Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Identification of Major Compounds and α-Amylase and α-Glucosidase Inhibitory Activity of Rhizome of Musa balbisiana Colla: An in-vitro and in-silico Study

Author(s): Ananta Swargiary* and Manita Daimari

Volume 25, Issue 1, 2022

Published on: 24 November, 2020

Page: [139 - 148] Pages: 10

DOI: 10.2174/1386207323666201124144332

Price: $65

Abstract

Background: α-Amylase and α-glucosidase inhibitors are widely used to suppress postprandial glycemia in the treatment of type-2 diabetes.

Objectives: To evaluate the metallic content, phytocompounds, and α-amylase and α-glucosidase inhibitory activity of Musa balbisiana rhizome using in-vitro and in-silico methods.

Materials and Methods: Heavy metal content was detected by AAS following standard protocol. Major phytochemicals of the plant were analyzed by GC-MS technique. Enzyme inhibition study was carried out by UV/VIS spectrophotometric methods. The drug-likeness and bio-availability properties of major compounds were carried out using computer-aided tools – SwissADME and ADMElab. Docking and visualization were performed in AutoDock vina and Discovery studio tools.

Results: The study found that the fruits of M. balbisiana contain a negligible amount of toxic elements. GC-MS analysis showed five major compounds from the rhizome of M. balbisiana. Invitro enzyme assays revealed strong α-amylase and α-glucosidase inhibitory properties of the plant. All five compounds were predicted to have a drug-likeness property with high cell membrane permeability and bio-availability. The compounds were also predicted to have low to moderate toxicity properties. The Docking study showed strong binding affinities of plant compounds with α-amylase and α-glucosidase. Out of five compounds, C5 showed the best binding affinity with active pockets of α-amylase and α-glucosidase.

Conclusion: The in-vitro and in-silico study suggests the antihyperglycemic property of the rhizome of Musa balbisiana and a possible candidate for the therapeutic antidiabetic agent(s).

Keywords: Musa balbisiana, rhizome, α-amylase, α-glucosidase, docking, ADMET.

