Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Applications of Umbilical Cord Derived Mesenchymal Stem Cells in Autoimmune and Immunological Disorders: From Literature to Clinical Practice

Author(s): Bahareh Abbaspanah, Samira Reyhani and Seyed H. Mousavi*

Volume 16, Issue 4, 2021

Published on: 24 November, 2020

Page: [454 - 464] Pages: 11

DOI: 10.2174/1574888X16999201124153000

Price: $65

Abstract

Mesenchymal Stem Cells (MSCs) enable a novel approach to stem cell therapy. Bone Marrow (BM) was the first source used in MSCs therapy. However, BM has a number of key limitations as a source of MSCs, such as the existence of only a small number of MSCs in the tissue; the painful, ethically problematic, and invasive nature of the associated collection process; and a decrease in MSC specifications as the age of donors increases. As a result, there has been increasing scholarly attention towards identifying alternative sources for MSCs. In specific, Umbilical Cord Mesenchymal Stem Cells (UC-MSCs) have been identified as a valuable source from which MSC may be obtained with potentially fewer ethical issues. MSCs can regulate the immune response, promote tissue repair, increase regeneration, and improve anticancer effects. Thus, they are significant allogenic and autologous representatives for curing malignant and non-malignant disorders. In this review, therefore, the prospective applications for curing autoimmune disorders will be considered.

Keywords: Umbilical cord, mesenchymal stem cells, autoimmune disease, stem cell therapies, bone marrow, non-malignant disorders.

[1]
Sensken S, Waclawczyk S, Knaupp AS, et al. In vitro differentiation of human cord blood-derived unrestricted somatic stem cells towards an endodermal pathway. Cytotherapy 2007; 9(4): 362-78.
[http://dx.doi.org/10.1080/14653240701320254] [PMID: 17573612]
[2]
Greschat S, Schira J, Küry P, et al. Unrestricted somatic stem cells from human umbilical cord blood can be differentiated into neurons with a dopaminergic phenotype. Stem Cells Dev 2008; 17(2): 221-32.
[http://dx.doi.org/10.1089/scd.2007.0118] [PMID: 18447638]
[3]
Wu L-F, Wang N-N, Liu Y-S, Wei X. Differentiation of Wharton’s jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells. Tissue Eng Part A 2009; 15(10): 2865-73.
[http://dx.doi.org/10.1089/ten.tea.2008.0579] [PMID: 19257811]
[4]
Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 2007; 25(6): 1384-92.
[http://dx.doi.org/10.1634/stemcells.2006-0709] [PMID: 17332507]
[5]
Kögler G, Sensken S, Airey JA, et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004; 200(2): 123-35.
[http://dx.doi.org/10.1084/jem.20040440] [PMID: 15263023]
[6]
Gonzalez-Rey E, Chorny A, Varela N, O’Valle F, Delgado M. Therapeutic effect of urocortin on collagen-induced arthritis by down-regulation of inflammatory and Th1 responses and induction of regulatory T cells. Arthritis Rheum 2007; 56(2): 531-43.
[http://dx.doi.org/10.1002/art.22394] [PMID: 17265488]
[7]
Kouroupis D, Sanjurjo-Rodriguez C, Jones E, Correa DJTEPBR. Mesenchymal stem cell functionalization for enhanced therapeutic applications. 2019; 25(1): 55-77.
[http://dx.doi.org/10.1089/ten.teb.2018.0118]
[8]
Kögler G, Sensken S, Wernet P. Comparative generation and characterization of pluripotent unrestricted somatic stem cells with mesenchymal stem cells from human cord blood. Exp Hematol 2006; 34(11): 1589-95.
[http://dx.doi.org/10.1016/j.exphem.2006.07.011] [PMID: 17046580]
[9]
Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8(9): 726-36.
[http://dx.doi.org/10.1038/nri2395] [PMID: 19172693]
[10]
Lee OK, Kuo TK, Chen W-M, Lee K-D, Hsieh S-L, Chen T-HJB. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. 2004; 103(5): 1669-75.
[http://dx.doi.org/10.1182/blood-2003-05-1670]
[11]
Barry FP. Murphy JMJTijob, biology c. Mesenchymal stem cells: clinical applications and biological characterization. 2004; 36(4): 568-84.
[12]
Nagamura-Inoue T. He HJWjosc. Umbilical cord-derived mesenchymal stem cells: their advantages and potential clinical utility. 2014; 6(2): 195.
[13]
Wang S, Qu X. Zhao RCJJoh, oncology. Clinical applications of mesenchymal stem cells. 2012; 5(1): 19.
[14]
Kim N. Cho S-GJTKjoim. Clinical applications of mesenchymal stem cells. 2013; 28(4): 387.
[15]
Farini A, Sitzia C, Erratico S, Meregalli M. Torrente YJSci. Clinical applications of mesenchymal stem cells in chronic diseases. 2014.
[16]
Antoniou KM, Karagiannis K, Tsitoura E, Bibaki E, Lasithiotaki I, Proklou A, et al. Clinical applications of mesenchymal stem cells in chronic lung diseases. 2018; 8(4): 314-8.
[http://dx.doi.org/10.3892/br.2018.1067]
[17]
Reyhani S, Abbaspanah B, Mousavi SH. Umbilical cord-derived mesenchymal stem cells in neurodegenerative disorders: From literature to clinical practice. Regen Med 2020.
[http://dx.doi.org/10.2217/rme-2019-0119]
[18]
Abbaspanah B, Momeni M, Ebrahimi M. Mousavi SH. Advances in perinatal stem cells research: A precious cell source for clinical applications. Regen Med 2018; 13(05): 595-610.
[19]
Lawrence RC, Felson DT, Helmick CG, et al. National Arthritis Data Workgroup. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum 2008; 58(1): 26-35.
[http://dx.doi.org/10.1002/art.23176] [PMID: 18163497]
[20]
Nakae S, Nambu A, Sudo K, Iwakura Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 2003; 171(11): 6173-7.
[http://dx.doi.org/10.4049/jimmunol.171.11.6173] [PMID: 14634133]
[21]
Grogan JL, Chiang E, Yu X, Kolumam G. Targeted depletion of lymphotoxin-alpha-expressing Th1 and Th17 cells inhibits autoimmune disease (4822). Am Assoc Immnol 2009; 15: pp. (7)766-3.
[22]
Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng 2001; 7(2): 211-28.
[http://dx.doi.org/10.1089/107632701300062859] [PMID: 11304456]
[23]
Greish S, Abogresha N, Abdel-Hady Z, Zakaria E, Ghaly M, Hefny M. Human umbilical cord mesenchymal stem cells as treatment of adjuvant rheumatoid arthritis in a rat model. World J Stem Cells 2012; 4(10): 101-9.
[http://dx.doi.org/10.4252/wjsc.v4.i10.101] [PMID: 23189211]
[24]
Introna M, Rambaldi A. Mesenchymal stromal cells for prevention and treatment of graft-versus-host disease: Successes and hurdles. Curr Opin Organ Transplant 2015; 20(1): 72-8.
[http://dx.doi.org/10.1097/MOT.0000000000000158] [PMID: 25563994]
[25]
Liu Y, Mu R, Wang S, et al. Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis Res Ther 2010; 12(6): R210.
[http://dx.doi.org/10.1186/ar3187] [PMID: 21080925]
[26]
Liu R, Li X, Zhang Z, Zhou M, Sun Y, Su D, et al. Allogeneic mesenchymal stem cells inhibited T follicular helper cell generation in rheumatoid arthritis. 2015; 5: 12777.
[http://dx.doi.org/10.1038/srep12777]
[27]
Sun Y, Kong W, Huang S, et al. Comparable therapeutic potential of umbilical cord mesenchymal stem cells in collagen-induced arthritis to TNF inhibitor or anti-CD20 treatment. Clin Exp Rheumatol 2017; 35(2): 288-95.
[PMID: 28094754]
[28]
Wang L, Wang L, Cong X, et al. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: Safety and efficacy. Stem Cells Dev 2013; 22(24): 3192-202.
[http://dx.doi.org/10.1089/scd.2013.0023] [PMID: 23941289]
[29]
Park EH, Lim Hs, Lee S, Roh K, Seo KW, Kang KS, et al. Human umbilical cord mesenchymal stem cell therapy for patients with active rheumatoid arthritis: safety and efficacy. Stem cells and development 2018; 22(24): 3192-202.
[http://dx.doi.org/10.1002/sctm.18-0031]
[30]
CuNhA JS. GiLEK-SEibErt K. Systemic lupus erythematosus: A review of the clinical approach to diagnosis and update on current targeted therapies. R I Med J 2016; 99(12): 23.
[31]
Pons-Estel GJ, Alarcón GS, Scofield L, Reinlib L, Cooper GS, Eds. Understanding the epidemiology and progression of systemic lupus erythematosus Seminars in arthritis and rheumatism. Elsevier 2010.
[32]
Sun L, Wang D, Liang J, et al. Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum 2010; 62(8): 2467-75.
[http://dx.doi.org/10.1002/art.27548] [PMID: 20506343]
[33]
Liang J, Zhang H, Hua B, et al. Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: A pilot clinical study. Ann Rheum Dis 2010; 69(8): 1423-9.
[http://dx.doi.org/10.1136/ard.2009.123463] [PMID: 20650877]
[34]
Shi D, Wang D, Li X, et al. Allogeneic transplantation of umbilical cord-derived mesenchymal stem cells for diffuse alveolar hemorrhage in systemic lupus erythematosus. Clin Rheumatol 2012; 31(5): 841-6.
[http://dx.doi.org/10.1007/s10067-012-1943-2] [PMID: 22302582]
[35]
Wang D, Li J, Zhang Y, Zhang M, Chen J, Li X, et al. Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: A multicenter clinical study. 2014; 16(2): 79.
[http://dx.doi.org/10.1186/ar4520]
[36]
Deng D, Zhang P, Guo Y. Lim TOJAotRD. A randomised double-blind, placebo-controlled trial of allogeneic umbilical cord-derived mesenchymal stem cell for lupus nephritis. 2017; 76(8): 1436-9.
[37]
Vija L, Farge D, Gautier J-F, et al. Mesenchymal stem cells: Stem cell therapy perspectives for type 1 diabetes. Diabetes Metab 2009; 35(2): 85-93.
[http://dx.doi.org/10.1016/j.diabet.2008.10.003] [PMID: 19230736]
[38]
Wang HS, Shyu JF, Shen WS, et al. Transplantation of insulin-producing cells derived from umbilical cord stromal mesenchymal stem cells to treat NOD mice. Cell Transplant 2011; 20(3): 455-66.
[http://dx.doi.org/10.3727/096368910X522270] [PMID: 20719086]
[39]
Mensah-Brown EP, Shahin A, Al-Shamisi M, Wei X, Lukic ML. IL-23 leads to diabetes induction after subdiabetogenic treatment with multiple low doses of streptozotocin. Eur J Immunol 2006; 36(1): 216-23.
[http://dx.doi.org/10.1002/eji.200535325] [PMID: 16358360]
[40]
Zarrabi M, Mousavi SH, Abroun S, Sadeghi B. Potential uses for cord blood mesenchymal stem cells. Cell J 2014; 15(4): 274.
[41]
Group UPDS. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352(9131): 837-53.
[http://dx.doi.org/10.1016/S0140-6736(98)07019-6] [PMID: 9742976]
[42]
Group UPDS. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352(9131): 854-65.
[http://dx.doi.org/10.1016/S0140-6736(98)07037-8] [PMID: 9742977]
[43]
Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH. Immunomodulation by mesenchymal stem cells: A potential therapeutic strategy for type 1 diabetes. Diabetes 2008; 57(7): 1759-67.
[http://dx.doi.org/10.2337/db08-0180] [PMID: 18586907]
[44]
Chao KC, Chao KF, Fu YS, Liu SH. Islet-like clusters derived from mesenchymal stem cells in Wharton’s Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS One 2008; 3(1): e1451.
[http://dx.doi.org/10.1371/journal.pone.0001451] [PMID: 18197261]
[45]
Pessina A, Eletti B, Croera C, Savalli N, Diodovich C, Gribaldo L. Pancreas developing markers expressed on human mononucleated umbilical cord blood cells. Biochem Biophys Res Commun 2004; 323(1): 315-22.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.088] [PMID: 15351739]
[46]
Tsai P-J, Wang H-S, Shyr Y-M, et al. Transplantation of insulin-producing cells from umbilical cord mesenchymal stem cells for the treatment of streptozotocin-induced diabetic rats. J Biomed Sci 2012; 19(1): 47.
[http://dx.doi.org/10.1186/1423-0127-19-47] [PMID: 22545626]
[47]
Hu J, Yu X, Wang Z, Wang F, Wang L, Gao H, et al. Long term effects of the implantation of Wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocr J 2012; EJ12-EJ0343.
[PMID: 23154532]
[48]
Prabakar KR, Domínguez-Bendala J, Molano RD, et al. Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells. Cell Transplant 2012; 21(6): 1321-39.
[http://dx.doi.org/10.3727/096368911X612530] [PMID: 22195604]
[49]
Kong D, Zhuang X, Wang D, et al. Umbilical cord mesenchymal stem cell transfusion ameliorated hyperglycemia in patients with type 2 diabetes mellitus. Clin Lab 2014; 60(12): 1969-76.
[http://dx.doi.org/10.7754/Clin.Lab.2014.140305] [PMID: 25651730]
[50]
Liu X, Zheng P, Wang X, et al. A preliminary evaluation of efficacy and safety of Wharton’s jelly mesenchymal stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cell Res Ther 2014; 5(2): 57.
[http://dx.doi.org/10.1186/scrt446] [PMID: 24759263]
[51]
Hu J, Wang Y, Gong H, Yu C, Guo C, Wang F, et al. Long term effect and safety of Wharton's jelly-derived mesenchymal stem cells on type 2 diabetes. 2016; 12(3): 1857-66.
[http://dx.doi.org/10.3892/etm.2016.3544]
[52]
Chen P, Huang Q, Xu XJ, et al. The effect of liraglutide in combination with human umbilical cord mesenchymal stem cells treatment on glucose metabolism and β cell function in type 2 diabetes mellitus. Zhonghua Nei Ke Za Zhi 2016; 55(5): 349-54.
[PMID: 27143183]
[53]
Chassaing B, Darfeuille–Michaud A. The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterology 2011; 140(6): 1720-8.
[http://dx.doi.org/10.1053/j.gastro.2011.01.054]
[54]
MacDonald TT, Monteleone I, Fantini MC, Monteleone G. Regulation of homeostasis and inflammation in the intestine. Gastroenterology 2011; 140(6): 1768-75.
[http://dx.doi.org/10.1053/j.gastro.2011.02.047] [PMID: 21530743]
[55]
Li L, Liu S, Xu Y, et al. Human umbilical cord-derived mesenchymal stem cells downregulate inflammatory responses by shifting the Treg/Th17 profile in experimental colitis. Pharmacology 2013; 92(5-6): 257-64.
[http://dx.doi.org/10.1159/000354883] [PMID: 24280970]
[56]
Markovic BS, Kanjevac T, Harrell CR, et al. Molecular and cellular mechanisms involved in mesenchymal stem cell-based therapy of inflammatory bowel diseases. Stem Cell Rev Rep 2018; 14(2): 153-65.
[http://dx.doi.org/10.1007/s12015-017-9789-2] [PMID: 29177796]
[57]
Chen D, Ma F, Xu S, et al. Expression and role of Toll-like receptors on human umbilical cord mesenchymal stromal cells. Cytotherapy 2013; 15(4): 423-33.
[http://dx.doi.org/10.1016/j.jcyt.2012.12.001] [PMID: 23352460]
[58]
Chao K, Zhang S, Qiu Y, et al. Human umbilical cord-derived mesenchymal stem cells protect against experimental colitis via CD5(+) B regulatory cells. Stem Cell Res Ther 2016; 7(1): 109.
[http://dx.doi.org/10.1186/s13287-016-0376-2] [PMID: 27515534]
[59]
Mao F, Wu Y, Tang X, Kang J, Zhang B, Yan Y, et al. Exosomes derived from human umbilical cord mesenchymal stem cells relieve inflammatory bowel disease in mice. BioMed research international 2017; 2017: 5356760.
[http://dx.doi.org/10.1155/2017/5356760]
[60]
Hu J, Zhao G, Zhang L, et al. Safety and therapeutic effect of mesenchymal stem cell infusion on moderate to severe ulcerative colitis. Exp Ther Med 2016; 12(5): 2983-9.
[http://dx.doi.org/10.3892/etm.2016.3724] [PMID: 27882104]
[61]
Zhang J, Lv S, Liu X, Song B, Shi L. Umbilical cord mesenchymal stem cell treatment for Crohn’s disease: A randomized controlled clinical trial. Gut Liver 2018; 12(1): 73-8.
[http://dx.doi.org/10.5009/gnl17035] [PMID: 28873511]
[62]
Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363(9419): 1439-41.
[http://dx.doi.org/10.1016/S0140-6736(04)16104-7] [PMID: 15121408]
[63]
Rahim F, Saki N, Mousavi SH, Soleimani M. Khamisipour G. A review of biology and clinical use of mesenchymal stem cell: An immune-modulator progenitor cell. Apadana J Clin Res 2012; 1(1): 3-16.
[64]
Messina C, Faraci M, De Fazio V, Dini G, Calo M. Calore EJBmt. Prevention and treatment of acute GvHD. 2008; 41(2): 65-70.
[65]
Lindemans CA, Hanash AM. The importance of bone marrow involvement in GVHD. Blood 2014; 124(6): 837-8.
[http://dx.doi.org/10.1182/blood-2014-06-576991] [PMID: 25104865]
[66]
Saad AG, Alyea EP III, Wen PY, Degirolami U, Kesari S. Graft-versus-host disease of the CNS after allogeneic bone marrow transplantation. J Clin Oncol 2009; 27(30): e147-9.
[http://dx.doi.org/10.1200/JCO.2009.21.7919] [PMID: 19667266]
[67]
Lee ST, Jang JH, Cheong JW, et al. Treatment of high-risk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by co-infusion of T cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype. Br J Haematol 2002; 118(4): 1128-31.
[http://dx.doi.org/10.1046/j.1365-2141.2002.03767.x] [PMID: 12199796]
[68]
Yoo KH, Jang IK, Lee MW, et al. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol 2009; 259(2): 150-6.
[http://dx.doi.org/10.1016/j.cellimm.2009.06.010] [PMID: 19608159]
[69]
Lazarus HM, Haynesworth SE, Gerson SL, Caplan AI. Human bone marrow-derived mesenchymal (stromal) progenitor cells (MPCs) cannot be recovered from peripheral blood progenitor cell collections. J Hematother 1997; 6(5): 447-55.
[http://dx.doi.org/10.1089/scd.1.1997.6.447] [PMID: 9368181]
[70]
Zhao L, Chen S, Yang P, Cao H. Li LJScr, therapy. The role of mesenchymal stem cells in hematopoietic stem cell transplantation: Prevention and treatment of graft-versus-host disease. 2019; 10(1): 182.
[71]
Xiang J-fJCJoTER. Effect of human umbilical cord mesenchymal stem cells on immune reconstruction of acute lymphoblastic leukemia children undergoing allogeneic hematopoietic stem cell transplantation. 2017; 21(29): 4679-84.
[72]
Gao L, Zhang Y, Hu B, et al. Phase II multicenter, randomized, double-blind controlled study of efficacy and safety of umbilical cord–derived mesenchymal stromal cells in the prophylaxis of chronic graft-versus-host disease after HLA-haploidentical stem-cell transplantation. J Clin Oncol 2016; 34(24): 2843-50.
[http://dx.doi.org/10.1200/JCO.2015.65.3642] [PMID: 27400949]
[73]
Wu K-H, Tsai C, Wu H-P, Sieber M, Peng C-T. Chao Y-HJCt. Human application of ex vivo expanded umbilical cord-derived mesenchymal stem cells: Enhance hematopoiesis after cord blood transplantation. 2013; 22(11): 2041-51.
[74]
Wu K-H, Chan C-K, Tsai C, et al. Effective treatment of severe steroid-resistant acute graft-versus-host disease with umbilical cord-derived mesenchymal stem cells. Transplantation 2011; 91(12): 1412-6.
[http://dx.doi.org/10.1097/TP.0b013e31821aba18] [PMID: 21494176]
[75]
Carnegie PR. Amino acid sequence of the encephalitogenic basic protein from human myelin. Biochem J 1971; 123(1): 57-67.
[http://dx.doi.org/10.1042/bj1230057] [PMID: 4108501]
[76]
Műzes G. Sipos FJWjosc. Issues and opportunities of stem cell therapy in autoimmune diseases. 2019; 11(4): 212.
[77]
Feinstein A, Freeman J, Lo AC. Treatment of progressive multiple sclerosis: What works, what does not, and what is needed. Lancet Neurol 2015; 14(2): 194-207.
[http://dx.doi.org/10.1016/S1474-4422(14)70231-5] [PMID: 25772898]
[78]
Goldenberg MM. Multiple sclerosis review. P&T 2012; 37(3): 175-84.
[PMID: 22605909]
[79]
Zhao Y, Healy BC, Rotstein D, et al. Exploration of machine learning techniques in predicting multiple sclerosis disease course. PLoS One 2017; 12(4): e0174866.
[http://dx.doi.org/10.1371/journal.pone.0174866] [PMID: 28379999]
[80]
Liu R, Zhang Z, Lu Z, et al. Human umbilical cord stem cells ameliorate experimental autoimmune encephalomyelitis by regulating immunoinflammation and remyelination. Stem Cells Dev 2013; 22(7): 1053-62.
[http://dx.doi.org/10.1089/scd.2012.0463] [PMID: 23140594]
[81]
Liu R, Zhang Z, Lu Z, Borlongan C, Pan J, Chen J, et al. Human umbilical cord stem cells ameliorate experimental autoimmune encephalomyelitis by regulating immunoinflammation and remyelination. 2013; 22(7): 1053-62.
[http://dx.doi.org/10.1089/scd.2012.0463]
[82]
Torkaman M, Ghollasi M, Mohammadnia-Afrouzi M, Salimi A, Amari AJCI. The effect of transplanted human Wharton’s jelly mesenchymal stem cells treated with IFN-γ on experimental autoimmune encephalomyelitis mice. 2017; 311: 1-12.
[http://dx.doi.org/10.1016/j.cellimm.2016.09.012]
[83]
Wang Y-L, Xue P, Xu C-Y, et al. SPK1-transfected UCMSC has better therapeutic activity than UCMSC in the treatment of experimental autoimmune encephalomyelitis model of Multiple sclerosis. Sci Rep 2018; 8(1): 1756.
[http://dx.doi.org/10.1038/s41598-018-19703-5] [PMID: 29379030]
[84]
Hou ZL, Liu Y, Mao X-H, et al. Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosis. Cell Adhes Migr 2013; 7(5): 404-7.
[http://dx.doi.org/10.4161/cam.26941] [PMID: 24192520]
[85]
Li J-F, Zhang D-J, Geng T, Chen L, Huang H, Yin H-L, et al. The potential of human umbilical cord-derived mesenchymal stem cells as a novel cellular therapy for multiple sclerosis. Cell transplantation 2014; 23(1): 113-22.
[http://dx.doi.org/10.3727/096368914X685005]
[86]
Yang H, Sun J, Wang F, Li Y, Bi J, Qu T. Umbilical cord-derived mesenchymal stem cells reversed the suppressive deficiency of T regulatory cells from peripheral blood of patients with multiple sclerosis in a co-culture - a preliminary study. Oncotarget 2016; 7(45): 72537-45.
[http://dx.doi.org/10.18632/oncotarget.12345] [PMID: 27705922]
[87]
Meng M, Liu Y, Wang W, et al. Umbilical cord mesenchymal stem cell transplantation in the treatment of multiple sclerosis. Am J Transl Res 2018; 10(1): 212-23.
[PMID: 29423006]
[88]
Riordan NH, Morales I, Fernández G, et al. Clinical feasibility of umbilical cord tissue-derived mesenchymal stem cells in the treatment of multiple sclerosis. J Transl Med 2018; 16(1): 57.
[http://dx.doi.org/10.1186/s12967-018-1433-7] [PMID: 29523171]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy