Generic placeholder image

Venoms and Toxins

Editor-in-Chief

ISSN (Print): 2666-1217
ISSN (Online): 2666-1225

Review Article

A Review on the Role of Polymers in Pharmaceutical Applications

Author(s): Hourieh Alkadi*

Volume 1, Issue 1, 2021

Published on: 16 November, 2020

Page: [41 - 55] Pages: 15

DOI: 10.2174/2666121701999201116154850

Abstract

Development of a new drug molecule is costly and requires a long time. Many attempts have been made to improve the safety of the effective level of "old" drugs, utilizing various ways like individualizing drug therapy, curative drug control, and dose titration. But, recently, important efforts have been made to discover the novel drug releasing systems, which can be supplied to a target system in the human body, while controlling the level and time of delivery. Polymers, whether synthetic or natural, have great importance in pharmaceutical applications, especially in the field of drug delivery. The use of polymers in pharmaceutical applications ranges from their use as binders in tablets to viscosity and flow controlling factors in liquids, and they can be used in suspensions and emulsions; also, in some cases, they can be used as film coatings. Moreover, they may be used as membranes implanted within the living body. Current work highlights the importance of drug delivery systems and the role of polymers in them.

Keywords: Drug delivery system, dissolution, diffusion, erosion based design, pharmaceutical polymers, polymerization, pharmaceutical applications.

Graphical Abstract

[1]
Rolando, M.A.; Roque, M. The physical chemistry of materials: energy and environmental applications; CRC. Press, 2016, p. 89.
[2]
McCrum, N.G.; Buckley, C.P.; Bucknall, C.B. Principles of polymer engineering; Oxford University Press: Oxford, New York, 1997.
[3]
Painter, P.C.; Coleman, M.M. Fundamentals of polymer science: an introductory text; Technomic Pub.: Lancaster, Pa., 1997.
[4]
Sowjanya, M.; Debnath, S. Lavanya, P.; Thejovathi, R.; Babu, M. polymers used in the designing of controlled drug delivery system. Res. J. Pharm. and Tech., 2017, 10(3), 903-912.
[http://dx.doi.org/10.5958/0974-360X.2017.00168.8]
[5]
Mustafa, N.; Mohammed, A.; Omer, A.; Mohamed, E.; Garlnabi, M.; Hamed, A. Reviewing of general polymer types, properties and application in medical field. Int. J. Sci. Res. (Ahmedabad), 2016, 5(8), 2319-7064.
[6]
Gandhi, K.J.; Deshmane, S.V.; Biyani, K.R. polymers in pharmaceutical drug delivery system: a review. Int. J. Pharm. Sci. Rev. Res., 2012, 14(2), 57-66.
[7]
Deming, T.J. Polypeptide materials: New synthetic methods and applications. Adv. Mater., 1997, 9(4), 299-311.
[http://dx.doi.org/10.1002/adma.19970090404]
[8]
Siepmann, J.; Faham, A.; Clas, S.D.; Boyd, B.; Jannin, V.; Bernkop-Schnürch, A.; Zhao, H.; Lecommandoux, S.; Evans, J.; Allen, C.; Merkel, O. Costabile, Morgan, R.; Alexander; Ricky, D.; Wildman; Roberts, C.; Leroux, J. K. Lipids and polymers in pharmaceutical technology: Lifelong companions. Int. J. Pharm., 2019, 5(58), 128-142.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.080]
[9]
Vajra Priya, V.; Roy, H.K.; Jyothi, N.; Prasanthi, K. polymers in drug delivery technology, types of polymers and applications. Sch. Acad. J. Pharm., 2016, 5(7), 305-308.
[10]
Larson, N.; Ghandehari, H. Polymeric conjugates for drug delivery. Chem. Mater., 2012, 24(5), 840-853.
[http://dx.doi.org/10.1021/cm2031569]
[11]
Godwin, A.; Bolina, K.; Clochard, M.; Dinand, E.; Rankin, S.; Simic, S.; Brocchini, S. New strategies for polymer development in pharmaceutical science – a short review. JPP, 2001, 53, 1175-1184.
[http://dx.doi.org/10.1211/0022357011776612]
[12]
Ringsdorf, H. Structure and properties of pharmacologically active polymers.Polymer SCI.: Symposium; , 1975, 51, pp. 135-153.
[http://dx.doi.org/10.1002/polc.5070510111]
[13]
Markovsky, E.; Baabur-Cohen, H.; Eldar-Boock, A.; Omer, L.; Tiram, G.; Ferber, S.; Ofek, P.; Polyak, D.; Scomparin, A.; Satchi-Fainaro, R. Administration, distribution, metabolism and elimination of polymer therapeutics. J. Control. Release, 2012, 161, 446-460.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.021]
[14]
Duncan, R.; Ringsdorf, H.; Satchi-Fainaro, R. Polymer therapeutics—polymers as drugs, drug and protein conjugates and gene delivery systems: Past, present and future opportunities. J. Drug Target., 2006, 14(6), 337-341.
[http://dx.doi.org/10.1080/10611860600833856]
[15]
Wen, H.; Jung, H.; Li, X. Drug delivery approaches in addressing clinical pharmacology-related issues: opportunities and challenges. AAPS J., 2015, 17(6), 1327-1340.
[http://dx.doi.org/10.1208/s12248-015-9814-9]
[16]
Pillai, O.; Panchagnula, R. Polymers in drug delivery. Curr. Opin. Chem. Biol., 2001, 5, 447-451.
[http://dx.doi.org/10.1016/S1367-5931(00)00227-1]
[17]
Whittlesey, K.J.; Shea, L.D. Delivery systems for small molecule drugs, proteins and DNA: the neuroscience/biomaterial interface. Exp. Neurol., 2004, 190, 1-16.
[http://dx.doi.org/10.1016/j.expneurol.2004.06.020]
[18]
Pang, X.; Du, H.L.; Zhang, H.Q.; Zhai, Y.J.; Zhai, G.X. Polymer-drug conjugates: present state of play and future perspectives. Drug Discov. Today, 2013, 16, 1316-1322.
[http://dx.doi.org/10.1016/j.drudis.2013.09.007]
[19]
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release, 2000, 65, 271-284.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5]
[20]
Langer, R. New methods of drug delivery. Science, 1990, 249, 1527-1533.
[http://dx.doi.org/10.1126/science.2218494]
[21]
Freiberg, S.; Zhu, X. Polymer microspheres for controlled drug release. Int. J. Pharm., 2004, 282, 1-18.
[http://dx.doi.org/10.1016/j.ijpharm.2004.04.013]
[22]
Yang, W.W.; Pierstorff, E. Reservoir-based polymer drug delivery systems. J. Lab. Autom., 2012, 17(1), 50-58.
[http://dx.doi.org/10.1177/2211068211428189]
[23]
Stevenson, C.L.; John, T.; Santini, J.; Langer, R. Reservoir-based drug delivery systems utilizing micro-technology. Adv. Drug Deliv. Rev., 2012, 64, 1590-1602.
[http://dx.doi.org/10.1016/j.addr.2012.02.005]
[24]
Blagoeva, R.; Nedev, A. Monolithic controlled delivery systems: Part I. Basic characteristics and mechanisms. Bioauto. J., 2006, 4, 80-88.
[25]
Wise, L.D. Handbook of pharmaceutical controlled release technology; Marcel Dekker, Inc.: New York, Basel, 2000.
[http://dx.doi.org/10.1201/9781482289985]
[26]
Kydonieus, A. Treatise on controlled drug delivery; Marcel Dekker, Inc.: NewYork, 1992.
[27]
Chandran, S.; Laila, F.A.; Mantha, N. Design and evaluation of ethyl cellulose based matrix tablets of ibuprofen with pH modulated release kinetics. Indian J. Pharm. Sci., 2008, 5(70), 596-602.
[http://dx.doi.org/10.4103/0250-474X.45397]
[28]
Gothi, G.D.; Parinh, B.N.; Patel, T.D.; Prajapati, S.T.; Patel, D.M.; Patel, C.N. J. Glob. Pharma Technol., 2010, 2(2), 69-74.
[29]
Dhikav, V.; Sindhu, S.; Anand, K.S. Newer non-steroidal anti-inflammatory drugs: A review of their therapeutic potential and adverse drug reactions. J. Indian Acad. Clinical Med., 2002, 3, 332-338.
[30]
Nagendrakumar, D.; Keshavshetti, G.G.; Shardor, A.G. An overview: Matrix tablets as sustained release. Recent Res. Sci. Technol., 2013, 5(4), 36-45.
[31]
Grassi, M. Lapasin, R.; Pricl, S. modeling of drug release from a swellable matrix. Chem. Eng. Commun., 1998, 169, 79-109.
[http://dx.doi.org/10.1080/00986449808912722]
[32]
Brahmankar, D.M.; Jaiswal, S.B. Biopharmaceutics and Pharmacokinetics, 2nd ed; Vallabh Prakashan: Delhi, 2009, pp. 399-401.
[33]
Manish, J.; Abhay, K. Sustained release matrix type drug delivery system: a review. J. Drug Deliv. Ther., 2012, 2(6), 142-148.
[34]
Jantzen, G.M.; Robinson, J.R. Sustained and controlled-release drug deliverysystemsBanker G.S, Rhodes C.T (Eds.) Modern Pharmaceutics, Third Edition, Revised and Expanded. Drugs and the Pharmaceutical Sciences; Marcell Dekker, Inc. New York.,. , 1995, 72, pp. 575-609.
[35]
Vyas, S.P.; Khar, R.K. Controlled drug delivery: Concepts and advances.Vallabh prakashan.,, 2002, pp. 156-189.
[36]
Zimmer, Ł.; Kasperek, R.; Poleszak, E. Modern polymers in matrix tablets technology. Polim. Med., 2014, 44(3), 189-196.
[37]
Mesnukul, A.; Yodkhum, K.; Phaechamud, T. Solid dispersion matrix tablet comprising indomethacin-peg-hpmc fabricated with fusion and mold technique. Indian J. Pharm. Sci., 2009, 71(4), 413-420.
[http://dx.doi.org/10.4103/0250-474X.57290]
[38]
Venkataraju, M.P.; Gowda, D.V.; Rajesh, K.S.; Shivakumar, H.G. Xanthan and locust bean gum (from ceratoniasiliqua) matrix tablets for oral controlled delivery of metoprolol tartrate. Asian J. Pharm. Sci., 2007, 2(6), 239-248.
[39]
Vidyadhara, S.; Sasidhar, R.L.C.; Nagaraju, R. Design and development of polyethylene oxide based matrix tablets for verapamil hydrochloride. Indian J. Pharm. Sci., 2013, 75(2), 185-190.
[40]
Maggi, L.; Segale, L.; Torre, M.L.; Ochoa Machiste, E.; Conte, U. Dissolution behavior of hydrophilic matrix tablets containing two different polyethylene oxides (PEOs) for the controlled release of a water-soluble drug. Dimensionality study. Biomaterials, 2002, 23, 1113-1119.
[http://dx.doi.org/10.1016/S0142-9612(01)00223-X]
[41]
Bashir, A.; Abbas, S.; Iqbal, Z.; Bahir, S.; Ali, J. Synthesis of cross linked PVP hydrogels and its use for the control release of anti-asthmatic drugs. Middle East J. Sci. Res., 2012, 14(2), 273-283.
[42]
Sreenivasa Rao, B.; Seshasayana, A.; Himasankar, K.; Yalavarthi, P.R.; Kolapalli, R.V. Design and evaluation of ethylene vinyl acetate sintered matrix tablets. Indian J. Pharm. Sci., 2002, 65(5), 496-502.
[43]
Prakhar, A.; Semimu, L.A. A comprehensive review on sustained release matrix tablets: a promising dosage form. Univers. J. Pharm. Res., 2018, 3(6), 53-58.
[44]
Kaushik, M.; Tathagata, K.; Al Biswanath, S. 3+ ion cross-linked matrix tablets of sodium carboxymethyl cellulose for controlled release of aceclofenac: Development and in-vitro evaluation. Sch. Res. J., 2012, 4(6), 1633-1647.
[45]
Rishabha, M.; Srivastava, P.; Mayank, B.; Kumar, S.P.; Malviya, R.; Malviya, M. Formulation and optimization of sustained release matrix tablets of diclofenac sodium using pectin as release modifier. Int. J. Drug Deliv., 2010, 2(2), 330-335.
[46]
Guggi, D.; Marschütz, M.K.; Bernkop-Schnürch, A. Matrix tablets based on thiolated poly(acrylic acid): pH-dependent variation in disintegration and mucoadhesion. Int. J. Pharm., 2004, 4(1-2), 97-105.
[http://dx.doi.org/10.1016/j.ijpharm.2003.06.001]
[47]
Siahi, M.R.; Barzegar-Jalali, M.; Monajjemzadeh, F.; Ghaffari, F.; Azarmi, S. Design and evaluation of 1- and 3-layer matrices of verapamil hydrochloride for sustaining its release. APS Pharm. Sci. Tech., 2005, 6(4), E626-E632.
[http://dx.doi.org/10.1208/pt060477]
[48]
Huynh, C.T.; Lee, D.S. Controlled release. Encyclopedia of polymeric nanomaterials; Springer-Verlag Berlin Heidelberg, 2014, pp. 1-12.
[49]
Siepmann, J.; Siegel, R.A.; Siepmann, F. Diffusion controlled drug delivery systems.Fundamentals and applications of controlled release drug delivery. Advances in delivery science and technology ; Siepmann, J.; Siegel, R.A.; Rathbone, M.J., Eds.; Springer: New York, 2012, pp. 127-152.
[50]
Pandit, J.K.; Singh, S.; Muthu, M.S. Controlled release formulations in neurologypractice. Ann. Indian Acad. Neurol., 2006, 9, 207-216.
[http://dx.doi.org/10.4103/0972-2327.29202]
[51]
Mircioiu, C.; Voicu, V.; Anuta, V.; Tudose, A.; Celia, C.; Paolino, D.; Fresta, M.; Sandulovici, R.; Mircioiu, I. mathematical modeling of release kinetics from supramolecular drug delivery systems. Pharmaceutics, 2019, 11(140), 1-45.
[http://dx.doi.org/10.3390/pharmaceutics11030140]
[52]
Go1pferich, A. Polymer bulk erosion. Macromolecules, 1997, 30, 2598-2604.
[http://dx.doi.org/10.1021/ma961627y]
[53]
Sevim, K.; Pan, J. A model for hydrolytic degradation and erosion of biodegradable polymers. Acta Biomater., 2018, 15(66), 192-199. [PubMed]
[http://dx.doi.org/10.1016/j.actbio.2017.11.023]
[54]
Engineer, C.; Parikh, J.; Raval, A. Review on hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery system. Trends Biomater. Artif. Organs, 2011, 25(2), 79-85.
[55]
Ulery, B.D.; Nair, L.S.; Laurencin, C.T. Biomedical applications of biodegradable polymers. J. Polym. Sci., 2011, 49, 832-864.
[56]
Tamada, J.A.; Langer, R. Erosion kinetics of hydrolytically degradable polymers. Proc. Natl. Acad. Sci. USA, 1993, 90, 552-556.
[http://dx.doi.org/10.1073/pnas.90.2.552]
[57]
Lyu, S.; Untereker, D. Degradability of polymers for implantable biomedical devices. Int. J. Mol. Sci., 2009, 10, 4033-4065.
[http://dx.doi.org/10.3390/ijms10094033]
[58]
Ruairí, P.; Andrew, B.; Dove, P. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates. Biomater. Sci., 2017, 5, 9-21.
[http://dx.doi.org/10.1039/C6BM00584E]
[59]
Haaf, F.; Sanner, A.; Straub, F. Polymers of N-Vinylpyrrolidone: synthesis, characterization and uses. Polym. J., 1985, 17(14), 3-152.
[http://dx.doi.org/10.1295/polymj.17.143]
[60]
Ganesan, S.; Felo, J.; Saldana, M.; Kalasinsky, V.F.; Lewin-Smith, M.R.; and Tomashefski Jr, J.F. Embolized crospovidone (polyN-vinyl-2-pyrrolidone) in the lungs of intravenous drug users. Mod. Pathol., 2003, 16(4), 286-292.
[http://dx.doi.org/10.1097/01.MP.0000062653.65441.DA]
[61]
Wohlfarth, C. thermodynamic properties of polymer solutions.Landolt-Börnstein, New Series, Group VIII, Volume 6D. Landolt- Börnstein - Group VIII Advanced Materials and Technologies. 6D2; Springer Verlag. , 2010, pp. 1266-1267.
[62]
O’Neil, M.J.; Heckelman, P.E.; Koch, C.B.; Roman, K.J. The Merck Index, An Encyclopedia of Chemicals, Drugs, and Biologicals, 14th ed; J. Chem. Inf. Model, 2010.
[63]
Teodorescu, M.; Bercea, M. Poly(vinylpyrrolidone) – A versatile polymer for biomedical and beyond medical applications. Polym. Plast. Technol. Eng., 2015, 54, 923-943.
[http://dx.doi.org/10.1080/03602559.2014.979506]
[64]
jayarajakumar, k.; hemanth kumar reddy, c.; gunashakaran, v.; ramesh, y.; kalayanbabu, p.; pawan narasimha, n.; venkatewarulu, a.; lakshmi kanth reddy, p. application of broad spectrum antiseptic povidone iodine as powerful action: a review. J. Pharm. Sci. Technol., 2009, 1(2), 48-58.
[65]
Zhi, X.; Fang, H.; Bao, C.; Shen, G.; Zhang, J.; Wang, K.; Guo, S.; Wan, T.; Cui, D. The immunotoxicity of graphene oxides and the effect of PVP-coating. Biomaterials, 2013, 34, 5254-5261.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.024]
[66]
Folttmann, B.H.; Quadir, A. Excipients in pharmaceuticals: An overview. Drug Deliv. Technol., 2008, 8, 22-27.
[67]
Halake, K.; Birajdar, M.; Kim, B.S.; Bae, H.; Lee, C.; Kim, Y.J.; Kim, S.; Kim, H.J.; Ahn, S.; An, S.Y.; Lee, J. Recent application developments of water-soluble synthetic polymers. J. Ind. Eng. Chem., 2014, 1843, 1-6.
[http://dx.doi.org/10.1016/j.jiec.2014.01.006]
[68]
Raimi-Abraham, B.T.; Mahalingam, S.; Edirisinghe, M.; Craig, D.Q.M. Generation of poly(N-vinylpyrrolidone) nanofibres using pressurized gyration. Mater. Sci. Eng., 2014, 39, 168-176.
[http://dx.doi.org/10.1016/j.msec.2014.02.016]
[69]
Jain, P.; Banga, A.K. Inhibition of crystallization in drug-in-adhesive type transdermal patches. Int. J. Pharm., 2010, 394, 68-74.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.042]
[70]
Veeren, A.; Bhaw-Luximon, A.; Jhurry, D. Polyvinylpyrrolidone–polycaprolactone block copolymer micelles as nanocarriers of anti-TB drugs. Eur. Polym. J., 2013, 49, 3034-3045.
[http://dx.doi.org/10.1016/j.eurpolymj.2013.06.020]
[71]
Yang, M.; Xie, S.; Li, Q.; Wang, Y.; Chang, X.; Shan, L.; Sun, L.; Huang, X.; Gao, C. Effects of polyvinylpyrrolidone both as a binder and pore-former on the release of sparingly water-soluble topiramate from ethylcellulose coated pellets. Int. J. Pharm., 2014, 465, 187-196.
[http://dx.doi.org/10.1016/j.ijpharm.2014.02.021]
[72]
Jones, D. Pharmaceutical applications of polymers for drug delivery. Smithers Rapra, 2004, 15(6), 1-134.
[73]
Sohail, K.; Khan, I.; Shahzad, Y.; Hussain, T.; Ranjha, N.M. pH-sensitive polyvinylpyrrolidone-acrylic acid hydrogels: Impact of material parameters on swelling and drug release. Braz. J. Pharm. Sci., 2014, 50(1), 173-184.
[http://dx.doi.org/10.1590/S1984-82502011000100018]
[74]
Prabha, G.; Raj, V. Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications. J. Magn. Magn. Mater., 2016, 408, 26-34.
[http://dx.doi.org/10.1016/j.jmmm.2016.01.070]
[75]
Katarzyna, A.; Mierska, K.; Kuc, K.; Ciach, T. Polyvinylpyrrolidone-polyurethane interpolymer hydrogel coating as a local drug delivery system. Acta Pol. Pharm. Drug Research., 2008, 65(6), 763-766.
[76]
Lee, D.R.; Ho, M.; Choi, Y.W.; Kang, M.J. A polyvinylpyrrolidone-based supersaturableself-emulsifying drug delivery system for enhanceddissolution of cyclosporine a. Polymers (Basel), 2017, 9(124), 1-11.
[77]
De Silva, D.J.; Olver, J.M. Hydroxypropyl methylcellulose (HPMC) lubricant facilitates insertion of porous spherical orbital implants. Ophthal. Plast. Reconstr. Surg., 2005, 21(4), 301-302.
[http://dx.doi.org/10.1097/01.iop.0000170417.19223.6c]
[78]
Williams, R.O.; Sykora, M.A.; Mahaguna, V. Method to recover a lipophilic drug from hydroxypropyl methylcellulose matrix tablets. AAPS PharmSciTech, 2001, 2(2), , E8..
[http://dx.doi.org/10.1208/pt020208]
[79]
Majumder, T.; Biswas, G.R.; Majee, S.B. Hydroxy propyl methyl cellulose: Different aspects in drug delivery. J. Pharm. Pharmacol., 2016, 4, 381-385.
[80]
Williams, H.D.; Ward, R.; Hardy, I.J.; Melia, C.D. Drug Release from HPMC Matrices in Milk and Fat-Rich Emulsion. J. Pharm. Sci., 2011, 100(11), 4823-4835.
[http://dx.doi.org/10.1002/jps.22689]
[81]
Huichao, W.; Shouying, D.; Yang, L.; Ying, L.; Di, W. The application of biomedical polymer material hydroxypropylmethyl cellulose(HPMC) in pharmaceutical preparations. J. Chem. Pharm. Res., 2014, 6(5), 155-160.
[82]
Xiao, L.; Yi, T. Mechanisms of hydroxypropyl methylcellulose for the precipitation inhibitor of supersaturatable self-emulsifying drug delivery systems. Yao Xue Xue Bao, 2013, 48(5), 767-772.
[83]
Oh, C.M. SiaHeng, P. W.; Chan, L. W. A study on the impact of hydroxypropyl methylcellulose on the viscosity of PEG melt suspensions using surface plots and principal component analysis. AAPS PharmSciTech, 2015, 16(2), 466-477.
[http://dx.doi.org/10.1208/s12249-014-0204-x]
[84]
Siang, R.; Yong, T.S.; Lee, S.Y.; Basavaraj, A.K. oh, R.Y.; Rathbone, M. J. Formulation and evaluation of topical pentoxifylline-hydroxypropyl methylcellulose gels for wound healing application. Int. J. Pharm. Pharm. Sci., 2014, 6(9), 535-539.
[85]
Al-Tabakha, M.M. HPMC capsules: current status and future prospects. J. Pharm. Pharm. Sci., 2010, 13(3), 428-442.
[http://dx.doi.org/10.18433/J3K881]
[86]
Nep, E.I.; Conway, B.R. Grewia Gum 2: Mucoadhesive properties of compacts and gels. Trop. J. Pharm. Res., 2011, 10(4), 393-401.
[http://dx.doi.org/10.4314/tjpr.v10i4.4]
[87]
Enayatifard, R.; Saeedi, M.; Akbari, J.; Haeri Tabatabaee, Y. Effect of hydroxypropyl methylcellulose and ethyl cellulose content on release profile and kinetics of diltiazem HCl from matrices. Trop. J. Pharm. Res., 2009, 8(5), 425-432.
[http://dx.doi.org/10.4314/tjpr.v8i5.48086]
[88]
Nasatto, P.L.; Pignon, F.; Silveira, J.L.M.; Duarte, M.E.R.; Noseda, M.D.; Rinaudo, M. Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers (Basel), 2015, 7, 777-803.
[http://dx.doi.org/10.3390/polym7050777]
[89]
Roy, A.; Ghosh, A.; Datta, S.; Das, S.; Mohanraj, P.; Deb, J.; Rao, M.E.B. Effects of plasticizers and surfactants onthe film forming properties of hydroxypropyl methylcellulose for the coating of diclofenac sodium tablets. Saudi Pharm. J., 2009, 17(3), 233-241.
[http://dx.doi.org/10.1016/j.jsps.2009.08.004]
[90]
Ma, L.; Deng, L.; Chen, J. applications of poly(ethylene oxide) in controlled release tablet systems: a review. Drug Dev. Ind. Pharm., 2014, 40(7), 845-851.
[91]
Boeva, Zh.A.; Sergeyev, V.G. Polyaniline: Synthesis, properties, and application. Polym. Sci. Ser. C, 2014, 56(1), 144-153.
[http://dx.doi.org/10.1134/S1811238214010032]
[92]
Karim, M.R.; Yeum, J.H.; Lee, M.S.; Lim, K.T. Preparation of conducting polyaniline/TiO2 composite submicron-rods by the gamma-radiolysis oxidative polymerization method. React. Funct. Polym., 2008, 68, 1371-1376.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2008.06.016]
[93]
Sixiang, L.I.; Jasim, A.; Zhao, W.; Fu, L. Wajid Ullah, M.; Shi, Z.; Yang, G. Fabrication of pH-electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system. ES Mater. Manuf., 2018, 1(41), 41-49.
[94]
Jotiram, K.P.; Prasad, R.G.S.V. Jakka, V. S.; Aparna, R.S.L.; Phani, A.R. Antibacterial activity of nanostructured polyaniline combined with mupirocin. Nano Biomed. Eng., 2012, 4(3), 144-149.
[http://dx.doi.org/10.5101/nbe.v4i3.p144-149]
[95]
Cookson, B.D. The emergence of mupirocin resistance: achallenge toinfectioncontrolandantibioticprescribingpractice. J. Antimicrob. Chemother., 1998, 41, 11-18.
[http://dx.doi.org/10.1093/jac/41.1.11]
[96]
Razzak, M.T.; Darwis, D. Zainuddin; Sukirno. Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiat. Phys. Chem., 2001, 62, 107-113. [CrossRef]
[http://dx.doi.org/10.1016/S0969-806X(01)00427-3]
[97]
Qiu, K.; Netravali, A.N. A Composting study of membrane-like polyvinyl alcohol based resins and nanocomposites. J. Polym. Environ., 2013, 21, 658-674.
[http://dx.doi.org/10.1007/s10924-013-0584-0]
[98]
Cho, D.; Netravali, A.N.; Joo, Y.L. Mechanical properties and biodegradability of electrospun soy protein Isolate/PVA hybrid nanofibers. Polym. Degrad., 2012, 97, 747-754. [CrossRef]
[http://dx.doi.org/10.1016/j.polymdegradstab.2012.02.007]
[99]
Demerlis, C.C.; Schoneker, D.R. Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem. Toxicol., 2003, 41, 319-326. [CrossRef]
[http://dx.doi.org/10.1016/S0278-6915(02)00258-2]
[100]
Liu, M.; Guo, B.; Du, M.; Jia, D. Drying induced aggregation of halloysite nanotubes in polyvinylalcohol/halloysite nanotubes solution and its effect on properties of composite film. Appl. Phys., A Mater. Sci. Process., 2007, 88, 391-395.
[http://dx.doi.org/10.1007/s00339-007-3995-8]
[101]
Limpan, N.; Prodpran, T.; Benjakul, S.; Prasarpran, S. Influences of degree of hydrolysis and molecular weight of poly (vinyl alcohol) (PVA) on properties of fish myofibrillar protein/PVA blend films. Food Hydrocoll., 2012, 29, 226-233.
[http://dx.doi.org/10.1016/j.foodhyd.2012.03.007]
[102]
Maria, T.M.; Carvalho, R.A.; Sobral, P.J.; Habitantea, A.M.; Solorza-Feriab, J. The effect of the degree of hydrolysis of the PVA and the plasticizer concentration on the color, opacity, and thermal and mechanical properties of films based on PVA and gelatin blends. J. Food Eng., 2008, 87, 191-199.
[http://dx.doi.org/10.1016/j.jfoodeng.2007.11.026]
[103]
Yang, J.M.; Su, W.Y.; Leu, T.L.; Yang, M.C. Evaluation of chitosan/PVA blended hydrogel membranes. J. Membr. Sci., 2004, 236, 39-51. [CrossRef]
[http://dx.doi.org/10.1016/j.memsci.2004.02.005]
[104]
Kaity, S.; Isaac, J.; Ghosh, A. Interpenetrating polymer network of locust bean gum-poly (vinyl alcohol) for controlled release drug delivery. Carbohydr. Polym., 2013, 94, 456-467.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.070]
[105]
Lee, H.; Mensire, R.; Cohen, R.E.; Rubner, M.F. Strategies for hydrogen bonding based layer-by-layer assembly of poly (vinyl alcohol) with weak polyacids. Macromolecules, 2011, 45, 347-355.
[http://dx.doi.org/10.1021/ma202092w]
[106]
Ghebaur, A.; Garea, S.A.; Iovu, H. New polymer–halloysite hybrid materials-potential controlled drug release system. Int. J. Pharm., 2012, 436, 568-573.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.014]
[107]
Han, D.; Yan, L.; Chen, W.; Li, W. Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydr. Polym., 2011, 83, 653-658.
[http://dx.doi.org/10.1016/j.carbpol.2010.08.038]
[108]
Mutsuo, S.; Yamamoto, K.; Furuzono, T.; Kimura, T.; Ono, T.; Kishida, A. Release behavior from hydrogen-bonded polymer gels prepared by pressurization. J. Appl. Polym. Sci., 2011, 119, 2725-2729.
[http://dx.doi.org/10.1002/app.31622]
[109]
Shuai, C.; Mao, Z.; Lu, H.; Nie, Y.; Hu, H.; Peng, S. Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering. Biofabrication, 2013, 5, 015014..
[http://dx.doi.org/10.1088/1758-5082/5/1/015014]
[110]
Muppalaneni, S.; Omidian, H. Polyvinyl alcohol in medicine and pharmacy: A perspective. J. Dev. Drugs, 2013, 2(3), 1-6.
[http://dx.doi.org/10.4172/2329-6631.1000112]
[111]
Gajra, B. Poly vinyl alcohol hydrogel and its pharmaceutical and biomedical applications: a review. Intl. J. Pharm. Res., 2012, 4(2), 20-26.
[112]
Moorthy, S.N. Physicochemical and functional properties of tropical tuber starches: A Review. Starke, 2002, 54, 559-592.
[113]
Builders, P.F.; Arhewoh, M.I. Pharmaceutical applications of native starch in conventional drug delivery. Starke, 2016, 68, 1-10.
[114]
Rowe, R.C.; Sheskey, P.J.; Owen, S.C. Handbook of pharmaceutical excipients, 5th ed; American Pharmacists Association: Washington, DC, USA, 2003.
[115]
Rowe, R.C.; Sheskey, P.J. handbook of pharmaceutical excipients.Advantages and Applications of Nature Excipients. Asian J. Pharm. Res; ed v. royal pharmaceutical society of great britain london. 2006 Corn Refiners Association, Pennsylvania, Washington, D.C Shalin S,. , 2012, 2, pp. (1)30-39.
[116]
Patil, B.S.; Soodam, S.R.; Kulkarni, U.; Korwar, P.G. Evaluation of moringa oleifera gum as a binder in tablet formulation. Int. J. Res. Ayurveda Pharm., 2010, 1(2), 590-596.
[117]
Hartesi, B. widodo, S.; Abdassah, M.; Chaerunisaa, A. Y. Starch as pharmaceutical excipient. Int. J. Pharm. Sci. Rev. Res., 2016, 41(2), 59-64.
[118]
Odeniyi, M.A.; Omoteso, O.A.; Adepoju, A.O.; Jaiyeoba, K.T. Starch nanoparticles in drug delivery: A review. Polym. Med., 2018, 48(1), 41-45.
[http://dx.doi.org/10.17219/pim/99993]
[119]
Xu, Y.; Ding, W.; Liu, J. Preparation and characterization of organic soluble acetylated starch nanocrystals. Carbohydr. Polym., 2010, 80, 1078-1084.
[http://dx.doi.org/10.1016/j.carbpol.2010.01.027]
[120]
Bakrudeen, H.B.; Sudarvizhi, C.; Reddy, B.S.R. Starch nanocrystals based hydrogel: Construction, characterizations and transdermal application. Mater. Sci. Eng. C, 2016, 68, 880-889.
[http://dx.doi.org/10.1016/j.msec.2016.07.018]
[121]
Michaud, J. Starch based excipients for pharmaceutical tablets.Pharm. J; , 2002, pp. 42-44.
[122]
Sandeep, A.; Sangameshwar, K.; Mukesh, G.; Chandrakant, R.; Avinash, D. A Brief overview on chitosan applications. Indo Am. J. Pharm., 2013, 12(3), 1564-1574.
[123]
Kushwaha Swatantra, K.S.; Rai Awani, K. Satyawan. S. Chitosan: A platform for targeted drug delivery. Int. J. Pharm. Tech. Res., 2010, 2(4), 2271-2282.
[124]
Kubota, N.; Tatsumoto, N.; Sano, T.; Toya, K. A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents. Carbohydr. Res., 2000, 324, 268-274.
[http://dx.doi.org/10.1016/S0008-6215(99)00263-3]
[125]
Dev, A.; Binulal, N.S.; Anitha, A.; Nair, S.V.; Furuike, T.; Tamura, H. Preparation of poly(lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydr. Polym., 2010, 80(3), 833-838.
[http://dx.doi.org/10.1016/j.carbpol.2009.12.040]
[126]
Fini, A.; Orienti, I. The role of chitosan in drug delivery. Am. J. Drug Deliv., 2003, 1(1), 43-59.
[http://dx.doi.org/10.2165/00137696-200301010-00004]
[127]
Tozaki, H.; Komoike, J.; Tada, C.; Maruyama, T.; Terabe, A.; Suzuki, T.; Yamamoto, A.; Muranishi, S. Chitosan capsules for colon specific drug delivery: Improvement of insulin absorption from rat colo. J. Pharmceut. Sci., 1997, 86, 1016-1021.
[http://dx.doi.org/10.1021/js970018g]
[128]
Tozaki, H.; Fujita, T.; Odoriba, T.; Terabe, A.; Suzuki, T.; Tanaka, C.; Okabe, S.; Muranishi, S.; Yamamoto, A. Colon, a specific delivery of R68070 new thromboxane synthase inhibitor, using chitosan capsules: Therapeutic effects against 2,4,6-trinitrobenzene sulfonic acid induced ulcerative colitis in rats. Life Sci., 1999, 64, 1155-1162.
[http://dx.doi.org/10.1016/S0024-3205(99)00044-2]
[129]
Kosaraju, S.L. Colon targeted delivery systems: review of polysaccharides for encapsulation and delivery. Crit. Rev. Food Sci. Nutr., 2005, 45, 251-258.
[http://dx.doi.org/10.1080/10408690490478091]
[130]
Bolto, B.A.; Mcneill, R.; Weiss, D.E. Electronic conduction in polymers III: electronic properties of polypyrrole. Aust. J. Chem., 1963, 16, 1090-1103.
[http://dx.doi.org/10.1071/CH9631090]
[131]
Sadki, S.; Schottland, P.; Brodie, N.; Sabouraud, G. The mechanisms of pyrrole electro-polymerization. Chem. Soc. Rev., 2000, 29, 283-293. [Google Scholar]
[http://dx.doi.org/10.1039/a807124a]
[132]
Wang, L.X.; Li, X.G.; Yang, Y.L. Preparation, properties and applications of polypyrroles. React. Funct. Polym., 2001, 47, 125-139.
[http://dx.doi.org/10.1016/S1381-5148(00)00079-1]
[133]
Fonner, J.M.; Forciniti, L.; Nguyen, H.; Byrne, J.; Kou, Y.F.; Syeda-Nawaz, J.; Schmidt, C.E. Biocompatibility implications of polypyrrole synthesis techniques. Biomed. Mater., 2008, 3(3), 034124.
[http://dx.doi.org/10.1088/1748-6041/3/3/034124]
[134]
Janata, J.; Josowicz, M. Progress Article: Conducting polymers in electronic chemical sensors. Nat. Mater., 2003, 2(1), 19-24.
[http://dx.doi.org/10.1038/nmat768]
[135]
Alshammary, B.; Walsh, F.C. Herrasti; P.; Ponce de Leon, C. Electrodeposited conductive polymers for controlled drug release: polypyrrole. J. Solid State Electrochem., 2016, 20, 839-859.
[136]
Kontturi, K.; Pentti, P.; Sundholm, G. Polypyrrole as a model membrane for drug delivery. J. Electroanal. Chem., 1998, 453, 231-238.
[http://dx.doi.org/10.1016/S0022-0728(98)00246-0]
[137]
Ali Shah, S.A.; Firlak, M.; Berrow, S.R.; Halcovitch, N.R.; Baldock, S.J.; Yousafzai, B.M.; Hathout, R.M.; Hardy, J.G. electrochemically enhanced drug delivery using polypyrrole films. Materials (Basel), 2018, 11, 1123.
[http://dx.doi.org/10.3390/ma11071123]
[138]
Pernaut, J.M.; Reynolds, J.R. Use of conducting electroactive polymers for drug delivery and sensing of bioactive molecules. A redox chemistry approach. J. Phys. Chem. B, 2000, 104, 4080-4090.
[http://dx.doi.org/10.1021/jp994274o]
[139]
Smidsrod, O.; Skjak-Bræk, G. Alginate as immobilization matrix for cells. Trends Biotechnol., 1990, 8, 71-78.
[http://dx.doi.org/10.1016/0167-7799(90)90139-O]
[140]
Clark, D.E.; Green, H.C. Alginic acid and process of making same. 2036922 US Patent 1936.
[141]
Sutherland, I.W. Alginates.Biomaterials: novel materials frombiological sources; Byron, D., Ed.; Stockton Press: New York, 1991, pp. 309-331.
[http://dx.doi.org/10.1007/978-1-349-11167-1_7]
[142]
Remminghorst, U.; Rehm, B.H.A. Bacterial alginates: from biosynthesis to applications. Biotechnol. Lett., 2006, 28, 1701-1712.
[http://dx.doi.org/10.1007/s10529-006-9156-x]
[143]
Tønnesen, H.H.; Karlsen, J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm., 2002, 28(6), 621-630.
[144]
Sachan, N.K.; Pushkar, S.; Jha, A.; Bhattcharya, A. Sodium alginate: the wonder polymer for controlled drug delivery. J. Pharm. Res., 2009, 2(8), 1191-1199.
[145]
Whitehead, L.; Collett, J.H.; Fell, J.T. Amoxycillin release from a floating dosage form based on alginates. Int. J. Pharm., 2005, 210(1-2), 45-49.
[146]
Ostberg, T.; Lund, E.M.; Graffner, C. Calcium alginate matrices for oral multiple unit administration. IV. Release characteristics in different media. Int. J. Pharm., 1994, 112(3), 241-248.
[http://dx.doi.org/10.1016/0378-5173(94)90360-3]
[147]
Hwang, S.J.; Rhee, G.J.; Lee, K.M.; Oh, K.H.; Kim, C.K. Release characteristics of ibuprofen from excipients-loaded alginate gel beads. Int. J. Pharm., 1995, 116(1), 125-128.
[http://dx.doi.org/10.1016/0378-5173(94)00281-9]
[148]
Shilpa, A.; Agrawal, S.S.; Ray, A.R. Controlled delivery of drugs from alginate matrix. J. Macromol. Sci. Part C Polym., 2003, 43(2), 187-221.
[149]
Agrawal, P. Significance of polymers in drug delivery system. J. Pharmacovigil., 2014, 3(1), 1-2.

© 2024 Bentham Science Publishers | Privacy Policy