Abstract
In modern dentistry, nanomaterials have strengthened their foothold among tissue engineering strategies for treating bone and dental defects due to a variety of reasons, including trauma and tumors. Besides their finest physiochemical features, the biomimetic characteristics of nanomaterials promote cell growth and stimulate tissue regeneration. The single units of these chemical substances are small-sized particles, usually between 1 to 100 nm, in an unbound state. This unbound state allows particles to constitute aggregates with one or more external dimensions and provide a high surface area. Nanomaterials have brought advances in regenerative dentistry from the laboratory to clinical practice. They are particularly used for creating novel biomimetic nanostructures for cell regeneration, targeted treatment, diagnostics, imaging, and the production of dental materials. In regenerative dentistry, nanostructured matrices and scaffolds help control cell differentiation better. Nanomaterials recapitulate the natural dental architecture and structure and form functional tissues better compared to the conventional autologous and allogenic tissues or alloplastic materials. The reason is that novel nanostructures provide an improved platform for supporting and regulating cell proliferation, differentiation, and migration. In restorative dentistry, nanomaterials are widely used in constructing nanocomposite resins, bonding agents, endodontic sealants, coating materials, and bioceramics. They are also used for making daily dental hygiene products such as mouth rinses. The present article classifies nanostructures and nanocarriers in addition to reviewing their design and applications for bone and dental regeneration.
Keywords: Nanomaterial, nanoparticle, regenerative dentistry, dental regeneration, bone regeneration.
Graphical Abstract
[PMID: 25999717]
[http://dx.doi.org/10.1038/boneres.2015.29] [PMID: 26558141]
[http://dx.doi.org/10.1002/wnan.1320] [PMID: 25421333]
[http://dx.doi.org/10.1016/j.actbio.2017.01.001] [PMID: 28057509]
(b)Xu, H.H.; Weir, M.D.; Sun, L.; Moreau, J.L.; Takagi, S.; Chow, L.C.; Antonucci, J.M. Strong nanocomposites with Ca, PO(4), and F release for caries inhibition. J. Dent. Res., 2010, 89(1), 19-28.
[http://dx.doi.org/10.1177/0022034509351969] [PMID: 19948941]
[PMID: 25848271]
[http://dx.doi.org/10.1016/j.tibtech.2012.07.005] [PMID: 22939815]
[http://dx.doi.org/10.1038/boneres.2016.50] [PMID: 28018707]
[http://dx.doi.org/10.1155/2012/975842]
[http://dx.doi.org/10.1177/0022034517706678 ] [PMID: 28463533]
(b)Verma, S.; Domb, A.J.; Kumar, N. Nanomaterials for regenerative medicine. Nanomedicine (Lond.), 2011, 6(1), 157-181.
[http://dx.doi.org/10.2217/nnm.10.146] [PMID: 21182426]
[http://dx.doi.org/10.2217/nnm-2017-0329] [PMID: 29417862]
[http://dx.doi.org/10.1016/j.jdent.2008.03.001] [PMID: 18407396]
[http://dx.doi.org/10.1038/s41392-019-0068-3] [PMID: 32859918]
[http://dx.doi.org/10.1088/1748-6041/5/4/044105 ] [PMID: 20683127]
(b)Yang, X.; Yang, F.; Walboomers, X.F.; Bian, Z.; Fan, M.; Jansen, J.A. The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds. J. Biomed. Mater. Res. A, 2010, 93(1), 247-257.
[PMID: 19557787]
[http://dx.doi.org/10.1016/j.yrtph.2015.06.001] [PMID: 26111608]
[http://dx.doi.org/10.1002/jbm.b.32794] [PMID: 23015272]
[http://dx.doi.org/10.2147/IJN.S74418] [PMID: 25792833]
[http://dx.doi.org/10.1016/j.fdj.2018.05.007]
[http://dx.doi.org/10.1007/s10856-014-5364-4 ] [PMID: 25578712]
(b)Sowmya, S.; Mony, U.; Jayachandran, P.; Reshma, S.; Kumar, R.A.; Arzate, H.; Nair, S.V.; Jayakumar, R. Tri-Layered nanocomposite hydrogel scaffold for the concurrent regeneration of cementum, periodontal ligament, and alveolar bone. Adv. Healthc. Mater., 2017, 6(7)
[http://dx.doi.org/10.1002/adhm.201601251] [PMID: 28128898]
[http://dx.doi.org/10.1038/s41598-019-47491-z] [PMID: 31363145]
[http://dx.doi.org/10.1080/21691401.2018.1458033]
(b)Li, J.; Li, Y.; Ma, S.; Gao, Y.; Zuo, Y.; Hu, J. Enhancement of bone formation by BMP-7 transduced MSCs on biomimetic nano-hydroxyapatite/polyamide composite scaffolds in repair of mandibular defects. J. Biomed. Mater. Res. A, 2010, 95(4), 973-981.
[http://dx.doi.org/10.1002/jbm.a.32926] [PMID: 20845497]
[PMID: 25864243]
[http://dx.doi.org/10.1159/000438466] [PMID: 26278685]
[http://dx.doi.org/10.1002/term.488] [PMID: 22499432]
[http://dx.doi.org/10.1039/C9BM01181A] [PMID: 31633717]
[http://dx.doi.org/10.1002/jbm.a.35241] [PMID: 24862288]
[http://dx.doi.org/10.1016/j.colsurfb.2013.04.006] [PMID: 23668983]
[http://dx.doi.org/10.1177/0885328217741523] [PMID: 29160129]
[http://dx.doi.org/10.1039/C9RA03641E]
[http://dx.doi.org/10.1111/jre.12352] [PMID: 27870141]
[http://dx.doi.org/10.1016/j.ceramint.2011.02.025]
(b)Schneider, O.D.; Mohn, D.; Fuhrer, R.; Klein, K.; Kämpf, K.; Nuss, K.M.; Sidler, M.; Zlinszky, K.; von Rechenberg, B.; Stark, W.J. Biocompatibility and bone formation of flexible, cotton wool-like PLGA/calcium phosphate nanocomposites in sheep. Open Orthop. J., 2011, 5, 63-71.
[http://dx.doi.org/10.2174/1874325001105010063] [PMID: 21566736]
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.049] [PMID: 23375393]
[http://dx.doi.org/10.2174/1567201813666161230142123] [PMID: 28034360]
[http://dx.doi.org/10.1016/j.biomaterials.2009.09.028] [PMID: 19783296]
[http://dx.doi.org/10.26477/idj.v36i3.28]
[http://dx.doi.org/10.3390/bioengineering6010017] [PMID: 30754677]
[http://dx.doi.org/10.1016/j.msec.2015.02.002] [PMID: 25746278]
[http://dx.doi.org/10.1021/nn101373r] [PMID: 21028783]
[http://dx.doi.org/10.1039/C3TB21246G] [PMID: 32261377]
[http://dx.doi.org/10.1016/j.nano.2016.08.026] [PMID: 27591960]
[http://dx.doi.org/10.1038/srep31822] [PMID: 27546177]
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.028] [PMID: 24438908]
[http://dx.doi.org/10.1155/2016/5931946]
[http://dx.doi.org/10.2174/1574888X09666140228123911] [PMID: 24588088]
(b)Wang, S.; Kowal, T.J.; Marei, M.K.; Falk, M.M.; Jain, H. Nanoporosity significantly enhances the biological performance of engineered glass tissue scaffolds. Tissue Eng. Part A, 2013, 19(13-14), 1632-1640.
[http://dx.doi.org/10.1089/ten.tea.2012.0585] [PMID: 23427819]
[http://dx.doi.org/10.1016/j.actbio.2016.02.040 ] [PMID: 26931056]
(b)Wang, Y.F.; Wang, C.Y.; Wan, P.; Wang, S.G.; Wang, X.M. Comparison of bone regeneration in alveolar bone of dogs on mineralized collagen grafts with two composition ratios of nano-hydroxyapatite and collagen. Regen. Biomater., 2016, 3(1), 33-40.
[http://dx.doi.org/10.1093/rb/rbv025] [PMID: 26816654]
[http://dx.doi.org/10.1111/jcpe.12364] [PMID: 25580515]
[http://dx.doi.org/10.1177/0022034513490957 ] [PMID: 23677650]
(b)Sá, M.A.; Andrade, V.B.; Mendes, R.M.; Caliari, M.V.; Ladeira, L.O.; Silva, E.E.; Silva, G.A.; Corrêa-Júnior, J.D.; Ferreira, A.J. Carbon nanotubes functionalized with sodium hyaluronate restore bone repair in diabetic rat sockets., Oral Dis., 2013, 19(5), 484-493..
[http://dx.doi.org/ 10.1111/odi.12030] [PMID: 23107153]
(c)Martins-Júnior, P.A.; Sá, M.A.; Reis, A.C.; Queiroz-Junior, C.M.; Caliari, M.V.; Teixeira, M.M.; Ladeira, L.O.; Pinho, V.; Ferreira, A.J. Evaluation of carbon nanotubes functionalized with sodium hyaluronate in the inflammatory processes for oral regenerative medicine applications. Clin. Oral Investig., 2016, 20(7), 1607-1616.
[http://dx.doi.org/10.1007/s00784-015-1639-5] [PMID: 26556578]
[http://dx.doi.org/10.1016/j.lfs.2010.06.010] [PMID: 20600151]
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.001] [PMID: 26363268]
[http://dx.doi.org/10.1002/jbm.a.32066] [PMID: 18491392]
[http://dx.doi.org/10.1016/j.actbio.2009.05.023] [PMID: 19470413]
[http://dx.doi.org/10.1002/jbm.a.32922] [PMID: 20872750]
[http://dx.doi.org/10.1016/j.ijom.2010.01.013] [PMID: 20194003]
[http://dx.doi.org/10.1111/j.1600-0501.2010.01978.x] [PMID: 20831755]
[PMID: 22866291]
[http://dx.doi.org/10.5051/jpis.2013.43.6.315] [PMID: 24455445]
[http://dx.doi.org/10.1016/S0022-3913(13)60052-9] [PMID: 23566605]
[http://dx.doi.org/10.1111/j.1708-8208.2011.00373.x] [PMID: 21745333]
[http://dx.doi.org/10.1016/j.actbio.2013.04.003] [PMID: 23567945]
[http://dx.doi.org/10.1166/jbn.2013.1559] [PMID: 23620999]
[http://dx.doi.org/10.1007/s00784-012-0739-8] [PMID: 22552592]
[http://dx.doi.org/10.1021/nn504329u] [PMID: 25420230]
[http://dx.doi.org/10.1002/adhm.201300281] [PMID: 24124118]
[http://dx.doi.org/10.1186/s40824-015-0027-1] [PMID: 26331078]
[http://dx.doi.org/10.1016/j.actbio.2015.07.023] [PMID: 26188325]
[http://dx.doi.org/10.2147/IJN.S111701] [PMID: 27695327]
[http://dx.doi.org/10.1155/2016/8741641 ] [PMID: 27118977]
[http://dx.doi.org/10.1002/jbm.a.36502] [PMID: 30325096]
[http://dx.doi.org/10.1590/1678-7757-2017-0084] [PMID: 29364342]
[http://dx.doi.org/10.2147/IJN.S174553] [PMID: 30464466]
[http://dx.doi.org/10.1002/mabi.201800080] [PMID: 29745025]
[http://dx.doi.org/10.2147/IJN.S184396] [PMID: 30666109]
[http://dx.doi.org/10.1021/nl9011112] [PMID: 19572735]
[http://dx.doi.org/10.1111/j.1365-2184.2011.00737.x] [PMID: 21401760]
[http://dx.doi.org/10.3390/ijms140612714] [PMID: 23778088]
[http://dx.doi.org/10.1021/acsnano.5b07828] [PMID: 27176123]
[PMID: 26848264]
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.010] [PMID: 27855337]
[http://dx.doi.org/10.2147/IJN.S139775] [PMID: 29075114]
[http://dx.doi.org/10.1016/j.actbio.2017.07.021] [PMID: 28713017]
[http://dx.doi.org/10.3390/nano9101501] [PMID: 31652533]