Graphical Abstract

[1]
World Health Organisation. Definition, diagnosis and classification of diabetes mellitus and its complications, report of a WHO consultation Part 1; Diagnosis and Classification of Diabetes Mellitus: Geneva, 1999, p. 2.
[2]
Saini, V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J. Diabetes, 2010, 1(3), 68-75.
[http://dx.doi.org/10.4239/wjd.v1.i3.68] [PMID: 21537430]
[3]
Tiwari, P. Recent trends in therapeutic approaches for diabetes management: A comprehensive update. J. Diabetes Res., 2015, 2015
[http://dx.doi.org/10.1155/2015/340838] [PMID: 26273667]
[5]
Raptis, S.A.; Dimitriadis, G.D. Oral hypoglycemic agents: insulin secretagogues, a-glucosidase inhibitors and insulin sensitizers. Exp. Clin. Endocrinol. Diabetes, 2001, 109(2)
[http://dx.doi.org/10.1055/s-2001-18588]
[6]
Azad, S.B.; Ansari, P.; Azam, S.; Hossain, S.M.; Shahid, M.I.; Hasan, M.; Hannan, J.M.A. Anti-hyperglycaemic activity of Moringa oleifera is partly mediated by carbohydrase inhibition and glucose-fibre binding. Biosci. Rep., 2017, 37(3), BSR20170059.
[http://dx.doi.org/10.1042/BSR20170059] [PMID: 28336764]
[7]
Krass, I.; Schieback, P.; Dhippayom, T. Adherence to diabetes medication: a systematic review. Diabet. Med., 2015, 32(6), 725-737.
[http://dx.doi.org/10.1111/dme.12651] [PMID: 25440507]
[8]
Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; Sasapu, A.; Beebe, A.; Patil, N.; Musham, C.K.; Lohani, G.P.; Mirza, W. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front. Endocrinol. (Lausanne), 2017, 8, 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[9]
Cragg, G.M.; Boyd, M.R.; Khanna, R.; Newman, D.J.; Sausville, E.A. Natural product drug discovery and development.Proceedings of the Phytochemical Society of North America; , 1999, 33, pp. 1-29.
[10]
Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect., 2001, 109(1)(Suppl. 1), 69-75.
[PMID: 11250806]
[11]
Swargiary, A.; Boro, H.; Brahma, B.K.; Rahman, S. Ethno-botanical study of anti-diabetic medicinal plants used by the local people of kokrajhar district of Bodoland Territorial Council, India. J. Med. Plants Stud., 2013, 1(5), 51-58.
[12]
Sachan, A.K.; Rao, C.V.; Sachan, N.K. In vitro studies on the inhibition of α-amylase and α-glucosidase by hydro-ethanolic extract of Pluchea lanceolata, Alhagi pseudalhagi, Caesalpinia bonduc. Phcog. Res., 2019, 11(3), 310-314.
[http://dx.doi.org/10.4103/pr.pr_31_19]
[13]
Magaji, U.F.; Sacan, O.; Yanardag, R. Alpha amylase, alpha glucosidase and glycation inhibitory activity of Moringa oleifera extracts. S. Afr. J. Bot., 2020, 128, 225-230.
[http://dx.doi.org/10.1016/j.sajb.2019.11.024]
[14]
Borborah, K.; Borthakur, S.K.; Bhaben, T. Musa balbisiana Colla. taxonomy, traditional knowledge and economic potentialities of the plant in Assam, India. Indian J. Tradit. Knowl., 2016, 15(1), 116-120.
[15]
Barcelo, R.C.; Barcelo, J.M. Musa balbisiana Colla Musaceae ethnobotany of the mountain regions of Southeast Asia. Ethnobotany of Mountain Regions, 2020.
[16]
Kalita, H.; Boruah, D.C.; Deori, M.; Hazarika, A.; Sarma, R.; Kumari, S.; Kandimalla, R.; Kotoky, J.; Devi, R. Antidiabetic and antilipidemic effect of Musa balbisiana root extract: A potent agent for glucose homeostasis in streptozotocin-induced diabetic rat. Front. Pharmacol., 2016, 7, 102.
[http://dx.doi.org/10.3389/fphar.2016.00102] [PMID: 27199747]
[17]
Borah, M.; Das, S. Antidiabetic, antihyperlipidemic, and antioxidant activities of Musa balbisiana Colla. in Type 1 diabetic rats. Indian J. Pharmacol., 2017, 49(1), 71-76.
[PMID: 28458426]
[18]
Daimari, M.; Roy, M.K.; Swargiary, A.; Baruah, S.; Basumatary, S. An ethnobotanical survey of antidiabetic medicinal plants used by the Bodo tribe of Kokrajhar district, Assam. Indian J. Tradit. Knowl., 2019, 18(3), 421-429.
[19]
Swargiary, A.; Daimari, A.; Daimari, M.; Basumatary, N.; Narzary, E. Phytochemicals, antioxidant, and anthelmintic activity of selected traditional wild edible plants of lower Assam. Indian J. Pharmacol., 2016, 48(4), 418-423.
[http://dx.doi.org/10.4103/0253-7613.186212] [PMID: 27756954]
[20]
Zheljazkov, V.D.; Nielson, N.S. Effect of heavy metals on peppermint and cornmint. Plant Soil, 1996, 178, 59-66.
[http://dx.doi.org/10.1007/BF00011163]
[21]
Kwon, Y.; Apostolidis, E.; Shetty, K. Inhibitory potential of wine and tea against α-amylase and α-glucosidase for management of hyperglyemia linked to type 2 diabetes. J. Food Biochem., 2008, 32(1), 15-31.
[http://dx.doi.org/10.1111/j.1745-4514.2007.00165.x]
[22]
Elya, B.; Basah, K.; Mun’im, A.; Yuliastuti, W.; Bangun, A.; Septiana, E.K. Screening of α-glucosidase inhibitory activity from some plants of Apocynaceae, Clusiaceae, Euphorbiaceae, and Rubiaceae J. Biomed. Biotechnol., 2012, 2012
[http://dx.doi.org/10.1155/2012/281078] [PMID: 22187534]
[23]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[24]
Lipinski, C.A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[25]
Dong, J.; Wang, N.N.; Yao, Z.J.; Zhang, L.; Cheng, Y.; Ouyang, D.; Lu, A.P.; Cao, D.S. ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J. Cheminform., 2018, 10(1), 29.
[http://dx.doi.org/10.1186/s13321-018-0283-x] [PMID: 29943074]
[26]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(33), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[27]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[28]
Ozcan, M.M.; Akbulut, M. Estimation of minerals, nitrate and nitrite contents of medicinal and aromatic plants used as spices, condiments and herbal tea. Food Chem., 2008, 106(2), 852-858.
[http://dx.doi.org/10.1016/j.foodchem.2007.06.045]
[29]
Barbee, J.Y., Jr; Prince, T.S. Acute respiratory distress syndrome in a welder exposed to metal fumes. South. Med. J., 1999, 92(5), 510-512.
[http://dx.doi.org/10.1097/00007611-199905000-00012] [PMID: 10342899]
[30]
Prashanth, L.; Kattapagari, K.K.; Chitturi, R.T.; Baddam, V.R.; Prasad, L.K. A review on role of essential trace elements in health and disease. JNTR Univ. Health Sci., 2015, 4(2), 75-85.
[http://dx.doi.org/10.4103/2277-8632.158577]
[31]
WHO. WHO permissible level of heavy metals in plants and soil., 1996.https://www.omicsonline.org/articles–images/2161-0525-5-334-t011.html
[32]
Revadigar, V.; Al-Mansoub, M.A.; Asif, M.; Hamdan, M.R. AbdulMajid, A.M.S; Asmawi, M.Z.; Murugaiyah, V. Anti-oxidative and cytotoxic attributes of phenolic rich ethanol extract of Musa balbisiana Colla inflorescence. J. Appl. Pharm. Sci., 2017, 7(5), 103-110.
[33]
Tin, H.S.; Padam, B.S.; Kamada, T.; Vairappan, C.S.; Abdullah, M.I.; Chye, F.Y. Isolation and structure elucidation of triterpenes from inflorescence of banana (Musa balbisiana cv. Saba). Int. Food Res. J., 2016, 23(2), 866-872.
[34]
DiMasi, J.A.; Hansen, R.W.; Grabowski, H.G. The price of innovation: new estimates of drug development costs. J. Health Econ., 2003, 22(2), 151-185.
[http://dx.doi.org/10.1016/S0167-6296(02)00126-1] [PMID: 12606142]
[35]
Guan, L.; Yang, H.; Cai, Y.; Sun, L.; Di, P.; Li, W.; Liu, G.; Tang, Y. ADMET-score - a comprehensive scoring function for evaluation of chemical drug-likeness. Med. Chem. Comm., 2018, 10(1), 148-157.
[http://dx.doi.org/10.1039/C8MD00472B] [PMID: 30774861]
[36]
Hodgson, J. ADMET--turning chemicals into drugs. Nat. Biotechnol., 2001, 19(8), 722-726.
[http://dx.doi.org/10.1038/90761] [PMID: 11479558]
[37]
Palm, K.; Stenberg, P.; Luthman, K.; Artursson, P. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm. Res., 1997, 14(5), 568-571.
[http://dx.doi.org/10.1023/A:1012188625088] [PMID: 9165525]
[38]
Arnott, J.A.; Planey, S.L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov., 2012, 7(10), 863-875.
[http://dx.doi.org/10.1517/17460441.2012.714363] [PMID: 22992175]
[39]
Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx, 2005, 2(4), 541-553.
[http://dx.doi.org/10.1602/neurorx.2.4.541] [PMID: 16489364]
[40]
Matsson, P.; Kihlberg, J. How big is too big for cell permeability? J. Med. Chem., 2017, 60(5), 1662-1664.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00237] [PMID: 28234469]
[41]
Kazeem, M.I.; Adamson, J.O.; Ogunwande, I.A. Modes of inhibition of α-amylase and α-glucosidase by aqueous extract of Morinda lucida Benth leaf. BioMed Res. Int., 2013, 2013
[http://dx.doi.org/10.1155/2013/527570] [PMID: 24455701]
[42]
Somtimuang, C.; Olatunji, O.J.; Ovatlarnporn, C. Evaluation of in vitro α-amylase and α-glucosidase inhibitory potentials of 14 medicinal plants constituted in Thai folk antidiabetic formularies. Chem. Biodivers., 2018, 15(4)
[http://dx.doi.org/10.1002/cbdv.201800025] [PMID: 29460340]
[43]
Ara, F.; Tripathy, A.; Ghosh, D. Possible antidiabetic and antioxidative activity of hydro-methanolic extract of Musa balbisiana (Colla) Flower in streptozotocin-induced diabetic male albino wistar strain rat: A genomic approach ASSAY Drug Dev. Techn. 2019, 17(2)
[44]
Gopalan, G.; Prabha, B.; Joe, A.; Reshmitha, T.R.; Sherin, D.R.; Abraham, B.; Sabu, M.; Manojkumar, T.K.; Radhakrishnan, K.V.; Nisha, P. Screening of Musa balbisiana Colla. seeds for antidiabetic properties and isolation of apiforol, a potential lead, with antidiabetic activity. J. Sci. Food Agric., 2019, 99(5), 2521-2529.
[PMID: 30393852]
[45]
Shodehinde, S.A.; Ademiluyi, A.O.; Oboh, G.; Akindahunsi, A.A. Contribution of Musa paradisiaca in the inhibition of α-amylase, α-glucosidase and Angiotensin-I converting enzyme in streptozotocin induced rats. Life Sci., 2015, 133, 8-14.
[http://dx.doi.org/10.1016/j.lfs.2015.03.026] [PMID: 25921768]
[46]
Oresanya, I.O.; Sonibare, M.A.; Gueye, B.; Balogun, F.O.; Adebayo, S.; Ashafa, A.O.T.; Morlock, G.; Morlock, G. Isolation of flavonoids from Musa acuminata Colla (Simili radjah, ABB) and the in vitro inhibitory effects of its leaf and fruit fractions on free radicals, acetylcholinesterase, 15-lipoxygenase, and carbohydrate hydrolyzing enzymes. J. Food Biochem., 2020, 44(3)
[http://dx.doi.org/10.1111/jfbc.13137] [PMID: 31899556]
[47]
Bhattacharyya, M.K.; Dutta, D. Nashre-ul-Islam, S.M.; Frontera, A.; Sharma, P.; Verma, A.K.; Das, A. Energetically Significant antiparallel π-stacking contacts in Co(II), Ni(II) and Cu(II) coordination compounds of pyridine-2,6-dicarboxylates: Antiproliferative evaluation and theoretical studies. Inorg. Chim. Acta, 2019, 1(501), 119233.
[48]
Gogoi, A.; Dutta, D.; Verma, A.K.; Nath, H.; Frontera, A.; Guha, A.K.; Bhattacharyya, M.K. Energetically favorable anti-electrostatic hydrogen bonded cationic clusters in Ni(II) 3,5-dimethylpyrazole complexes: Anticancer evaluation and theoretical studies. Polyhedron, 2019, 168, 113-126.
[http://dx.doi.org/10.1016/j.poly.2019.04.043]
[49]
Huang, S.Y.; Zou, X. Advances and challenges in protein-ligand docking. Int. J. Mol. Sci., 2010, 11(8), 3016-3034.
[http://dx.doi.org/10.3390/ijms11083016] [PMID: 21152288]
[50]
McConkey, B.J.; Sobolev, V.; Edelman, M. The performance of current methods in ligand–protein docking. Curr. Sci., 2002, 83(7), 845-855.
[51]
Ghaedi, N.; Pouraboli, I.; Askari, N. Antidiabetic properties of hydroalcoholic leaf and stem extract of Levisticum officinale: An implication for α-amylase inhibitory activity of extract ingredients through molecular docking. Iran. J. Pharm. Res., 2020, 19(1), 231-250.
[PMID: 32922483]
[52]
Amin, S.; Ullah, B.; Ali, M.; Khan, H.; Rauf, A.; Khan, S.A.; Sobarzo-Sánchez, E. In-vitro α-glucosidase inhibition and computational studies of kaempferol derivatives from Dryopteris cycanida. Curr. Top. Med. Chem., 2020, 20(9), 731-737.
[http://dx.doi.org/10.2174/1568026620666200130161033] [PMID: 32000643]
[53]
Dehghan, H.; Salehi, P.; Amiri, M.S. Bioassay-guided purification of α-amylase, α-glucosidase inhibitors and DPPH radical scavengers from roots of Rheum turkestanicum. Ind. Crops Prod., 2018, 117, 303-309.
[http://dx.doi.org/10.1016/j.indcrop.2018.02.086]
[54]
Guvenalp, Z.; Ozbek, H.; Dursunoglu, B.; Yuca, H.; Gozcu, S.; Cil, S.M.; Kazaz, C.; Kara, K.; Demirezer, O.L. α-Amylase and α-glucosidase inhibitory activities of the herbs of Artemisia dracunculus L. and its active constituents. Med. Chem. Res., 2017, 26, 3209-3215.
[http://dx.doi.org/10.1007/s00044-017-2014-7]
[55]
Arshad, M.; Mumtaz, M.W.; Chaudhary, A.R.; Rashid, U.; Ali, M.; Mukhtar, H.; Adnan, A.; Raza, S.A. Metabolite profiling of Cycas revoluta leaf extract and docking studies on alpha-glucosidase inhibitory molecular targets by phytochemicals. Pak. J. Pharm. Sci., 2019, 32(2)((Supplementary)), 871-874.
[PMID: 31103985]
[56]
Oboh, G.; Ademiluyi, A.O.; Akinyemi, A.J.; Henle, T.; Saliu, J.A.; Schwarzenbolz, U. Inhibitory effect of polyphenol-rich extracts of jute leaf (Corchorus olitorius) on key enzyme linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting) in vitro. J. Funct. Foods, 2012, 4(2), 450-458.
[http://dx.doi.org/10.1016/j.jff.2012.02.003]
[57]
Aminudin, N.I.; Ahmad, F.; Taher, M.; Zulkifli, R.M. α-Glucosidase and 15-lipoxygenase inhibitory activities of phytochemicals from Calophyllum symingtonianum. Nat. Prod. Commun., 2015, 10(9), 1585-1587.
[http://dx.doi.org/10.1177/1934578X1501000925] [PMID: 26594765]
[58]
Hua, F.; Zhou, P.; Wu, H.Y.; Chu, G.X.; Xie, Z.W.; Bao, G.H. Inhibition of α-glucosidase and α-amylase by flavonoid glycosides from Lu’an GuaPian tea: molecular docking and interaction mechanism. Food Funct., 2018, 9(8), 4173-4183.
[http://dx.doi.org/10.1039/C8FO00562A] [PMID: 29989631]
[59]
Nadeem, M.; Mumtaz, M.W.; Danish, D.; Rashid, U.; Mukhtar, H.; Irfan, A.; Anwar, F.; Saari, N. UHPLC-QTOF-MS/MS metabolites profiling and antioxidant/antidiabetic attributes of Cuscuta reflexa grown on Casearia tomentosa: exploring phytochemicals role via molecular docking. Int. J. Food Prop., 2020, 23(1), 918-940.
[http://dx.doi.org/10.1080/10942912.2020.1764578]
[60]
Loo, K.Y.; Leong, K.H.; Sivasothy, Y.; Ibrahim, H.; Awang, K.; Awang, K. Molecular insight and mode of inhibition of α‐glucosidase and α‐amylase by pahangensin a from Alpinia pahangensis Ridl. Chem. Biodivers., 2019, 16(6)
[http://dx.doi.org/10.1002/cbdv.201900032] [PMID: 30957403]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy