Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Recent Applications of Azo Dyes: A Paradigm Shift from Medicinal Chemistry to Biomedical Sciences

Author(s): Md. Nasim Khan*, Digvijaysinh K. Parmar and Debasis Das

Volume 21, Issue 9, 2021

Published on: 23 November, 2020

Page: [1071 - 1084] Pages: 14

DOI: 10.2174/1389557520999201123210025

Price: $65

Abstract

Azo molecules possess the characteristic azo bond (-N=N-) and are considered fascinating motifs in organic chemistry. Since the last century, these brightly colored compounds have been widely employed as dyes across several industries in applications for printing, food, paper, cosmetics, lasers, electronics, optics, material sciences, etc. The discovery of Prontosil, an antibacterial drug, propelled azo compounds into the limelight in the field of medicinal chemistry. Subsequent discoveries including Phenazopyridine, Basalazide, and Sulfasalazine enabled azo compounds to occupy a significant role in the drug market. Furthermore, azo compounds have been employed as antibacterial, antimalarial, antifungal, antioxidant, as well as antiviral agents. The metabolic degradation of many azo dyes can induce liver problems if ingested, posing a safety concern and limiting their application as azo dyes in medicinal chemistry. However, azo dyes remain particularly significant for applications in cancer chemotherapy. Recently, a paradigm shift has been observed in the use of azo dyes: from medicinal chemistry to biomedical sciences. The latter benefits from azo dye application are related to imaging, drug delivery, photo-pharmacology and photo switching. Herein, we have compiled and discussed recent works on azo dye compounds obtained so far, focusing on their medicinal importance and future prospects.

Keywords: Azo compounds, antibacterial, antioxidant, antiviral, bioimaging, biomedical science.

Graphical Abstract

[1]
Hunger, K. Industrial Dyes: Chemistry, Properties, Applications; 1st ed., Wiley-VCH Verlag GmbH & Co. KGaA,; , 2002.
[http://dx.doi.org/10.1002/3527602011]
[2]
Benkhaya, S.; M’rabet, S.; El Harfi, A. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 2020, 6(1)e03271
[http://dx.doi.org/10.1016/j.heliyon.2020.e03271] [PMID: 32042981]
[3]
Węglarz-Tomczak, E.; Górecki, Ł. Azo dyes–biological activity and synthetic strategy. Chemik Science-Technique-Market, 2012, 66, 1298-1307.
[4]
Wainwright, M.; Kristiansen, J.E. On the 75th anniversary of prontosil. Dyes Pigm., 2011, 88, 231-234.
[http://dx.doi.org/10.1016/j.dyepig.2010.08.012]
[5]
Zelenitsky, S.A.; Zhanel, G.G. Phenazopyridine in urinary tract infections. Ann. Pharmacother., 1996, 30(7-8), 866-868.
[http://dx.doi.org/10.1177/106002809603000727] [PMID: 8826573]
[6]
Shahdadi Sardo, H.; Saremnejad, F.; Bagheri, S.; Akhgari, A.; Afrasiabi Garekani, H.; Sadeghi, F. A review on 5-aminosalicylic acid colon-targeted oral drug delivery systems. Int. J. Pharm., 2019, 558, 367-379.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.022] [PMID: 30664993]
[7]
Yao, L.; Xue, X.; Yu, P.; Ni, Y.; Chen, F. Evans blue dye: A revisit of its applications in biomedicine. Contrast Media Mol. Imaging, 2018, 1-10.
[8]
Liu, Y.; Wang, G.; Zhang, H.; Ma, Y.; Lang, L.; Jacobson, O.; Kiesewetter, D.O.; Zhu, L.; Gao, S.; Ma, Q.; Chen, X. Stable evans blue derived exendin-4 peptide for type 2 diabetes treatment. Bioconjug. Chem., 2016, 27(1), 54-58.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00625] [PMID: 26641886]
[9]
Lynch, M.E.; Watson, C.P.N. The pharmacotherapy of chronic pain: A review. Pain Res. Manag., 2006, 11(1), 11-38.
[http://dx.doi.org/10.1155/2006/642568] [PMID: 16511612]
[10]
Abdu-Allah, H.H.; El-Shorbagi, A-N.A.; Abdel-Moty, S.G.; El-Awady, R.; Abdel-Alim, A-A.M. 5-Aminosalyclic acid (5-ASA): A unique anti-inflammatory salicylate. Med. Chem. (Los Angeles), 2016, 06, 306-315.
[http://dx.doi.org/10.4172/2161-0444.1000361]
[11]
Nagpal, D.; Singh, R.; Gairola, N.; Bodhankar, S.; Dhaneshwar, S.S. Mutual Azo Prodrug of 5-Aminosalicylic acid for colon targeted drug delivery: Synthesis, kinetic studies and pharmacological evaluation. Indian J. Pharm. Sci., 2006, 68, 171-178.
[http://dx.doi.org/10.4103/0250-474X.25710]
[12]
Kennedy, D.A.; Vembu, N.; Fronczek, F.R.; Devocelle, M. Synthesis of mutual azo prodrugs of anti-inflammatory agents and peptides facilitated by α-aminoisobutyric acid. J. Org. Chem., 2011, 76(23), 9641-9647.
[http://dx.doi.org/10.1021/jo201358e] [PMID: 22026631]
[13]
He, M.; Metz, C.; Cheng, K.F.; Ling, J.; Coleman, T.; VanPatten, S.; Al-Abed, Y. Novel arylazoarylmethane as potential inhibitor of macrophage migration inhibitory factor. Arch. Pharm. (Weinheim), 2014, 347(2), 104-107.
[http://dx.doi.org/10.1002/ardp.201300243] [PMID: 24243226]
[14]
Jilani, J.A.; Shomaf, M.; Alzoubi, K.H. Synthesis and evaluation of mutual azo prodrug of 5-aminosalicylic acid linked to 2-phenylbenzoxazole-2-yl-5-acetic acid in ulcerative colitis. Drug Des. Devel. Ther., 2013, 7, 691-698.
[http://dx.doi.org/10.2147/DDDT.S48636] [PMID: 23983456]
[15]
Kim, W.; Nam, J.; Lee, S.; Jeong, S.; Jung, Y. 5-Aminosalicylic acid azo-linked to procainamide acts as an anticolitic mutual prodrug via additive inhibition of nuclear factor kappaB. Mol. Pharm., 2016, 13(6), 2126-2135.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00294] [PMID: 27112518]
[16]
El-Shafei, A.; Fadda, A.A.; Khalil, A.M.; Ameen, T.A.E.; Badria, F.A. Synthesis, antitumor evaluation, molecular modeling and quantitative structure-activity relationship (QSAR) of some novel arylazopyrazolodiazine and triazine analogs. Bioorg. Med. Chem., 2009, 17(14), 5096-5105.
[http://dx.doi.org/10.1016/j.bmc.2009.05.053] [PMID: 19527933]
[17]
Fadda, A.A.; Abdel-Latif, E.; El-Mekawy, R.E. Synthesis of some new arylazothiophene and arylazopyrazole derivatives as antitumor agents. Pharmacol. Pharm., 2012, 03, 148-157.
[http://dx.doi.org/10.4236/pp.2012.32022]
[18]
Gouda, M.A.; Eldien, H.F.; Girges, M.M.; Berghot, M.A. Synthesis and antitumor evaluation of thiophene based azo dyes incorporating pyrazolone moiety. J. Saudi Chem. Soc., 2016, 20, 151-157.
[http://dx.doi.org/10.1016/j.jscs.2012.06.004]
[19]
Gouda, M.A.; Abu-Hashem, A.A. Synthesis, characterization, antioxidant and antitumor evaluation of some new thiazolidine and thiazolidinone derivatives. Arch. Pharm. (Weinheim), 2011, 344(3), 170-177.
[http://dx.doi.org/10.1002/ardp.201000165] [PMID: 21384416]
[20]
Metwally, M.A.; Gouda, M.A.; Harmal, A.N.; Khalil, A.M. Synthesis, antitumor, cytotoxic and antioxidant evaluation of some new pyrazolotriazines attached to antipyrine moiety. Eur. J. Med. Chem., 2012, 56, 254-262.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.034] [PMID: 23022735]
[21]
Sabry, M.A.; Ewida, H.A.; Hassan, G.S.; Ghaly, M.A.; El-Subbagh, H.I. Synthesis, antitumor testing and molecular modeling study of some new 6-substituted amido, azo or thioureido-quinazolin-4(3H)-ones. Bioorg. Chem., 2019, 88102923
[http://dx.doi.org/10.1016/j.bioorg.2019.102923] [PMID: 30991189]
[22]
Mahmoud, W.H.; Sayed, F.N.; Mohamed, G.G. Synthesis, characterization and in vitro antimicrobial and anti-breast cancer activity studies of metal complexes of novel pentadentate azo dye ligand: metal complexes of novel pentadentate azo dye ligand. Appl. Organomet. Chem., 2016, 30, 959-973.
[http://dx.doi.org/10.1002/aoc.3529]
[23]
Tonelli, M.; Boido, V.; Canu, C.; Sparatore, A.; Sparatore, F.; Paneni, M.S.; Fermeglia, M.; Pricl, S.; La Colla, P.; Casula, L.; Ibba, C.; Collu, D.; Loddo, R. Antimicrobial and cytotoxic arylazoenamines. Part III: Antiviral activity of selected classes of arylazoenamines. Bioorg. Med. Chem., 2008, 16(18), 8447-8465.
[http://dx.doi.org/10.1016/j.bmc.2008.08.028] [PMID: 18760610]
[24]
Ali, Y.; Muhamad Bunnori, N.; Susanti, D.; Muhammad Alhassan, A.; Abd Hamid, S. Synthesis, in vitro and in silico studies of azo-based calix[4]arenes as antibacterial agent and neuraminidase inhibitor: A new look into an old scaffold. Front Chem., 2018, 6, 210.
[http://dx.doi.org/10.3389/fchem.2018.00210] [PMID: 29946538]
[25]
Gruszecka-Kowalik, E.; Haugwitz, R.D.; Zalkow, L.H. Quinobene, a new potent anti-HIV agent. Biochem. Biophys. Res. Commun., 1992, 187(3), 1409-1417.
[http://dx.doi.org/10.1016/0006-291X(92)90459-X] [PMID: 1417817]
[26]
Ono, M.; Wada, Y.; Wu, Y.; Nemori, R.; Jinbo, Y.; Wang, H.; Lo, K-M.; Yamaguchi, N.; Brunkhorst, B.; Otomo, H.; Wesolowski, J.; Way, J.C.; Itoh, I.; Gillies, S.; Chen, L.B. FP-21399 blocks HIV envelope protein-mediated membrane fusion and concentrates in lymph nodes. Nat. Biotechnol., 1997, 15(4), 343-348.
[http://dx.doi.org/10.1038/nbt0497-343] [PMID: 9094135]
[27]
Gomha, S.M.; Badrey, M.G.; Abdalla, M.M.; Arafa, R.K. Novel anti-HIV-1 NNRTIs based on a pyrazolo[4,3-d]isoxazole backbone scaffold: Design, synthesis and insights into the molecular basis of action. MedChemComm, 2014, 5, 1685-1692.
[http://dx.doi.org/10.1039/C4MD00282B]
[28]
Marich, Y.A.; Al-Salihi, N.J.; Al-Masoudi, N.A. Synthesis, Anti-HIV activity and molecular modeling study of some new pyrimidine analogues. Eur. J. Chem., 2014, 5, 588-594.
[http://dx.doi.org/10.5155/eurjchem.5.4.588-594.1109]
[29]
Iyer, P.C.; Zhao, J.; Emert-Sedlak, L.A.; Moore, K.K.; Smithgall, T.E.; Day, B.W. Synthesis and structure-activity analysis of diphenylpyrazolodiazene inhibitors of the HIV-1 Nef virulence factor. Bioorg. Med. Chem. Lett., 2014, 24(7), 1702-1706.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.045] [PMID: 24650642]
[30]
Jafari, E.; Khajouei, M.R.; Hassanzadeh, F.; Hakimelahi, G.H.; Khodarahmi, G.A. Quinazolinone and quinazoline derivatives: Recent 138 structures with potent antimicrobial and cytotoxic activities. 139 Res. Pharm. Sci.,, 2016, 11(1), 1-14.
[PMID: 27051427]
[31]
Das, D.; Sikdar, P.; Bairagi, M. Recent developments of 2-aminothiazoles in medicinal chemistry. Eur. J. Med. Chem., 2016, 109, 89-98.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.022] [PMID: 26771245]
[32]
Jarrahpour, A.A.; Motamedifar, M.; Pakshir, K.; Hadi, N.; Zarei, M. Synthesis of novel azo Schiff bases and their antibacterial and antifungal activities. Molecules, 2004, 9(10), 815-824.
[http://dx.doi.org/10.3390/91000815] [PMID: 18007481]
[33]
Ngaini, Z.; Kui, H.B. Synthesis and antibacterial activity of azo and asprin-azo derivatives. Malays. J. Anal. Sci., 2017, 21, 1183-1194.
[34]
Patel, D.R.; Patel, K.C. Synthesis, antimicrobial activity and application of some novel quinazolinone based monoazo reactive dyes on various fibres. Dyes Pigm., 2011, 90, 1-10.
[http://dx.doi.org/10.1016/j.dyepig.2010.10.013]
[35]
Patel, P.; Patel, P.S. Synthesis, characterization, and antimicrobial activity of heterocyclic azo dye derivatives. World Sci. News, 2018, 95, 265-272.
[36]
Vora, P.J.; Mehta, A.G. Synthesis, characterization and antimicrobial efficacy of quinoline based compounds. IOSR J. Applied Chem., 2012, 1, 34-39.
[http://dx.doi.org/10.9790/5736-0143439]
[37]
Malik, G.M.; Zadafiya, S.K. Thaizole based disperse dyes and their dyeing application on polyester fiber and their antimicrobial activity. Der Chemica Sinica, 2010, 1, 15-21.
[38]
Zadafiya, S.K.; Tailor, J.H.; Malik, G.M. Disperse dyes based on thiazole, their dyeing application on polyester fiber and their antimicrobial activity. J. Chem., 2013, 2013, 1-5.
[http://dx.doi.org/10.1155/2013/851418]
[39]
Khalil, A.E-G.M.; Berghot, M.A.; Gouda, M.A. Synthesis and antibacterial activity of some new 3-hydroxy-2-naphthoic acid hydrazide derivatives for dyeing polyester fabrics. J. Saudi Chem. Soc., 2016, 20, 165-172.
[http://dx.doi.org/10.1016/j.jscs.2012.06.007]
[40]
Khalil, A.M.; Berghot, M.A.; Gouda, M.A. Synthesis and antibacterial activity of azodispersed dyes incorporating a phthalazinedione moiety for dyeing polyester fabrics. Monatsh. Chem., 2009, 140, 1371-1379.
[http://dx.doi.org/10.1007/s00706-009-0189-4]
[41]
Ashkar, S.M.; El-Apasery, M.A.; Touma, M.M.; Elnagdi, M.H. Synthesis of some novel biologically active disperse dyes derived from 4-methyl-2,6-dioxo-1-propyl-1,2,5,6-tetrahydro-pyridine-3-carbonitrile as coupling component and their colour assessment on polyester fabrics. Molecules, 2012, 17(8), 8822-8831.
[http://dx.doi.org/10.3390/molecules17088822] [PMID: 22832883]
[42]
Tsemeugne, J.; Sopbué Fondjo, E.; Tamokou, J-D.; Rohand, T.; Ngongang, A.D.; Kuiate, J.R.; Sondengam, B.L. Synthesis, characterization, and antimicrobial activity of a novel trisazo dye from 3-amino-4H-thieno[3,4-c][1]benzopyran-4-one. Int. J. Med. Chem., 2018, 20189197821
[http://dx.doi.org/10.1155/2018/9197821] [PMID: 29484208]
[43]
Xu, H.; Zeng, X. Synthesis of diaryl-azo derivatives as potential antifungal agents. Bioorg. Med. Chem. Lett., 2010, 20(14), 4193-4195.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.048] [PMID: 20570508]
[44]
Kumar, C.T.K.; Keshavayya, J.; Rajesh, T.N.; Peethambar, S.K.; Ali, A.R.S. Synthesis, characterization, and biological activity of 5-phenyl-1,3,4-thiadiazole-2-amine incorporated azo dye derivatives. Org. Chem. Int., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/370626]
[45]
Tutak, M.; Dogan, M. Development of bio-active polypropylene fiber containing QA-POSS nanoparticles. Fibers Polym., 2015, 16, 2337-2342.
[http://dx.doi.org/10.1007/s12221-015-5213-1]
[46]
Liu, S.; Ma, J.; Zhao, D. Synthesis and characterization of cationic monoazo dyes incorporating quaternary ammonium salts. Dyes Pigm., 2007, 75, 255-262.
[http://dx.doi.org/10.1016/j.dyepig.2006.05.004]
[47]
Shaki, H. Novel Monoazo disperse and cationic dyes: Preparation, structure investigation, study of spectroscopic, antibacterial and antifungal potential. Monatsh. Chem., 2018, 149, 1149-1160.
[http://dx.doi.org/10.1007/s00706-017-2130-6]
[48]
Singh, H.; Sindhu, J.; Khurana, J.M.; Sharma, C.; Aneja, K.R. Syntheses, biological evaluation and photophysical studies of novel 1,2,3-triazole linked azo dyes. RSC Adv, 2014, 4, 5915.
[http://dx.doi.org/10.1039/c3ra44314k]
[49]
Gaffer, H.E.; Fouda, M.M.; Khalifa, M.E. Synthesis of some novel 2-amino-5-arylazothiazole disperse dyes for dyeing polyester fabrics and their antimicrobial activity. Molecules, 2016, 21(1)E122
[http://dx.doi.org/10.3390/molecules21010122] [PMID: 26805797]
[50]
Tsemeugne, J.; Sopbué Fondjo, E.; Tamokou, J-D.; Tonle, I.; Kengne, I.C.; Ngongang, A.D.; Lacmata, S.T.; Rohand, T.; Kuiate, J.R.; Sondengam, B.L. Electrochemical behavior and in-vitro antimicrobial screening of some thienylazoaryls dyes. Chem. Cent. J., 2017, 11(1), 119.
[http://dx.doi.org/10.1186/s13065-017-0345-6] [PMID: 29159480]
[51]
Banpurkar, A.R.; Wazalwar, S.; Perdih, F. Aqueous phase synthesis, crystal structure and antimicrobial activity of 4-(substituted phenylazo)-3-methyl-4h-isoxazol-5-one azo dyes. Bull. Chem. Soc. Ethiop., 2018, 32, 249.
[http://dx.doi.org/10.4314/bcse.v32i2.6]
[52]
Sontheimer, H.; Bridges, R.J. Sulfasalazine for brain cancer fits. Expert Opin. Investig. Drugs, 2012, 21(5), 575-578.
[http://dx.doi.org/10.1517/13543784.2012.670634] [PMID: 22404218]
[53]
Su, R.; Lü, L.; Zheng, S.; Jin, Y.; An, S. Synthesis and characterization of novel azo-containing or azoxy-containing schiff bases and their antiproliferative and cytotoxic activities. Chem. Res. Chin. Univ., 2015, 31, 60-64.
[http://dx.doi.org/10.1007/s40242-015-4355-4]
[54]
Mahmoud, W.H.; Omar, M.M.; Sayed, F.N. Synthesis, spectral characterization, thermal, anticancer and antimicrobial studies of bidentate azo dye metal complexes. J. Therm. Anal. Calorim., 2016, 124, 1071-1089.
[http://dx.doi.org/10.1007/s10973-015-5172-1]
[55]
El-Ghamry, H.A.; Fathalla, S.K.; Gaber, M. Synthesis, structural characterization and molecular modelling of bidentate azo dye metal complexes: DNA interaction to antimicrobial and anticancer activities. Appl. Organomet. Chem., 2018, 32e4136
[http://dx.doi.org/10.1002/aoc.4136]
[56]
Sharma, R.; Rawal, R.K.; Gaba, T.; Singla, N.; Malhotra, M.; Matharoo, S.; Bhardwaj, T.R. Design, synthesis and ex vivo evaluation of colon-specific azo based prodrugs of anticancer agents. Bioorg. Med. Chem. Lett., 2013, 23(19), 5332-5338.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.059] [PMID: 23968824]
[57]
Kantar, C.; Akal, H.; Kaya, B.; Islamoğlu, F.; Türk, M.; Şaşmaz, S. Novel phthalocyanines containing resorcinol azo dyes; synthesis, determination of PKa values, antioxidant, antibacterial and anticancer activity. J. Organomet. Chem., 2015, 783, 28-39.
[http://dx.doi.org/10.1016/j.jorganchem.2014.12.042]
[58]
Tamokou, J-D.; Tsemeugne, J.; Fondjo, E.S.; Sarkar, P.; Kuiate, J-R.; Djintchui, A.N.; Sondengam, B.L.; Bag, P.K. Antibacterial and cytotoxic activities and SAR of some azo compounds containing thiophene backbone. Pharmacologia, 2016, 7, 182-192.
[http://dx.doi.org/10.5567/pharmacologia.2016.182.192]
[59]
Ho, B.K.; Ngaini, Z.; Neilsen, P.M.; Hwang, S.S.; Linton, R.E.; Kong, E.L.; Lee, B.K. Synthesis and anticancer activities of 4-[(halophenyl)diazenyl]phenol and 4-[(halophenyl)diazenyl]phenyl aspirinate derivatives against nasopharyngeal cancer cell lines. J. Chem., 2017, 2017, 1-7.
[http://dx.doi.org/10.1155/2017/6760413]
[60]
Rezaei-Seresht, E.; Mireskandari, E.; Kheirabadi, M.; Cheshomi, H.; Rezaei-Seresht, H.; Aldaghi, L.S. Synthesis and anticancer activity of new azo compounds containing extended π-conjugated systems. Chem. Pap., 2017, 71, 1463-1469.
[http://dx.doi.org/10.1007/s11696-017-0140-9]
[61]
Ali, Y.; Hamid, S.A.; Rashid, U. Biomedical applications of aromatic azo compounds. Mini Rev. Med. Chem., 2018, 18(18), 1548-1558.
[http://dx.doi.org/10.2174/1389557518666180524113111] [PMID: 29792144]
[62]
Wang, Z.; Jacobson, O.; Tian, R.; Mease, R.C.; Kiesewetter, D.O.; Niu, G.; Pomper, M.G.; Chen, X. Radioligand therapy of prostate cancer with a long-lasting prostate-specific membrane antigen targeting agent Y-DOTA-EB-MCG. Bioconjug. Chem., 2018, 29(7), 2309-2315.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00292] [PMID: 29865797]
[63]
Yamamoto, T.; Ikuta, K.; Oi, K.; Abe, K.; Uwatoku, T.; Hyodo, F.; Murata, M.; Shigetani, N.; Yoshimitsu, K.; Shimokawa, H.; Utsumi, H.; Katayama, Y. In vivo MR detection of vascular endothelial injury using a new class of MRI contrast agent. Bioorg. Med. Chem. Lett., 2004, 14(11), 2787-2790.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.066] [PMID: 15125933]
[64]
Amidon, S.; Brown, J.E.; Dave, V.S. Colon-targeted oral drug delivery systems: Design trends and approaches. AAPS PharmSciTech, 2015, 16(4), 731-741.
[http://dx.doi.org/10.1208/s12249-015-0350-9] [PMID: 26070545]
[65]
Xie, X.; Zhao, Y.; Ma, C-Y.; Xu, X-M.; Zhang, Y-Q.; Wang, C-G.; Jin, J.; Shen, X.; Gao, J-L.; Li, N.; Sun, Z-J.; Dong, D-L. Dimethyl fumarate induces necroptosis in colon cancer cells through GSH depletion/ROS increase/MAPKs activation pathway. Br. J. Pharmacol., 2015, 172(15), 3929-3943.
[http://dx.doi.org/10.1111/bph.13184] [PMID: 25953698]
[66]
Ma, Z-G.; Ma, R.; Xiao, X-L.; Zhang, Y-H.; Zhang, X-Z.; Hu, N.; Gao, J-L.; Zheng, Y-F.; Dong, D-L.; Sun, Z-J. Azo polymeric micelles designed for colon-targeted dimethyl fumarate delivery for colon cancer therapy. Acta Biomater., 2016, 44, 323-331.
[http://dx.doi.org/10.1016/j.actbio.2016.08.021] [PMID: 27544813]
[67]
Atkins, S.; Chueh, A.; Barwell, T.; Nunzi, J-M.; Seroude, L. Capture and light-induced release of antibiotics by an azo dye polymer. Sci. Rep., 2020, 10(1), 3267.
[http://dx.doi.org/10.1038/s41598-020-60245-6] [PMID: 32094405]
[68]
Surucu, O.; Abaci, S. Characterization and application of azo dye (E)-N-phenyl-4-(thiazole-2-yldiazenyl)aniline (PDA) for biomedical sterilization. J. Mech. Behav. Biomed. Mater., 2018, 77, 408-413.
[http://dx.doi.org/10.1016/j.jmbbm.2017.09.033] [PMID: 29020663]
[69]
Kumari, R.; Sunil, D.; Ningthoujam, R.S.; Kumar, N.A. Azodyes as markers for tumor hypoxia imaging and therapy: An up-to-date review. Chem. Biol. Interact., 2019, 307, 91-104.
[http://dx.doi.org/10.1016/j.cbi.2019.04.034] [PMID: 31047917]
[70]
Uddin, M.I.; Evans, S.M.; Craft, J.R.; Marnett, L.J.; Uddin, M.J.; Jayagopal, A. Applications of azo-based probes for imaging retinal hypoxia. ACS Med. Chem. Lett., 2015, 6(4), 445-449.
[http://dx.doi.org/10.1021/ml5005206] [PMID: 25893047]
[71]
Szymański, W.; Beierle, J.M.; Kistemaker, H.A.V.; Velema, W.A.; Feringa, B.L. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem. Rev., 2013, 113(8), 6114-6178.
[http://dx.doi.org/10.1021/cr300179f] [PMID: 23614556]
[72]
Brown, C.; Rastogi, S.K.; Barrett, S.L.; Anderson, H.E.; Twichell, E.; Gralinski, S.; McDonald, A.; Brittain, W.J. Differential azobenzene solubility increases equilibrium cis/trans ratio in water. J. Photoch. Photobiol. A., 2017, 336, 140-145.
[http://dx.doi.org/10.1016/j.jphotochem.2016.12.013]
[73]
Lerch, M.M.; Hansen, M.J.; van Dam, G.M.; Szymanski, W.; Feringa, B.L. Emerging targets in photopharmacology. Angew. Chem. Int. Ed. Engl., 2016, 55(37), 10978-10999.
[http://dx.doi.org/10.1002/anie.201601931] [PMID: 27376241]
[74]
Hüll, K.; Morstein, J.; Trauner, D. In vivo photopharmacology. Chem. Rev., 2018, 118(21), 10710-10747.
[http://dx.doi.org/10.1021/acs.chemrev.8b00037] [PMID: 29985590]
[75]
Hansen, M.J.; Velema, W.A.; Lerch, M.M.; Szymanski, W.; Feringa, B.L. Wavelength-selective cleavage of photoprotecting groups: strategies and applications in dynamic systems. Chem. Soc. Rev., 2015, 44(11), 3358-3377.
[http://dx.doi.org/10.1039/C5CS00118H] [PMID: 25917924]
[76]
Blanco, B.; Palasis, K.A.; Adwal, A.; Callen, D.F.; Abell, A.D. Azobenzene-containing photoswitchable proteasome inhibitors with selective activity and cellular toxicity. Bioorg. Med. Chem., 2017, 25(19), 5050-5054.
[http://dx.doi.org/10.1016/j.bmc.2017.06.011] [PMID: 28642029]
[77]
Engdahl, A.J.; Torres, E.A.; Lock, S.E.; Engdahl, T.B.; Mertz, P.S.; Streu, C.N. Synthesis, characterization, and bioactivity of the photoisomerizable tubulin polymerization inhibitor azo-combretastatin A4. Org. Lett., 2015, 17(18), 4546-4549.
[http://dx.doi.org/10.1021/acs.orglett.5b02262] [PMID: 26335519]
[78]
Rastogi, S.K.; Zhao, Z.; Barrett, S.L.; Shelton, S.D.; Zafferani, M.; Anderson, H.E.; Blumenthal, M.O.; Jones, L.R.; Wang, L.; Li, X.; Streu, C.N.; Du, L.; Brittain, W.J. Photoresponsive azo-combretastatin A-4 analogues. Eur. J. Med. Chem., 2018, 143, 1-7.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.012] [PMID: 29172077]
[79]
Velema, W.A.; Hansen, M.J.; Lerch, M.M.; Driessen, A.J.M.; Szymanski, W.; Feringa, B.L. Ciprofloxacin–photoswitch conjugates: A facile strategy for photopharmacology. Bioconjug. Chem., 2015, 26(12), 2592-2597.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00591] [PMID: 26574623]
[80]
Wegener, M.; Hansen, M.J.; Driessen, A.J.M.; Szymanski, W.; Feringa, B.L. Photocontrol of antibacterial activity: Shifting from UV to red light activation. J. Am. Chem. Soc., 2017, 139(49), 17979-17986.
[http://dx.doi.org/10.1021/jacs.7b09281] [PMID: 29136373]
[81]
Kaulage, M.H.; Maji, B.; Pasadi, S.; Bhattacharya, S.; Muniyappa, K. Novel ruthenium azo-quinoline complexes with enhanced photonuclease activity in human cancer cells. Eur. J. Med. Chem., 2017, 139, 1016-1029.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.059] [PMID: 28910739]
[82]
Schehr, M.; Ianes, C.; Weisner, J.; Heintze, L.; Müller, M.P.; Pichlo, C.; Charl, J.; Brunstein, E.; Ewert, J.; Lehr, M.; Baumann, U.; Rauh, D.; Knippschild, U.; Peifer, C.; Herges, R. 2-Azo-, 2-diazocine-thiazols and 2-azo-imidazoles as photoswitchable kinase inhibitors: Limitations and pitfalls of the photoswitchable inhibitor approach. Photochem. Photobiol. Sci., 2019, 18(6), 1398-1407.
[http://dx.doi.org/10.1039/C9PP00010K] [PMID: 30924488]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy