Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Cu(II)/Vasicine Promoted Intramolecular C-O Formation: Synthesis of Benzoxazoles in EtOH

Author(s): Minxin Li, Meiling Li, Yanling Tang, Yun Sun*, Lu Qu and Zewei Mao*

Volume 18, Issue 3, 2021

Published on: 09 November, 2020

Page: [310 - 315] Pages: 6

DOI: 10.2174/1570179417666201109151752

Price: $65

Abstract

Aims and Objectives: Benzoxazoles are valuable bicyclic aromatic compounds; the construction of benzoxazoles via C-O cross-coupling reactions has attracted more and more attention.

Materials and Methods: The best condition of C-O bond formation from o-haloanilides was carried out, taking Cu(OTf)2 (5 mol%) and vasicine (10 mol%) as the catalysts in EtOH in the presence of K2CO3 (2 eq.) for 12 h at 90°C.

Results: A series of 2-substituted benzoxazoles have been prepared in high yields from 2-bromoanilides and 2- iodioanilides under mild conditions.

Conclusion: We have developed an efficient Cu-vasicine catalytic system for intramolecular C-O bond formation. This strategy is applicable to the synthesis of a wide variety of 2-substituted benzoxazoles by intramolecular O-arylation of o-haloanilides.

Keywords: Cu(II)-vasicine, intramolecular O-arylation, o-haloanilides, benzoxazoles, EtOH, cross-coupling reactions.

« Previous
Graphical Abstract

[1]
(a)Mishra, N.; Singh, A.S.; Agrahari, A.K.; Singh, S.K.; Singh, M.; Tiwari, V.K. Synthesis of benz-fused azoles via C-heteroatom coupling reactions catalyzed by Cu(I) in the presence of glycosyltriazole ligands. ACS Comb. Sci., 2019, 21(5), 389-399.
[PMID: 30943366]
(b)Daletos, G.; de Voogd, N.J.; Müller, W.E.G.; Wray, V.; Lin, W.; Feger, D.; Kubbutat, M.; Aly, A.H.; Proksch, P. Cytotoxic and protein kinase inhibiting nakijiquinones and nakijiquinols from the sponge Dactylospongia metachromia. J. Nat. Prod., 2014, 77(2), 218-226.
[PMID: 24479418]
(c)Aiello, S.; Wells, G.; Stone, E.L.; Kadri, H.; Bazzi, R.; Bell, D.R.; Stevens, M.F.G.; Matthews, C.S.; Bradshaw, T.D.; Westwell, A.D. Synthesis and biological properties of benzothiazole, benzoxazole, and chromen-4-one analogues of the potent antitumor agent 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (PMX 610, NSC 721648). J. Med. Chem., 2008, 51(16), 5135-5139.
[http://dx.doi.org/10.1021/jm800418z] [PMID: 18666770]
(d)Leventhal, L.; Brandt, M.R.; Cummons, T.A.; Piesla, M.J.; Rogers, K.E.; Harris, H.A. An estrogen receptor-β agonist is active in models of inflammatory and chemical-induced pain., Eur. J. Pharmacol., 2006, 553(1-3), 146-148.
[http://dx.doi.org/10.1016/j.ejphar.2006.09.033 ] [PMID: 17056036 ]
[2]
(a)Barbero, N.; Carril, M.; SanMartin, R.; Domínguez, E. Copper-catalysedintramolecular O-arylation of aryl chlorides and bromides: a straightforward approach to benzo[d]oxazoles in water. Tetrahedron, 2007, 63, 10425-10432. http://dx.doi.org/10.1016/j.tet.2007.08.013.
(b)Ueda, S.; Nagasawa, H. Synthesis of 2-arylbenzoxazoles by copper-catalyzed intramolecular oxidative C-O coupling of benzanilides. Angew. Chem. Int. Ed. Engl., 2008, 47(34), 6411-6413.
[http://dx.doi.org/10.1002/anie.200801240] [PMID: 18618531]
(c)Khatun, N.; Guin, S.; Rout, S.K.; Patel, B.K. Divergent reactivities of o-haloanilides with CuO nanoparticles in water: A green synthesis of benzoxazoles and o-hydroxyanilides. RSC Advances, 2014, 4, 10770-10778.
[http://dx.doi.org/10.1039/c3ra46820h]
(d)Peng, J.; Zong, C.; Ye, M.; Chen, T.; Gao, D.; Wang, Y.; Chen, C. Direct transition-metal-free intramolecular C-O bond formation: synthesis of benzoxazole derivatives. Org. Biomol. Chem., 2011, 9(4), 1225-1230.
[http://dx.doi.org/10.1039/C0OB00454E] [PMID: 21186392]
(e)Evano, G.; Blanchard, N.; Toumi, M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem. Rev., 2008, 108(8), 3054-3131.
[http://dx.doi.org/10.1021/cr8002505] [PMID: 18698737]
(f)Ahmed, A.; Singha, R.; Ray, J.K. Ligand-free copper powder-catalyzed and KOtBu-accelerated expeditious synthesis of substituted benzoxazoles. Tetrahedron Lett., 2015, 56, 2167-2171.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.067]
[3]
(a)Saha, P.; Ali, M.A.; Ghosh, P.; Punniyamurthy, T. Cobalt-catalyzed intramolecular C-N and C-O cross-coupling reactions: Synthesis of benzimidazoles and benzoxazoles. Org. Biomol. Chem., 2010, 8(24), 5692-5699..
[http://dx.doi.org/10.1039/c0ob00405g ] [PMID: 20963217]
(b)Hajipour, A.R.; Khorsandi, Z.; Mortazavi, M.; Farrokhpour, H. Green, efficient and large-scale synthesis of benzimidazoles, benzoxazoles and benzothiazoles derivatives using ligand-free cobalt-nanoparticles: as potential anti-estrogen breast cancer agents, and study of their interactions with estrogen receptor by molecular docking. RSC Advances, 2015, 5, 107822-107828.
[http://dx.doi.org/10.1039/C5RA22207A]
(c)Zhang, R.; Qin, Y.; Zhang, L.; Luo, S. Oxidative synthesis of benzimidazoles, quinoxalines, and benzoxazoles from primary amines by ortho-quinone catalysis. Org. Lett., 2017, 19(20), 5629-5632.
[http://dx.doi.org/10.1021/acs.orglett.7b02786] [PMID: 28968131]
(d)Hajipour, A.R.; Khorsandia, Z. A comparative study of the catalytic activity of Co- and CoFe2O4-NPs in C–N and C–O bond formation: synthesis of benzimidazoles and benzoxazoles from o-haloanilides. New J. Chem.,2016, 40, 10474-10481..
[http://dx.doi.org/10.1039/C6NJ02293F]
(e)Tang, L.; Guo, X.; Yang, Y.; Zha, Z.; Wang, Z. Gold nanoparticles supported on titanium dioxide: an efficient catalyst for highly selective synthesis of benzoxazoles and benzimidazoles. Chem. Commun. (Camb.), 2014, 50(46), 6145-6148.
[http://dx.doi.org/10.1039/c4cc01822b]] [PMID: 24776805]
[4]
(a)Bougrin, K.; Loupy, A.; Soufiaoui, M. Trois nouvelles voies de synthèse des dérivés 1,3-azoliques sous micro-ondes. Tetrahedron, 1998, 54, 8055-8064.
[http://dx.doi.org/10.1016/S0040-4020(98)00431-1]
(b)Chang, J.; Zhao, K.; Pan, S. Synthesis of 2-arylbenzoxazoles via DDQ promoted oxidative cyclization of phenolic schiff bases-a solution-phase strategy for library synthesis. Tetrahedron Lett., 2002, 43, 951-954..
[http://dx.doi.org/10.1016/S0040-4039(01)02302-4]
(c)Inamdar, S.M.; More, V.K.; Mandal, S.K. CuO nano-particles supported on silica, a new catalyst for facile synthesis of benzimidazoles, benzothiazoles and benzoxazoles., Tetrahedron Lett., 2013, 54, 579-583..
[http://dx.doi.org/10.1016/j.tetlet.2012.11.091]
(d)Kawashita, Y.; Nakamichi, N.; Kawabata, H.; Hayashi, M. Direct and practical synthesis of 2-arylbenzoxazoles promoted by activated carbon. Org. Lett., 2003, 5(20), 3713-3715.
[http://dx.doi.org/10.1021/ol035393w] [PMID: 14507212]
[5]
(a)Evindar, G.; Batey, R.A. Parallel synthesis of a library of benzoxazoles and benzothiazoles using ligand-accelerated copper-catalyzed cyclizations ortho-halobenzanilides. J. Org. Chem., 2006, 71(5), 1802-1808..
[http://dx.doi.org/10.1021/jo051927q] [PMID: 16496964]
(b)Wu, F.; Zhang, J.; Wei, Q.; Liu, P.; Xie, J.; Jiang, H.; Dai, B. Copper-catalysed intramolecular O-arylation: a simple and efficient method for benzoxazole synthesis. Org. Biomol. Chem., 2014, 12(47), 9696-9701.
[http://dx.doi.org/10.1039/C4OB02068E] [PMID: 25350639]
[6]
(a)He, J. Recent Developments in the Catalytic Synthesis of 2-Substituted Benzoxazoles. Curr. Org. Chem., 2017, 21, 1991-2012.
[http://dx.doi.org/10.2174/1385272821666170623080714]
(b)Chavan, V.; Kale, M.A. Exploration of the biological potential of benzoxazoles: An overview. Mini Rev. Org. Chem., 2019, 16, 111-126.
[http://dx.doi.org/10.2174/1570193X15666180627125007]
(c)Wen, X.; Chen, J.; Zhao, Y.; Chang, X.; Ma, J.; Zheng, W. Biomimetic synthesis of benzimidazoles, benzoxazoles, and benzothiadazole via the group transfer of tetrahydrofolate models., Curr. Org. Synth., 2014, 11, 911-915..
[http://dx.doi.org/10.2174/1570179411666140708173654]
[7]
(a)Liu, W.; He, D.; Zhu, Y.; Cheng, X.; Xu, H.; Wang, Y.; Li, S.; Jiang, B.; Wang, Z.; Wang, C. Simultaneous determination of vasicine and its major metabolites in rat plasma by UPLC-MS/MS and its application to in vivo pharmacokinetic studies. RSC Advances, 2015, 5, 78336-78351.
[http://dx.doi.org/10.1039/C5RA12547B]
(b)Zhu, Y.; Liu, W.; Qi, S.; Wang, H.; Wang, Y.; Deng, G.; Zhang, Y.; Li, S.; Ma, C.; Wang, Y.; Cheng, X.; Wang, C. Stereoselective glucuronidation metabolism, pharmacokinetics, anti-amnesic pharmacodynamics, and toxic properties of vasicine enantiomers in vitro and in vivo. Eur. J. Pharm. Sci., 2018, 123, 459-474.
[http://dx.doi.org/10.1016/j.ejps.2018.07.058] [PMID: 30077712]
[8]
(a)Sharma, S.; Kumar, M.; Sharma, S.; Nayal, O.S.; Kumar, N.; Singh, B.; Sharma, U. Microwave assisted synthesis of phenanthridinones and dihydrophenanthridines by vasicine/KOtBu promoted intramolecular C-H arylation. Org. Biomol. Chem., 2016, 14(36), 8536-8544.
[http://dx.doi.org/10.1039/C6OB01362G ] [PMID: 27545507]
(b)Sharma, S.; Kumar, M.; Bhatt, V.; Nayal, O.S.; Thakur, M.S.; Kumar, N.; Singh, B.; Sharma, U. Vasicine from Adhatoda vasica as an organocatalyst for metal-free Henry reaction and reductive heterocyclization of o-nitroacylbenzenes. Tetrahedron Lett., 2016, 57, 5003-5008.
[http://dx.doi.org/ 10.1016/j.tetlet.2016.09.095]
(c)Sharma, S.; Kumar, M.; Kumar, V.; Kumar, N. Vasicine catalyzed direct C–H arylation of unactivated arenes: organocatalytic application of an abundant alkaloid. Tetrahedron Lett., 2013, 54, 4868-4871.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.125]
(d)Aga, M.A.; Kumar, B.; Rouf, A.; Shah, B.A.; Taneja, S.C. Vasicine as tridentate ligand for enantioselective addition of diethylzinc to aldehydes. Tetrahedron Lett., 2014, 55, 2639-2641.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.002]
[9]
(a)Tang, Y.; Li, M.; Gao, H.; Rao, G.; Mao, Z. Efficient Cu-catalyzed intramolecular O-arylation for synthesis of benzoxazoles in water. RSC Advances, 2020, 10, 14317-14321.
[http://dx.doi.org/10.1039/D0RA00570C]
(b)Li, M.; Tang, Y.; Gao, H.; Rao, G.; Mao, Z. Efficient cu-catalyzed synthesis of benzimidazoles using ammonia as nitrogen source in water. Asian J. Org. Chem., 2020, 9, 1027-1031.,
[http://dx.doi.org/10.1002/ajoc.202000236]
[10]
(a)Allred, G.D.; Liebskind, L.S. Copper-Mediated Cross-Coupling of Organostannanes with Organic Iodides at or below Room Temperature. J. Am. Chem. Soc., 1996, 118, 2748-2749.
[http://dx.doi.org/10.1021/ja9541239]
(b)Strieter, E.R.; Blackmond, D.G.; Buchwald, S.L. The role of chelating diamine ligands in the goldberg reaction: a kinetic study on the coppercatalyzed amidation of aryl iodides. J. Am. Chem. Soc., 2005, 127(12), 4120-4121.
[http://dx.doi.org/10.1021/ja050120c ] [PMID: 15783164]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy