.; Cartwright, T.; Badet, J. Interaction of human angiogenin with copper modulates angiogenin binding to endothelial cells. Biochem. Biophys. Res. Commun., 1997, 236(3), 604-610.
[http://dx.doi.org/10.1006/bbrc.1997.7018] [PMID: 9245697]
[68]
Yu, W.; Goncalves, K.A.; Li, S.; Kishikawa, H.; Sun, G.; Yang, H.; Vanli, N.; Wu, Y.; Jiang, Y.; Hu, M.G.; Friedel, R.H.; Hu, G.F. Plexin-b2 mediates physiologic and pathologic functions of angiogenin. Cell, 2017, 171(4), 849-864.e25.
[http://dx.doi.org/10.1016/j.cell.2017.10.005] [PMID: 29100074]
[69]
Lyons, S.M.; Fay, M.M.; Akiyama, Y.; Anderson, P.J.; Ivanov, P. RNA biology of angiogenin: Current state and perspectives. RNA Biol., 2017, 14(2), 171-178.
[http://dx.doi.org/10.1080/15476286.2016.1272746] [PMID: 28010172]
[70]
Sheng, J.; Xu, Z. Three decades of research on angiogenin: a review and perspective. Acta Biochimica et Biophysica Sinica, 2016, 48(5), 399-410.
[71]
La Mendola, D.; Farkas, D.; Bellia, F.; Magrì, A.; Travaglia, A.; Hansson, Ö.; Rizzarelli, E. Probing the copper(II) binding features of angiogenin. Similarities and differences between a N-terminus peptide fragment and the recombinant human protein. Inorg. Chem., 2012, 51(1), 128-141.
[http://dx.doi.org/10.1021/ic201300e] [PMID: 22148849]
[72]
Giacomelli, C.; Trincavelli, M.L.; Satriano, C.; Hansson, Ö.; La Mendola, D.; Rizzarelli, E.; Martini, C. ♦Copper (II) ions modulate Angiogenin activity in human endothelial cells. Int. J. Biochem. Cell Biol., 2015, 60, 185-196.
[http://dx.doi.org/10.1016/j.biocel.2015.01.005] [PMID: 25596488]
[73]
La Mendola, D.; Arnesano, F.; Hansson, Ö.; Giacomelli, C.; Calò, V.; Mangini, V.; Magrì, A.; Bellia, F.; Trincavelli, M.L.; Martini, C.; Natile, G.; Rizzarelli, E. Copper binding to naturally occurring, lactam form of angiogenin differs from that to recombinant protein, affecting their activity. Metallomics, 2016, 8(1), 118-124.
[http://dx.doi.org/10.1039/C5MT00216H] [PMID: 26594037]
[74]
Magrì, A.; Munzone, A.; Peana, M.; Medici, S.; Zoroddu, M.A.; Hansson, O.; Satriano, C.; Rizzarelli, E.; La Mendola, D. Coordination environment of cu(ii) ions bound to n-terminal peptide fragments of angiogenin protein. Int. J. Mol. Sci., 2016, 17(8), 1240.
[http://dx.doi.org/10.3390/ijms17081240] [PMID: 27490533]
[75]
Satriano, C.; Munzone, A.; Cucci, L.M.; Giacomelli, C.; Trincavelli, M.L.; Martini, C.; Rizzarelli, E.; La Mendola, D. Angiogenin-mimetic peptide functionalised gold nanoparticles for cancer therapy applications. Microchem. J., 2018, 136, 157-163.
[http://dx.doi.org/10.1016/j.microc.2016.09.016]
[76]
Amendola, P.G.; Reuten, R.; Erler, J.T. Interplay between lox enzymes and integrins in the tumor microenvironment. Cancers (Basel), 2019, 11(5), 729.
[http://dx.doi.org/10.3390/cancers11050729] [PMID: 31130685]
[77]
Chitty, J.L.; Setargew, Y.F.I.; Cox, T.R. Targeting the lysyl oxidases in tumour desmoplasia. Biochemical Society Transactions,, 2019, 47(6), 1661-1678.
[78]
Vallet, S.D.; Ricard-Blum, S. Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays in Biochemistry,, 2019, 63(3), 349-364.
[79]
Vandekeere, S.; Dewerchin, M.; Carmeliet, P. Angiogenesis revisited: an overlooked role of endothelial cell metabolism in vessel sprouting. Microcirculation, 2015, 22(7), 509-517.
[http://dx.doi.org/10.1111/micc.12229] [PMID: 26250801]
[80]
Caporarello, N.; D’Angeli, F.; Cambria, M.T.; Candido, S.; Giallongo, C.; Salmeri, M.; Lombardo, C.; Longo, A.; Giurdanella, G.; Anfuso, C.D.; Lupo, G. Pericytes in microvessels: from “mural” function to brain and retina regeneration. Int. J. Mol. Sci., 2019, 20(24), 6351.
[http://dx.doi.org/10.3390/ijms20246351] [PMID: 31861092]
[81]
Lupo, G.; Motta, C.; Salmeri, M.; Spina-Purrello, V.; Alberghina, M.; Anfuso, C.D. An in vitro retinoblastoma human triple culture model of angiogenesis: a modulatory effect of TGF-β. Cancer Lett., 2014, 354(1), 181-188.
[http://dx.doi.org/10.1016/j.canlet.2014.08.004] [PMID: 25128651]
[82]
Lupo, G.; Caporarello, N.; Olivieri, M.; Cristaldi, M.; Motta, C.; Bramanti, V.; Avola, R.; Salmeri, M.; Nicoletti, F.; Anfuso, C.D. Anti-Angiogenic Therapy in Cancer: Downsides and New Pivots for Precision Medicine. Frontiers in Pharmacology,, 2017, 519.
[83]
Cui, N.; Hu, M.; Khalil, R.A. Biochemical and biological attributes of matrix metalloproteinases.In :Progress in Molecular Biology and Translational Science; Elsevier B.V.: Amsterdam, 2017, Vol. 147, pp. 1-73.
[84]
Wang, X.; Khalil, R.A. Matrix metalloproteinases, vascular remodeling, and vascular disease.In: Advances in Pharmacology; Academic Press Inc.: London, 2018, Vol. 81, pp. 241-330.
[85]
Do Nascimento Holanda, A.O.; De Oliveira, A.R.S.; Cruz, K.J.C.; Severo, J.S.; Morais, J.B.S.; Da Silva, B.B.; Do Nascimento Marreiro, D. Zinc and metalloproteinases 2 and 9: what is their relation with breast cancer? Revista da Associacao Medica Brasileira, 2017, 63(1), 78-84.
[86]
Ressnerova, A.; Raudenska, M.; Holubova, M.; Svobodova, M.; Polanska, H.; Babula, P.; Masarik, M.; Gumulec, J. Zinc and Copper Homeostasis in Head and Neck Cancer: Review and Meta-Analysis. Curr. Med. Chem., 2016, 23(13), 1304-1330.
[http://dx.doi.org/10.2174/0929867323666160405111543] [PMID: 27048341]
[87]
Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: targeted pt(ii) agents, nanoparticle delivery, and pt(iv) prodrugs. Chemical Reviews, 2016, 116(5), 3436-3486.
[88]
Ghosh, S. Cisplatin: the first metal based anticancer drug. Bioorganic Chemistry,, 2019, 88102925
[89]
Cohen, S.M.; Lippard, S.J. Cisplatin: from DNA damage to cancer chemotherapy. Prog. Nucleic Acid Res. Mol. Biol., 2001, 67, 93-130.
[http://dx.doi.org/10.1016/S0079-6603(01)67026-0] [PMID: 11525387]
[90]
Garbutcheon-Singh, K.B.; Grant, M.P.; Harper, B.W.; Krause-Heuer, A.M.; Manohar, M.; Orkey, N.; Aldrich-Wright, J.R. Transition metal based anticancer drugs. Curr. Top. Med. Chem., 2011, 11(5), 521-542.
[http://dx.doi.org/10.2174/156802611794785226] [PMID: 21189131]
[91]
Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: molecular mechanisms of action. Euro. J. Pharma., 2014, 740, 364-378.
[92]
Bruno, P.M.; Liu, Y.; Park, G.Y.; Murai, J.; Koch, C.E.; Eisen, T.J.; Pritchard, J.R.; Pommier, Y.; Lippard, S.J.; Hemann, M.T. A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nat. Med., 2017, 23(4), 461-471.
[http://dx.doi.org/10.1038/nm.4291] [PMID: 28263311]
[93]
Boros, E.; Dyson, P.J.; Gasser, G. Classification of metal-based drugs according to their mechanisms of action. Chem, 2020, 6(1), 41-60.
[94]
Merlino, A.; Marzo, T.; Messori, L. Protein Metalation by Anticancer Metallodrugs: A Joint ESI MS and XRD Investigative Strategy. Chemistry, 2017, 23(29), 6942-6947.
[http://dx.doi.org/10.1002/chem.201605801] [PMID: 28071831]
[95]
Kong, C.; Zhu, Y.; Sun, C.; Li, Z.; Sun, Z.; Zhang, X.; Takanaka, I. Inhibition of tumor angiogenesis during cisplatin chemotherapy for bladder cancer improves treatment outcome. Urology, 2005, 65(2), 395-399.
[http://dx.doi.org/10.1016/j.urology.2004.09.041] [PMID: 15708074]
[96]
Lennernäs, B.; Albertsson, P.; Lennernäs, H.; Norrby, K. Chemotherapy and antiangiogenesis--drug-specific, dose-related effects. Acta Oncol., 2003, 42(4), 294-303.
[http://dx.doi.org/10.1080/02841860310001835] [PMID: 12899500]
[97]
Michaelis, M.; Hinsch, N.; Michaelis, U.R.; Rothweiler, F.; Simon, T. ilhelm Doerr, H.W.; Cinatl, J.; Cinatl, J., Jr Chemotherapy-associated angiogenesis in neuroblastoma tumors. Am. J. Pathol., 2012, 180(4), 1370-1377.
[http://dx.doi.org/10.1016/j.ajpath.2011.12.011] [PMID: 22285670]
[98]
Shen, F-Z.; Wang, J.; Liang, J.; Mu, K.; Hou, J-Y.; Wang, Y-T. Low-dose metronomic chemotherapy with cisplatin: can it suppress angiogenesis in H22 hepatocarcinoma cells? Int. J. Exp. Pathol., 2010, 91(1), 10-16.
[http://dx.doi.org/10.1111/j.1365-2613.2009.00684.x] [PMID: 20096070]
[99]
Wild, R.; Dings, R.P.M.; Subramanian, I.; Ramakrishnan, S. Carboplatin selectively induces the VEGF stress response in endothelial cells: Potentiation of antitumor activity by combination treatment with antibody to VEGF. Int. J. Cancer, 2004, 110(3), 343-351.
[http://dx.doi.org/10.1002/ijc.20100] [PMID: 15095298]
[100]
Michaelis, M.; Klassert, D.; Barth, S.; Suhan, T.; Breitling, R.; Mayer, B.; Hinsch, N.; Doerr, H.W.; Cinatl, J.; Cinatl, J., Jr Chemoresistance acquisition induces a global shift of expression of aniogenesis-associated genes and increased pro-angogenic activity in neuroblastoma cells. Mol. Cancer, 2009, 8, 80.
[http://dx.doi.org/10.1186/1476-4598-8-80] [PMID: 19788758]
[101]
Teicher, B.A.; Sotomayor, E.A.; Huang, Z.D. Antiangiogenic agents potentiate cytotoxic cancer therapies against primary and metastatic disease. Cancer Res., 1992, 52(23), 6702-6704.
[PMID: 1384969]
[102]
Teicher, B.A.; Emi, Y.; Kakeji, Y.; Northey, D. TNP-470/minocycline/cytotoxic therapy: a systems approach to cancer therapy. Eur. J. Cancer, 1996, 32A(14), 2461-2466.
[http://dx.doi.org/10.1016/S0959-8049(96)00380-2] [PMID: 9059334]
[103]
Investigational Agent; AG-013736 in combinations with standard of care treatments for patient’s with advanced solid tumor; , 2012. Available from. https://clinicaltrials.gov/ct2/show/NCT00454649
[104]
Bollati, V.; Fabris, S.; Pegoraro, V.; Ronchetti, D.; Mosca, L.; Deliliers, G.L.; Motta, V.; Bertazzi, P.A.; Baccarelli, A.; Neri, A. Carcinogenesis; Oxford Academic: Oxford , 2017; 30, pp. (8)1330-1335.
[105]
Raja, F.A.; Counsell, N.; Colombo, N.; Pfisterer, J.; du Bois, A.; Parmar, M.K.; Vergote, I.B.; Gonzalez-Martin, A.; Alberts, D.S.; Plante, M.; Torri, V.; Ledermann, J.A. Platinum versus platinum-combination chemotherapy in platinum-sensitive recurrent ovarian cancer: a meta-analysis using individual patient data. Ann. Oncol., 2013, 24(12), 3028-3034.
[http://dx.doi.org/10.1093/annonc/mdt406] [PMID: 24190964]
[106]
Zhang, X.; Chang, A. Molecular predictors of egfr-tki sensitivity in advanced non-small cell lung cancer. Int. J. Med. Sci., 2008, 5(4), 209-217.
[107]
Lee, J.G.; Wu, R. Erlotinib-cisplatin combination inhibits growth and angiogenesis through c-MYC and HIF-1α in EGFR-mutated lung cancer in vitro and in vivo. Neoplasia, 2015, 17(2), 190-200.
[http://dx.doi.org/10.1016/j.neo.2014.12.008] [PMID: 25748238]
[108]
Ramer, R.; Schmied, T.; Wagner, C.; Haustein, M.; Hinz, B. The antiangiogenic action of cisplatin on endothelial cells is mediated through the release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells. Oncotarget, 2018, 9(75), 34038-34055.
[http://dx.doi.org/10.18632/oncotarget.25954] [PMID: 30344920]
[109]
Ramer, R.; Fischer, S.; Haustein, M.; Manda, K.; Hinz, B. Cannabinoids inhibit angiogenic capacities of endothelial cells via release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells. Biochem. Pharmacol., 2014, 91(2), 202-216.
[http://dx.doi.org/10.1016/j.bcp.2014.06.017] [PMID: 24976505]
[110]
Holzer, A.K.; Manorek, G.H.; Howell, S.B. Contribution of the major copper influx transporter CTR1 to the cellular accumulation of cisplatin, carboplatin, and oxaliplatin. Mol. Pharmacol., 2006, 70(4), 1390-1394.
[http://dx.doi.org/10.1124/mol.106.022624] [PMID: 16847145]
[111]
Li, Y-Q.; Yin, J-Y.; Liu, Z-Q.; Li, X-P. Copper efflux transporters ATP7A and ATP7B: Novel biomarkers for platinum drug resistance and targets for therapy. IUBMB Life, 2018, 70(3), 183-191.
[http://dx.doi.org/10.1002/iub.1722] [PMID: 29394468]
[112]
Curnock, R.; Cullen, P.J. Mammalian copper homeostasis requires retromer-dependent recycling of the high-affinity copper transporter 1. J. Cell Sci., 2020, 133(16)
[http://dx.doi.org/10.1242/jcs.249201] [PMID: 32843536]
[113]
Öhrvik, H.; Thiele, D.J. The role of Ctr1 and Ctr2 in mammalian copper homeostasis and platinum-based chemotherapy. J. Trace Elem. Med. Biol., 2015, 31, 178-182.
[http://dx.doi.org/10.1016/j.jtemb.2014.03.006] [PMID: 24703712]
[114]
Howell, S.B.; Safaei, R.; Larson, C.A.; Sailor, M.J. Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs. Molecular Pharmacology,, 2010, 77(6), 887-894.
[115]
Akerfeldt, M.C.; Tran, C.M.N.; Shen, C.; Hambley, T.W.; New, E.J. Interactions of cisplatin and the copper transporter CTR1 in human colon cancer cells. J. Biol. Inorg. Chem., 2017, 22(5), 765-774.
[http://dx.doi.org/10.1007/s00775-017-1467-y] [PMID: 28516214]
[116]
Kim, E.S.; Tang, X.; Peterson, D.R.; Kilari, D.; Chow, C.W.; Fujimoto, J.; Kalhor, N.; Swisher, S.G.; Stewart, D.J.; Wistuba, I.I.; Siddik, Z.H. Copper transporter CTR1 expression and tissue platinum concentration in non-small cell lung cancer. Lung Cancer, 2014, 85(1), 88-93.
[http://dx.doi.org/10.1016/j.lungcan.2014.04.005] [PMID: 24792335]
[117]
Lasorsa, A.; Nardella, M.I.; Rosato, A.; Mirabelli, V.; Caliandro, R.; Caliandro, R.; Natile, G.; Arnesano, F. Mechanistic and structural basis for inhibition of copper trafficking by platinum anticancer drugs. J. Am. Chem. Soc., 2019, 141(30), 12109-12120.
[http://dx.doi.org/10.1021/jacs.9b05550] [PMID: 31283225]
[118]
Lukanović, D.; Herzog, M.; Kobal, B.; Černe, K. The contribution of copper efflux transporters atp7a and atp7b to chemoresistance and personalized medicine in ovarian cancer.In: Biomedicine and Pharmacotherapy; Elsevier: Amsterdam, 2020.
[119]
Safaei, R.; Howell, S.B. Copper transporters regulate the cellular pharmacology and sensitivity to pt drugs. Crit. Rev. Oncol. Hematol., 2005, 53(1), 13-23.
[120]
Ishida, S.; McCormick, F.; Smith-McCune, K.; Hanahan, D. Enhancing tumor-specific uptake of the anticancer drug cisplatin with a copper chelator. Cancer Cell, 2010, 17(6), 574-583.
[http://dx.doi.org/10.1016/j.ccr.2010.04.011] [PMID: 20541702]
[121]
Lai, Y-H.; Kuo, C.; Kuo, M.T.; Chen, H.H.W. Modulating chemosensitivity of tumors to platinum-based antitumor drugs by transcriptional regulation of copper homeostasis. Int. J. Mol. Sci., 2018, 19(5), 1486.
[http://dx.doi.org/10.3390/ijms19051486] [PMID: 29772714]
[122]
Bian, Z.; Chen, S.; Cheng, C.; Wang, J.; Xiao, H.; Qin, H. Developing new drugs from annals of chinese medicine. Acta Pharm. Sin. B, 2012, 2(1), 1-7.
[http://dx.doi.org/10.1016/j.apsb.2011.12.007]
[123]
Leu, L.; Mohassel, L. Arsenic trioxide as first-line treatment for acute promyelocytic leukemia. Am. J. Health Syst. Pharm., 2009, 66(21), 1913-1918.
[http://dx.doi.org/10.2146/ajhp080342] [PMID: 19850784]
[124]
Miodragović, Đ.; Merlino, A.; Swindell, E.P.; Bogachkov, A.; Ahn, R.W.; Abuhadba, S.; Ferraro, G.; Marzo, T.; Mazar, A.P.; Messori, L.; O’Halloran, T.V. Arsenoplatin-1 is a dual pharmacophore anticancer agent. J. Am. Chem. Soc., 2019, 141(16), 6453-6457.
[http://dx.doi.org/10.1021/jacs.8b13681] [PMID: 30943017]
[125]
Subbarayan, P.R.; Ardalan, B. In the war against solid tumors arsenic trioxide needs partners. J. Gastrointest. Cancer, 2014, 45(3), 363-371.
[126]
Zhang, J.; Zhang, Y.; Wang, W.; Zhang, Z. Potential Molecular Mechanisms Underlying the Effect of Arsenic on Angiogenesis. Archives of Pharmacal Research, 2019, 962-976.
[127]
Duyndam, M.C.A.; Hulscher, S.T.M.; van der Wall, E.; Pinedo, H.M.; Boven, E. Evidence for a role of p38 kinase in hypoxia-inducible factor 1-independent induction of vascular endothelial growth factor expression by sodium arsenite. J. Biol. Chem., 2003, 278(9), 6885-6895.
[http://dx.doi.org/10.1074/jbc.M206320200] [PMID: 12482858]
[128]
Roboz, G.J.; Dias, S.; Lam, G.; Lane, W.J.; Soignet, S.L.; Warrell, R.P., Jr; Rafii, S. Arsenic trioxide induces dose- and time-dependent apoptosis of endothelium and may exert an antileukemic effect via inhibition of angiogenesis. Blood, 2000, 96(4), 1525-1530.
[http://dx.doi.org/10.1182/blood.V96.4.1525] [PMID: 10942401]
[129]
Liu, Y.; Ao, X.; Ding, W.; Ponnusamy, M.; Wu, W.; Hao, X.; Yu, W.; Wang, Y.; Li, P.; Wang, J. Critical Role of FOXO3a in Carcinogenesis. Molecular Cancer, 2018.
[130]
Sun, Z.; Li, M.; Bai, L.; Fu, J.; Lu, J.; Wu, M.; Zhou, C.; Zhang, Y.; Wu, Y. Arsenic trioxide inhibits angiogenesis in vitro and in vivo by upregulating FoxO3a. Toxicol. Lett., 2019, 315, 1-8.
[http://dx.doi.org/10.1016/j.toxlet.2019.08.009] [PMID: 31421153]
[131]
Potente, M.; Gerhardt, H.; Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell, 2011, 146(6), 873-887.
[http://dx.doi.org/10.1016/j.cell.2011.08.039] [PMID: 21925313]
[132]
Bellamy, W.T. Expression of vascular endothelial growth factor and its receptors in multiple myeloma and other hematopoietic malignancies. Semin. Oncol., 2001, 28(6), 551-559.
[http://dx.doi.org/10.1016/S0093-7754(01)90023-5] [PMID: 11740808]
[133]
Kao, Y.H.; Yu, C.L.; Chang, L.W.; Yu, H.S. Low concentrations of arsenic induce vascular endothelial growth factor and nitric oxide release and stimulate angiogenesis in vitro. Chem. Res. Toxicol., 2003, 16(4), 460-468.
[http://dx.doi.org/10.1021/tx025652a] [PMID: 12703962]
[134]
Covello, K.L.; Simon, M.C. HIFs, hypoxia, and vascular development. Curr. Top. Dev. Biol., 2004, 62, 37-54.
[http://dx.doi.org/10.1016/S0070-2153(04)62002-3] [PMID: 15522738]
[135]
Marzo, T.; Cirri, D.; Pollini, S.; Prato, M.; Fallani, S.; Cassetta, M.I.; Novelli, A.; Rossolini, G.M.; Messori, L. Auranofin and its analogues show potent antimicrobial activity against multidrug-resistant pathogens: structure-activity relationships. ChemMedChem, 2018, 13(22), 2448-2454.
[http://dx.doi.org/10.1002/cmdc.201800498] [PMID: 30252208]
[136]
Magherini, F.; Fiaschi, T.; Valocchia, E.; Becatti, M.; Pratesi, A.; Marzo, T.; Massai, L.; Gabbiani, C.; Landini, I.; Nobili, S.; Mini, E.; Messori, L.; Modesti, A.; Gamberi, T. Antiproliferative effects of two gold(I)-N-heterocyclic carbene complexes in A2780 human ovarian cancer cells: a comparative proteomic study. Oncotarget, 2018, 9(46), 28042-28068.
[http://dx.doi.org/10.18632/oncotarget.25556] [PMID: 29963261]
[137]
Marzo, T.; Massai, L.; Pratesi, A.; Stefanini, M.; Cirri, D.; Magherini, F.; Becatti, M.; Landini, I.; Nobili, S.; Mini, E.; Crociani, O.; Arcangeli, A.; Pillozzi, S.; Gamberi, T.; Messori, L. Replacement of the thiosugar of auranofin with iodide enhances the anticancer potency in a mouse model of ovarian cancer. ACS Med. Chem. Lett., 2019, 10(4), 656-660.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00007] [PMID: 30996813]
[138]
Fricker, S.P. Medical uses of gold compounds: past, present and future. Gold Bull., 1996, 29(2), 53-60.
[http://dx.doi.org/10.1007/BF03215464]
[139]
Marzo, T.; Cirri, D.; Gabbiani, C.; Gamberi, T.; Magherini, F.; Pratesi, A.; Guerri, A.; Biver, T.; Binacchi, F.; Stefanini, M.; Arcangeli, A.; Messori, L. Auranofin, et3paucl, and et3paui are highly cytotoxic on colorectal cancer cells: a chemical and biological study. ACS Med. Chem. Lett., 2017, 8(10), 997-1001.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00162] [PMID: 29057040]
[140]
Roder, C.; Thomson, M.J. Auranofin: repurposing an old drug for a golden new age. Drugs R D., 2015, 15(1), 13-20.
[http://dx.doi.org/10.1007/s40268-015-0083-y] [PMID: 25698589]
[141]
Zhang, X.; Selvaraju, K.; Saei, A.A.; D’Arcy, P.; Zubarev, R.A.; Arnér, E.S.; Linder, S. Repurposing of auranofin: Thioredoxin reductase remains a primary target of the drug. Biochimie, 2019, 162, 46-54.
[http://dx.doi.org/10.1016/j.biochi.2019.03.015] [PMID: 30946948]
[142]
Clinicaltrials.gov. Available at:. https://clinicaltrials.gov/
[143]
Koch, A.E.; Cho, M.; Burrows, J.; Leibovich, S.J.; Polverini, P.J. Inhibition of production of macrophage-derived angiogenic activity by the anti-rheumatic agents gold sodium thiomalate and auranofin. Biochem. Biophys. Res. Commun., 1988, 154(1), 205-212.
[http://dx.doi.org/10.1016/0006-291X(88)90671-7] [PMID: 2456062]
[144]
Mantovani, A. Molecular pathways linking inflammation and cancer. Curr. Mol. Med., 2010, 10(4), 369-373.
[http://dx.doi.org/10.2174/156652410791316968] [PMID: 20455855]
[145]
He, M.F.; Gao, X.P.; Li, S.C.; He, Z.H.; Chen, N.; Wang, Y.B.; She, J.X. Anti-angiogenic effect of auranofin on HUVECs in vitro and zebrafish in vivo. Eur. J. Pharmacol., 2014, 740, 240-247.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.034] [PMID: 25064343]
[146]
Marzo, T.; Messori, L. Role for metal-based drugs in fighting covid-19 infection? the case of auranofin. ACS Medicinal Chemistry Letters, 2020, 11(6), 1067-1068.
[147]
Ott, I.; Qian, X.; Xu, Y.; Vlecken, D.H.W.; Marques, I.J.; Kubutat, D.; Will, J.; Sheldrick, W.S.; Jesse, P.; Prokop, A.; Bagowski, C.P.A. A gold(I) phosphine complex containing a naphthalimide ligand functions as a TrxR inhibiting antiproliferative agent and angiogenesis inhibitor. J. Med. Chem., 2009, 52(3), 763-770.
[http://dx.doi.org/10.1021/jm8012135] [PMID: 19123857]
[148]
Alessio, E. Thirty years of the drug candidate nami-a and the myths in the field of ruthenium anticancer compounds: a personal perspective. Euro. J. Inorgan Chem., 2017, 2017(2), 1549-1560.
[149]
Leijen, S.; Burgers, S.A.; Baas, P.; Pluim, D.; Tibben, M.; van Werkhoven, E.; Alessio, E.; Sava, G.; Beijnen, J.H.; Schellens, J.H.M. Phase I/II study with ruthenium compound NAMI-A and gemcitabine in patients with non-small cell lung cancer after first line therapy. Invest. New Drugs, 2015, 33(1), 201-214.
[http://dx.doi.org/10.1007/s10637-014-0179-1] [PMID: 25344453]
[150]
Yuan, S.; Chen, S.; Wu, H.; Jiang, H.; Zheng, S.; Zhang, Q.; Liu, Y. NAMI-A preferentially reacts with the Sp1 protein: understanding the anti-metastasis effect of the drug. Chem. Commun. (Camb.), 2020, 56(9), 1397-1400.
[http://dx.doi.org/10.1039/C9CC08775C] [PMID: 31912815]
[151]
Cocchietto, M.; Sava, G. Blood concentration and toxicity of the antimetastasis agent NAMI-A following repeated intravenous treatment in mice. Pharmacol. Toxicol., 2000, 87(5), 193-197.
[http://dx.doi.org/10.1034/j.1600-0773.2000.d01-73.x] [PMID: 11129497]
[152]
Morbidelli, L.; Donnini, S.; Filippi, S.; Messori, L.; Piccioli, F.; Orioli, P.; Sava, G.; Ziche, M. Antiangiogenic properties of selected ruthenium(III) complexes that are nitric oxide scavengers. Br. J. Cancer, 2003, 88(9), 1484-1491.
[http://dx.doi.org/10.1038/sj.bjc.6600906] [PMID: 12778081]
[153]
LC. J.; KO, H.; C, C.; PK, L. Nitric oxide promotes murine mammary tumour growth and metastasis by stimulating tumour cell migration, invasiveness and angiogenesis. Int. J. Cancer, 2000, 86(1)
[http://dx.doi.org/10.1002/(SICI)1097-0215(20000401)86:1<30:AID-IJC5>3.0.CO;2-I]
[154]
Castellarin, A.; Zorzet, S.; Bergamo, A.; Sava, G. Pharmacological activities of ruthenium complexes related to their no scavenging properties. Int. J. Mol. Sci., 2016, 17(8)
[http://dx.doi.org/10.3390/ijms17081254] [PMID: 27490542]
[155]
Barresi, E.; Tolbatov, I.; Pratesi, A.; Notarstefano, V.; Baglini, E.; Daniele, S.; Taliani, S.; Re, N.; Giorgini, E.; Martini, C.; Da Settimo, F.; Marzo, T.; La Mendola, D. A mixed-valence diruthenium(II,III) complex endowed with high stability: from experimental evidence to theoretical interpretation. Dalton Trans., 2020, 49(41), 14520-14527.
[http://dx.doi.org/10.1039/D0DT02527E] [PMID: 33048079]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy