Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

Starch as a Sustainable Fuel for Solution Combustion Synthesis: Nanomaterials for Energy and Environmental Applications

Author(s): Francisco Manoel dos Santos Garrido*, Maria Isabel Spitz Argolo, Marta Eloísa Medeiros and José Márcio Siqueira

Volume 17, Issue 4, 2021

Published on: 06 November, 2020

Page: [505 - 524] Pages: 20

DOI: 10.2174/1573413716999201106150041

Price: $65

Abstract

Background: Currently, solution combustion synthesis (SCS) is considered a reproducible, flexible, and low-cost synthesis method for the preparation of nanomaterials. A new trend in the SCS method is the use of less polluting fuels, such as starch. The use of starch as fuel in SCS is very interesting for green chemistry, as it is renewable and has several advantages, including its abundance, low-cost, and non-toxicity.

Objective: This paper provides a comprehensive review of the SCS method using starch as fuel. The main advantages of using starch as fuel will be illustrated with a wide variety of examples, highlighting its impact on the preparation of nanomaterials for energy and environmental applications.

Conclusion: In a combustion reaction using starch as fuel, several positive effects are expected, such as non-violent propagation, combustion with the production of non-toxic gases (mainly CO2 and H2O), and development of pores during the release of gases. For example, several macroporous metal oxide foams were prepared using the SCS method, through an appropriate combination of urea and starch fuels. With this approach, it is possible to control the structure, lattice defects, crystallite size, specific surface area, porosity, and other characteristics of the synthetized nanomaterial. For example, by combining starch with other fuels, it is possible to control the concentration of lattice defects in metal oxides and modify the optical properties of these materials. These properties are of fundamental importance for the performance of these materials and their subsequent application in electrodes, electrocatalysts, and photocatalysts in the areas of energy and environment.

Keywords: Solution combustion synthesis, starch, fuel cell, photocalysts, solar energy, li-ion batteries, green chemistry.

Graphical Abstract

[1]
Aruna, S.T.; Mukasyan, A.S. Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci., 2008, 12, 44-50.
[http://dx.doi.org/10.1016/j.cossms.2008.12.002]
[2]
Lackner, M. Combustion Synthesis: Novel Routes to Novel Materials; Bentham Science Publishers: Sharjah, 2010.
[3]
Li, F.T.; Ran, J.; Jaroniec, M.; Qiao, S.Z. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale, 2015, 7(42), 17590-17610.
[http://dx.doi.org/10.1039/C5NR05299H] [PMID: 26457657]
[4]
Mukasyan, A.S.; Rogachev, A.S.; Aruna, S.T. Combustion synthesis in nanostructured reactive systems. Adv. Powder Technol., 2015, 26, 954-976.
[http://dx.doi.org/10.1016/j.apt.2015.03.013]
[5]
Varma, A.; Mukasyan, A.S.; Rogachev, A.S.; Manukyan, K.V. Solution combustion synthesis of nanoscale materials. Chem. Rev., 2016, 116(23), 14493-14586.
[http://dx.doi.org/10.1021/acs.chemrev.6b00279] [PMID: 27610827]
[6]
Levashov, E.A.; Mukasyan, A.S.; Rogachev, A.S.; Shtansky, D.V. Self-propagating high-temperature synthesis of advanced materials and coatings. Int. Mater. Rev., 2017, 62, 203-239.
[http://dx.doi.org/10.1080/09506608.2016.1243291]
[7]
Deganello, F.; Tyagi, A.K. Solution combustion synthesis, energy and environment: Best parameters for better materials. Prog. Cryst. Growth Charact. Mater., 2018, 64, 23-61.
[http://dx.doi.org/10.1016/j.pcrysgrow.2018.03.001]
[8]
Kingsley, J.J.; Patil, K.C. A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials. Mater. Lett., 1988, 6, 427-432.
[http://dx.doi.org/10.1016/0167-577X(88)90045-6]
[9]
Patil, K.C. Advanced ceramics: Combustion synthesis and properties. Bull. Mater. Sci., 1993, 16, 533-541.
[http://dx.doi.org/10.1007/BF02757654]
[10]
Lucilha, A.C.; Afonso, R.; Silva, P.R.C.; Lepre, L.F.; Ando, R.A.; Dall’Antonia, L.H. ZnO prepared by solution combustion synthesis: Characterization and application as photoanode. J. Braz. Chem. Soc., 2014, 25, 1091-1100.
[http://dx.doi.org/10.5935/0103-5053.20140085]
[11]
Vahdat, V.H.; Masoudpanah, S.M.; Adeli, M.; Aboutalebi, M.R. Photocatalytic properties of solution combustion synthesized ZnO powders using mixture of CTAB and glycine and citric acid fuels. Adv. Powder Technol., 2019, 30, 284-291.
[http://dx.doi.org/10.1016/j.apt.2018.11.004]
[12]
Xanthopoulou, G.; Thoda, O.; Roslyakov, S.; Steinman, A.; Kovalev, D.; Levashov, E.; Vekinis, G.; Sytschev, A.; Chroneos, A. Solution combustion synthesis of nano-catalysts with a hierarchical structure. J. Catal., 2018, 364, 112-124.
[http://dx.doi.org/10.1016/j.jcat.2018.04.003]
[13]
Matin, M.A.; Saad, M.A.H.S.; Kumar, A.; Al-Marri, M.J.; Mansour, S.A. Effect of fuel content on the electrocatalytic methanol oxidation performance of Pt/ZnO nanoparticles synthesized by solution combustion. Appl. Surf. Sci., 2019, 492, 73-81.
[http://dx.doi.org/10.1016/j.apsusc.2019.06.213]
[14]
Ferreira, M.G.; Abreu do Nascimento Telles Rodrigues, H.C.; Manoel dos Santos Garrido, F.; Medeiros, M.E. Combustion synthesis of semiconductor oxides and evaluation of adsorption and photocatalysis properties. J. Aerosp. Technol. Manag., 2019, 11(Special Edition), 54-57.
[http://dx.doi.org/10.5028/jatm.etmq.22]
[15]
Ringuedé, A.; Labrincha, J.A.; Frade, J.R. A combustion synthesis method to obtain alternative cermet materials for SOFC anodes. Solid State Ion., 2001, 141-142, 549-557.
[http://dx.doi.org/10.1016/S0167-2738(01)00744-5]
[16]
Jung, C.H.; Jalota, S.; Bhaduri, S.B. Quantitative effects of fuel on the synthesis of Ni/NiO particles using a microwave-induced solution combustion synthesis in air atmosphere. Mater. Lett., 2005, 59, 2426-2432.
[http://dx.doi.org/10.1016/j.matlet.2005.03.021]
[17]
Hwang, C.C.; Tsai, J.S.; Huang, T.H. Combustion synthesis of Ni-Zn ferrite by using glycine and metal nitrates-investigations of precursor homogeneity, product reproducibility, and reaction mechanism. Mater. Chem. Phys., 2005, 93, 330-336.
[http://dx.doi.org/10.1016/j.matchemphys.2005.03.056]
[18]
Tirsoaga, A.; Visinescu, D.; Jurca, B.; Ianculescu, A.; Carp, O. Eco-friendly combustion-based synthesis of metal aluminates MAl2O4 (M = Ni, Co). J. Nanopart. Res., 2011, 13, 6397-6408.
[http://dx.doi.org/10.1007/s11051-011-0392-1]
[19]
Visinescu, D.; Jurca, B.; Ianculescu, A.; Carp, O. Starch - A suitable fuel in new low-temperature combustion-based synthesis of zinc aluminate oxides. Polyhedron, 2011, 30, 2824-2831.
[http://dx.doi.org/10.1016/j.poly.2011.08.006]
[20]
Deraz, N.M. Magnetic behavior and physicochemical properties of Ni and NiO nano-particles. Curr. Appl. Phys., 2012, 12, 928-934.
[http://dx.doi.org/10.1016/j.cap.2011.12.011]
[21]
Lai, W.; Song, W.; Pang, L.; Wu, Z.; Zheng, N.; Li, J.; Zheng, J.; Yi, X.; Fang, W. The effect of starch addition on combustion synthesis of NiMo-Al2O3 catalysts for hydrodesulfurization. J. Catal., 2013, 303, 80-91.
[http://dx.doi.org/10.1016/j.jcat.2013.03.001]
[22]
Pilban Jahromi, S.; Huang, N.M.; Muhamad, M.R.; Lim, H.N. Green gelatine-assisted sol-gel synthesis of ultrasmall nickel oxide nanoparticles. Ceram. Int., 2013, 39, 3909-3914.
[http://dx.doi.org/10.1016/j.ceramint.2012.10.237]
[23]
Manukyan, K.V.; Cross, A.; Roslyakov, S.; Rouvimov, S.; Rogachev, A.S.; Wolf, E.E.; Mukasyan, A.S. Solution combustion synthesis of nano-crystalline metallic materials: mechanistic studies. J. Phys. Chem. C, 2013, 117, 24417-24427.
[http://dx.doi.org/10.1021/jp408260m]
[24]
Prabhu, V.G.; Shajira, P.S.; Lakshmi, N.; Junaid Bushiri, M. Magnetic properties of Ni/NiO nanocomposites synthesized by one step solution combustion method. J. Phys. Chem. Solids, 2015, 87, 238-243.
[http://dx.doi.org/10.1016/j.jpcs.2015.09.001]
[25]
Kang, L.; Deng, J.; Liu, T.; Cui, M.; Zhang, X.; Li, P.; Li, Y.; Liu, X.; Liang, W. One-step solution combustion synthesis of cobalt-nickel oxides/C/Ni/CNTs nanocomposites as electrochemical capacitors electrode materials. J. Power Sources, 2015, 275, 126-135.
[http://dx.doi.org/10.1016/j.jpowsour.2014.10.201]
[26]
Adhikari, S.; Madras, G. Role of Ni in hetero-architectured NiO/Ni composites for enhanced catalytic performance. Phys. Chem. Chem. Phys., 2017, 19(21), 13895-13908.
[http://dx.doi.org/10.1039/C7CP01332A] [PMID: 28513738]
[27]
Freitas, B.G.A.; Siqueira, J.M.; da Costa, L.M.; Ferreira, G.B.; Resende, J.A.L.C. Synthesis and characterization of LiCoO2 from different precursors by sol-gel method. J. Braz. Chem. Soc., 2017, 28, 2254-2266.
[http://dx.doi.org/10.21577/0103-5053.20170077]
[28]
Biglari, Z.; Masoudpanah, S.M.; Alamolhoda, S. Solution combustion synthesis of Ni/NiO/ZnO nanocomposites for photodegradation of methylene blue under ultraviolet irradiation. J. Electron. Mater., 2018, 47, 2703-2709.
[http://dx.doi.org/10.1007/s11664-018-6119-7]
[29]
Biglari, Z.; Alamolhoda, S.; Masoudpanah, S.M. Salt-assisted solution combustion synthesis of Ni and Ni/NiO powders. J. Supercond. Nov. Magn., 2019, 32, 3321-3327.
[http://dx.doi.org/10.1007/s10948-019-5100-x]
[30]
Siqueira, J.M.; Machado, C.T.; Quattrociocchi, D.S.G.; Garrido, F.M.S.; da Costa, L.M.; Ponzio, E.A.; Ferreira, G.B.; Resende, J.A.L.C. Experimental and theoretical study of LiMn2O4 synthesized by the solution combustion method using corn starch as fuel. J. Braz. Chem. Soc., 2020, 31, 381-393.
[http://dx.doi.org/10.21577/0103-5053.20190192]
[31]
Silva, R.M.; Raimundo, R.A.; Fernandes, W.V.; Torres, S.M.; Silva, V.D.; Grilo, J.P.F.; Morales, M.A.; Macedo, D.A. Proteic sol-gel synthesis, structure and magnetic properties of Ni/NiO core-shell powders. Ceram. Int., 2018, 44, 6152-6156.
[http://dx.doi.org/10.1016/j.ceramint.2017.12.248]
[32]
Argolo, M.I.S.; Silva, L.S.; Siqueira, J.M. da S. Miranda, F.; Medeiros, M.E.; Garrido, F.M.S. Structural and optical properties of Ni/NiO composites synthesized by eco-friendly self-propagation synthesis (SHS): Effects of NH4OH addition. Ceram. Int., 2019, 45, 21640-21646.
[http://dx.doi.org/10.1016/j.ceramint.2019.07.161]
[33]
Kumar, A.; Wolf, E.E.; Mukasyan, A.S. Solution combustion synthesis of metal nanopowders: Nickel-reaction pathways. AIChE J., 2011, 57, 2207-2214.
[http://dx.doi.org/10.1002/aic.12416]
[34]
Kumar, A.; Wolf, E.E.; Mukasyan, A.S. Solution combustion synthesis of metal nanopowders: copper and copper/nickel alloys. AIChE J., 2011, 57, 3473-3479.
[http://dx.doi.org/10.1002/aic.12537]
[35]
Ashok, A.; Kumar, A.; Bhosale, R.R.; Almomani, F.; Saleh Saad, M.A.H.; Suslov, S.; Tarlochan, F. Influence of fuel ratio on the performance of combustion synthesized bifunctional cobalt oxide catalysts for fuel cell application. Int. J. Hydrogen Energy, 2019, 44, 436-445.
[http://dx.doi.org/10.1016/j.ijhydene.2018.02.111]
[36]
Asefi, N.; Masoudpanah, S.M.; Hasheminiasari, M. Photocatalytic performances of BiFeO3 powders synthesized by solution combustion method: The role of mixed fuels. Mater. Chem. Phys., 2019, 228, 168-174.
[http://dx.doi.org/10.1016/j.matchemphys.2019.02.059]
[37]
Bolaghi, Z.K.; Masoudpanah, S.M.; Hasheminiasari, M. Photocatalytic activity of ZnO/RGO composite synthesized by one-pot solution combustion method. Mater. Res. Bull., 2019, 115, 191-195.
[http://dx.doi.org/10.1016/j.materresbull.2019.03.024]
[38]
Ashok, A.; Kumar, A.; Matin, M.A.; Tarlochan, F. Probing the effect of combustion controlled surface alloying in silver and copper towards ORR and OER in alkaline medium. J. Electroanal. Chem. (Lausanne Switz.), 2019, 844, 66-77.
[http://dx.doi.org/10.1016/j.jelechem.2019.05.016]
[39]
Aali, H.; Mollazadeh, S.; Khaki, J.V. Quantitative evaluation of ambient O2 interference during solution combustion synthesis process: Considering iron nitrate-fuel system. Ceram. Int., 2019, 45, 17775-17783.
[http://dx.doi.org/10.1016/j.ceramint.2019.05.348]
[40]
Mirbagheri, S.A.; Masoudpanah, S.M.; Alamolhoda, S. Structural and optical properties of ZnAl2O4 powders synthesized by solution combustion method: Effects of mixture of fuels. Optik (Stuttg.), 2020, 204, 164170.
[http://dx.doi.org/10.1016/j.ijleo.2020.164170]
[41]
Wen, W.; Wu, J.M. Nanomaterials via solution combustion synthesis: A step nearer to controllability. RSC Advances, 2014, 4, 58090-58100.
[http://dx.doi.org/10.1039/C4RA10145F]
[42]
Carlos, E.; Martins, R.; Fortunato, E.; Branquinho, R. Solution combustion synthesis: towards a sustainable approach for metal oxides. Chemistry, 2020, 26(42), 9099-9125.
[http://dx.doi.org/10.1002/chem.202000678] [PMID: 32134133]
[43]
Wang, X.; Qin, M.; Fang, F.; Jia, B.; Wu, H.; Qu, X.; Volinsky, A.A. Solution combustion synthesis of nanostructured iron oxides with controllable morphology, composition and electrochemical performance. Ceram. Int., 2018, 44, 4237-4247.
[http://dx.doi.org/10.1016/j.ceramint.2017.12.004]
[44]
Wang, X.; Qin, M.; Fang, F.; Jia, B.; Wu, H.; Qu, X.; Volinsky, A.A. Effect of glycine on one-step solution combustion synthesis of magnetite nanoparticles. J. Alloys Compd., 2017, 719, 288-295.
[http://dx.doi.org/10.1016/j.jallcom.2017.05.187]
[45]
Vivekanandhan, S. Combustion process using plant-based fuels for the synthesis of metal-oxide nanostructures. ChemistrySelect, 2019, 4, 8026-8042.
[http://dx.doi.org/10.1002/slct.201900103]
[46]
Wen, W.; Wu, J.M. Eruption combustion synthesis of NiO/Ni nanocomposites with enhanced properties for dye-absorption and lithium storage. ACS Appl. Mater. Interfaces, 2011, 3(10), 4112-4119.
[http://dx.doi.org/10.1021/am2010064] [PMID: 21919510]
[47]
Amaral, F.A.; Guerra, R.F.; Santana, L.K.; Canobre, S.C. Influence of different fuel agents on the combustion synthesis of the nanostructured Li1.05Mn2O4 oxide. Mater. Res., 2014, 17, 161-166.
[http://dx.doi.org/10.1590/S1516-14392014005000037]
[48]
Arunkumar, P.; Aadhavan, R.; Bhanuchandar, S.; Babu, K.S. Effect of fuel ratio on combustion synthesis and properties of magnetic nanostructures. Mater. Res. Express, 2014, 1, 35011.
[http://dx.doi.org/10.1088/2053-1591/1/3/035011]
[49]
Kalyani, P.; Kalaiselvi, N.; Muniyandi, N. An innovative soft-chemistry approach to synthesize LiNiVO4. Mater. Chem. Phys., 2002, 77, 662-668.
[http://dx.doi.org/10.1016/S0254-0584(02)00132-3]
[50]
Kalyani, P.; Kalaiselvi, N.; Muniyandi, N. A new solution combustion route to synthesize LiCoO2 and LiMn2O4. J. Power Sources, 2002, 111, 232-238.
[http://dx.doi.org/10.1016/S0378-7753(02)00307-5]
[51]
Tahmasebi, K.; Paydar, M.H. The effect of starch addition on solution combustion synthesis of Al2O3-ZrO2 nanocomposite powder using urea as fuel. Mater. Chem. Phys., 2008, 109, 156-163.
[http://dx.doi.org/10.1016/j.matchemphys.2007.11.009]
[52]
Caldas, F.R.R.; dos Santos Garrido, F.M. Synthesis, characterization and sintering of nanoparticles of samarium doped cerium oxide (SDC) for application in fuel cells.. Thesis, Federal University of Rio de Janeiro, 2010.
[53]
Caldas, F.R.R.; Guimarães, J.O.; Medeiros, M.E.; Garrido, F.M.S. The effect of nickel oxide on the sintering of nanoparticles of samarium doped cerium oxide (SDC) for application in fuel cells. Materia (Rio), 2015, 20, 491-500.
[http://dx.doi.org/10.1590/S1517-707620150002.0049]]
[54]
Ene, C.D.; Patrinoiu, G.; Munteanu, C.; Ene, R.; Chifiriuc, M.C.; Carp, O. Multifunctional ZnO materials prepared by a versatile green carbohydrate-assisted combustion method for environmental remediation applications. Ceram. Int., 2019, 45, 2295-2302.
[http://dx.doi.org/10.1016/j.ceramint.2018.10.144]
[55]
Visinescu, D.; Patrinoiu, G.; Tirsoaga, A.; Carp, O. Polysaccharides Route: A New Green Strategy for Metal Oxides Synthesis.Environmental Chemistry for a Sustainable World; Lichtfouse, E.; Schwarzbauer, J; Robert, D., Ed.; Springer Netherlands, 2012, Vol. 1, pp. 119-169.
[http://dx.doi.org/10.1007/978-94-007-2442-6_5]
[56]
Raja, G.; Saranya, R.; Saravanan, K. Microwave combustion method: Effect of starch, urea and glycine as processing fuels in the Co3O4 nanostructures. Optik (Stuttg.), 2018, 153, 73-80.
[http://dx.doi.org/10.1016/j.ijleo.2017.09.103]
[57]
Frikha, K.; Limousy, L.; Bouaziz, J.; Bennici, S.; Chaari, K.; Jeguirim, M. elaboration of alumina-based materials by solution combustion synthesis: A review. C. R. Chim., 2019, 22, 206-219.
[http://dx.doi.org/10.1016/j.crci.2018.10.004]
[58]
Bai, J.; Meng, F.; Wei, C.; Zhao, Y.; Tan, H.; Liu, J. Solution combustion synthesis and characteristics of nanoscale MgO powders. Ceram. Silik., 2011, 55, 20-25.
[59]
Visinescu, D.; Papa, F.; Ianculescu, A.C.; Balint, I.; Carp, O. Nickel-doped zinc aluminate oxides: Starch-assisted synthesis, structural, optical properties, and their catalytic activity in oxidative coupling of methane. J. Nanopart. Res., 2013, 15, 1456.
[http://dx.doi.org/10.1007/s11051-013-1456-1]
[60]
Venugopal, B.R.; Samuel, E.P.; Shivakumara, C.; Rajamathi, M. Macroporous metal oxide foams through self-sustained combustion reactions. J. Porous Mater., 2009, 16, 205-208.
[http://dx.doi.org/10.1007/s10934-008-9186-y]
[61]
Visinescu, D.; Tirsoaga, A.; Patrinoiu, G.; Tudose, M.; Paraschiv, C.; Ianculescu, A.; Carp, O. Green synthetic strategies of oxide materials: Polysaccharides-assisted synthesis: Part II. Starch-assisted synthesis of nanosized metal-oxides. Rev. Roum. Chim., 2010, 55, 1017-1026.
[62]
Torres, C.V.M.S.; dos Santos Garrido, F.M. Synthesis and characterization of BSCF phases doped with calcium ions using starch as a complexing agent.. Thesis, Federal University of Rio de Janeiro: Rio de Janeiro, 2011.
[http://dx.doi.org/10.13140/RG.2.2.36508.10887]
[63]
Piazenski, F.P.B.C.; dos Santos Garrido, F.M. Preparation of nanostructured mixed oxides for application in fuel cells.. Thesis, Federal University of Rio de Janeiro: Rio de Janeiro, 2012.
[http://dx.doi.org/10.13140/RG.2.2.17004.59523]
[64]
Siqueira, J.M. Synthesis and structural studies of inorganic materials for application in electrochemical devices.. PhD Thesis, Federal University of Rio de Janeiro: Rio de Janeiro, 2013.
[http://dx.doi.org/10.13140/RG.2.2.33781.81122]
[65]
Bai, J.; Liu, J.; Li, C.; Li, G.; Du, Q. Mixture of fuels approach for solution combustion synthesis of nanoscale MgAl2O4 powders. Adv. Powder Technol., 2011, 22, 72-76.
[http://dx.doi.org/10.1016/j.apt.2010.03.013]
[66]
Ciesielski, W.; Tomasik, P. Thermal properties of complexes of amaranthus starch with selected metal salts. Thermochim. Acta, 2003, 403, 161-171.
[http://dx.doi.org/10.1016/S0040-6031(02)00509-9]
[67]
Ciesielski, W.; Tomasik, P. Complexes of amylose and amylopectins with multivalent metal salts. J. Inorg. Biochem., 2004, 98(12), 2039-2051.
[http://dx.doi.org/10.1016/j.jinorgbio.2004.09.010] [PMID: 15541493]
[68]
Ciesielski, W.; Krystyjan, M. Starch-metal complexes and their rheology. E-Polymers, 2009, 137, 1-13.
[69]
Malik, A.; Parveen, S.; Ahamad, T.; Alshehri, S.M.; Singh, P.K.; Nishat, N.; Nishat, N. Coordination polymer: synthesis, spectral characterization and thermal behaviour of starch-urea based biodegradable polymer and its polymer metal complexes. Bioinorg. Chem. Appl., 2010, 2010, 848130.
[http://dx.doi.org/10.1155/2010/848130] [PMID: 20414461]
[70]
Staroszczyk, H.; Ciesielski, W.; Tomasik, P. Starch-metal complexes and metal compounds. J. Sci. Food Agric., 2018, 98(8), 2845-2856.
[PMID: 29222920]
[71]
Alcázar-Alay, S.C.; Meireles, M.A.A. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci. Technol., 2015, 35, 215-236.
[http://dx.doi.org/10.1590/1678-457X.6749]
[72]
Prabhu, M.; Chemodanov, A.; Gottlieb, R.; Kazir, M.; Nahor, O.; Gozin, M.; Israel, A.; Livney, Y.D.; Golberg, A. Starch from the sea: The green macroalga Ulva ohnoi as a potential source for sustainable starch production in the marine biorefinery. Algal Res., 2019, 37, 215-227.
[http://dx.doi.org/10.1016/j.algal.2018.11.007]
[73]
Carp, O. carbohydrate based combustion synthesis: A promise of greening materials synthesis. Rev. Roum. Chim., 2018, 63, 795-802.
[74]
Visinescu, D.; Jurca, B.; Carp, O. Thermal behaviour of some precursors of zinc aluminate spinels used in a green combustion method. Rev. Roum. Chim., 2018, 63, 437-446.
[75]
Motevalian, A.; Salem, S. Effect of glycine-starch mixing ratio on the structural characteristics of MgAl2O4 nano-particles synthesized by sol-gel combustion. Particuology, 2016, 24, 108-112.
[http://dx.doi.org/10.1016/j.partic.2015.03.005]
[76]
Smirnova, M.N.; Kop’eva, M.A.; Beresnev, E.N.; Goeva, L.V.; Simonenko, N.P.; Nikiforova, G.E.; Trukhanov, A.V.; Ketsko, V.A. Synthesis of Mg(Fe0.8Ga0.2)2O4 by gel combustion using glycine and starch. Russ. J. Inorg. Chem., 2018, 63, 1257-1261.
[http://dx.doi.org/10.1134/S0036023618100182]
[77]
Apte, S.K.; Naik, S.D.; Sonawane, R.S.; Kale, B.B.; Baeg, J.O. Synthesis of nanosize-necked structure α- and γ-Fe2O3 and its photocatalytic activity. J. Am. Ceram. Soc., 2007, 90, 412-414.
[http://dx.doi.org/10.1111/j.1551-2916.2006.01424.x]
[78]
Kulkarni, S.A.; Sawadh, P.S.; Palei, P.K.; Kokate, K.K. Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles. Ceram. Int., 2014, 40, 1945-1949.
[http://dx.doi.org/10.1016/j.ceramint.2013.07.103]
[79]
Thoda, O.; Xanthopoulou, G.; Vekinis, G.; Chroneos, A. Review of recent studies on solution combustion synthesis of nanostructured catalysts. Adv. Eng. Mater., 2018, 20, 1800047.
[http://dx.doi.org/10.1002/adem.201800047]
[80]
Gao, Y.; Meng, F.; Cheng, Y.; Li, Z. Influence of fuel additives in the urea-nitrates solution combustion synthesis of Ni-Al2O3 catalyst for slurry phase CO methanation. Appl. Catal. A Gen., 2017, 534, 12-21.
[http://dx.doi.org/10.1016/j.apcata.2017.01.016]
[81]
Fey, G.T.K.; Cho, Y.D.; Kumar, T.P. A TEA-starch combustion method for the synthesis of fine-particulate LiMn2O4. Mater. Chem. Phys., 2004, 87, 275-284.
[http://dx.doi.org/10.1016/j.matchemphys.2004.05.009]
[82]
Tai, L. -.W.; Anderson, H.U.; Lessing, P.A. Mixed-cation oxide powders via resin intermediates derived from a water-soluble polymer. J. Am. Ceram. Soc., 1992, 75, 3490-3494.
[http://dx.doi.org/10.1111/j.1151-2916.1992.tb04458.x]
[83]
Ferreira, N.S.; Angélica, R.S.; Marques, V.B.; De Lima, C.C.O.; Silva, M.S. Cassava-starch-assisted sol-gel synthesis of CeO2 nanoparticles. Mater. Lett., 2016, 165, 139-142.
[http://dx.doi.org/10.1016/j.matlet.2015.11.107]
[84]
Ramasami, A.K.; Reddy, M.V.; Balakrishna, G.R. Combustion synthesis and characterization of NiO nanoparticles. Mater. Sci. Semicond. Process., 2015, 40, 194-202.
[http://dx.doi.org/10.1016/j.mssp.2015.06.017]
[85]
Ramasami, A.K.; Raja Naika, H.; Nagabhushana, H.; Ramakrishnappa, T.; Balakrishna, G.R.; Nagaraju, G. Tapioca starch: An efficient fuel in gel-combustion synthesis of photocatalytically and anti-microbially active ZnO nanoparticles. Mater. Charact., 2015, 99, 266-276.
[http://dx.doi.org/10.1016/j.matchar.2014.11.017]
[86]
Utomo, W.P.; Wijayanti, A.S.; Nurherdiana, S.D.; Iqbal, R.M.; Hartanto, D.; Fansuri, H. Preparation and morphological property of Co3O4/BaxSr1-XCo0.8Fe0.2O3-δ (X=0.5-0.7) membranes using starch as binder agent. IOP Conf. Ser. Mater. Sci. Eng., 2019, 588, 012040.
[http://dx.doi.org/10.1088/1757-899X/588/1/012040]
[87]
Ishii, K.; Matsunaga, C.; Kobayashi, K.; Stevenson, A.J.; Tardivat, C. Fabrication of BSCF-based mixed ionic-electronic conducting membrane by electrophoretic deposition for oxygen separation application. J. Eur. Ceram. Soc., 2019, 39, 5292-5297.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2019.07.051]
[88]
Ishii, K.; Shimizu, M.; Sameshima, H.; Samitsu, S.; Ishigaki, T.; Uchikoshi, T. Fabrication of porous (Ba,Sr)(Co,Fe)O3-δ (BSCF) ceramics using gelatinization and retrogradation phenomena of starch as pore-forming agent. Ceram. Int., 2020, 49(9), 13047-13053.
[http://dx.doi.org/10.1016/j.ceramint.2020.02.075]
[89]
Yadav, R.S.; Havlica, J.; Masilko, J.; Kalina, L.; Wasserbauer, J.; Hajdúchová, M.; Enev, V.; Kuřitka, I.; Kožáková, Z. Effects of annealing temperature variation on the evolution of structural and magnetic properties of NiFe2O4 nanoparticles synthesized by starch-assisted sol-gel auto-combustion method. J. Magn. Magn. Mater., 2015, 394, 439-447.
[http://dx.doi.org/10.1016/j.jmmm.2015.07.012]
[90]
Yadav, R.S.; Havlica, J.; Ptáček, P.; Kuřitka, I.; Kožáková, Z.; Palou, M.; Bartoníčková, E.; Boháč, M.; Frajkorová, F.; Masilko, J.; Zmrzlý, M.; Hajdúchová, M.; Enev, V. Structural and magnetic properties of CoFe2O4 nanoparticles synthesized by starch-assisted sol-gel auto-combustion method in air, argon, nitrogen and vacuum atmospheres. J. Supercond. Nov. Magn., 2015, 28, 249-258.
[http://dx.doi.org/10.1007/s10948-014-2854-z]
[91]
Yadav, R.S.; Havlica, J.; Hnatko, M.; Šajgalík, P.; Alexander, C.; Palou, M.; Bartoníčková, E.; Boháč, M.; Frajkorová, F.; Masilko, J.; Zmrzlý, M.; Kalina, L.; Hajdúchová, M.; Enev, V. Magnetic properties of Co1-XZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol-gel autocombustion method and its ball milling. J. Magn. Magn. Mater., 2015, 378, 190-199.
[http://dx.doi.org/10.1016/j.jmmm.2014.11.027]
[92]
Yadav, R.S.; Havlica, J.; Kuřitka, I.; Kozakova, Z.; Palou, M.; Bartoníčková, E.; Boháč, M.; Frajkorová, F.; Masilko, J.; Kalina, L.; Hajdúchová, M.; Enev, V.; Wasserbauer, J. Magnetic properties of dysprosium-doped cobalt ferrite nanoparticles synthesized by starch-assisted sol-gel auto-combustion method. J. Supercond. Nov. Magn., 2015, 28, 2097-2107.
[http://dx.doi.org/10.1007/s10948-015-3009-6]
[93]
Yadav, R.S.; Havlica, J.; Masilko, J.; Kalina, L.; Wasserbauer, J.; Hajdúchová, M.; Enev, V.; Kuřitka, I.; Kožáková, Z. Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties. J. Magn. Magn. Mater., 2016, 399, 109-117.
[http://dx.doi.org/10.1016/j.jmmm.2015.09.055]
[94]
Agilandeswari, K.; Ruban Kumar, A. Synthesis, characterization, temperature dependent electrical and magnetic properties of Ca3Co4O9 by a starch assisted sol-gel combustion method. J. Magn. Magn. Mater., 2014, 364, 117-124.
[http://dx.doi.org/10.1016/j.jmmm.2014.04.016]
[95]
Ramasami, A.K.; Ravishankar, T.N.; Nagaraju, G.; Ramakrishnappa, T.; Teixeira, S.R.; Balakrishna, R.G. Gel-combustion-synthesized ZnO nanoparticles for visible light-assisted photocatalytic hydrogen generation. Bull. Mater. Sci., 2017, 40, 345-354.
[http://dx.doi.org/10.1007/s12034-017-1372-6]
[96]
Rajesha, J.B.; Ramasami, A.K.; Nagaraju, G.; Balakrishna, G.R. Photochemical elimination of endocrine disrupting chemical (EDC) by ZnO nanoparticles, synthesized by gel combustion. Water Environ. Res., 2017, 89(5), 396-405.
[http://dx.doi.org/10.2175/106143016X14733681696086] [PMID: 27779923]
[97]
Almeida, W.L.; Rodembusch, F.S.; Ferreira, N.S.; Sousa, V.C. Eco-friendly and cost-effective synthesis of ZnO nanopowders by tapioca-assisted sol-gel route. Ceram. Int., 2020, 46(8), 10835-10842.
[http://dx.doi.org/10.1016/j.ceramint.2020.01.095]
[98]
Valanarasu, S.; Chandramohan, R. Synthesis and improved electrochemical performance of LiCo1-XSnxO2 (X=0 to 0.1) powders. Cryst. Res. Technol., 2010, 45(8), 835-839.
[http://dx.doi.org/10.1002/crat.200900706]
[99]
Gangulibabu; Bhuvaneswari, D.; Kalaiselvi, N. Comparison of corn starch-assisted sol-gel and combustion methods to prepare LiMnxCoyNizO2. J. Solid State Electrochem., 2013, 17, 9-17.
[http://dx.doi.org/10.1007/s10008-012-1851-z]
[100]
Nipan, G.D.; Smirnova, M.N.; Kop’eva, M.A.; Nikiforova, G.E.; Simonenko, N.P. Gel combustion synthesis of Li(Ni,Mn,Co,Fe)O2 solid solutions. Russ. J. Inorg. Chem., 2019, 64, 1304-1308.
[http://dx.doi.org/10.1134/S0036023619100103]
[101]
Smirnova, M.N.; Kop’eva, M.A.; Nipan, G.D.; Nikiforova, G.E.; Volfkovich, Y.M.; Kulova, T.L.; Nikol’skaya, N.F. Limited solid solution Li(Ni0.33Mn0.33Co0.33)1-XFexO2 with an α-NaFeO2 structure. Dokl. Chem., 2019, 486, 137-140.
[http://dx.doi.org/10.1134/S0012500819050082]
[102]
Amado, R.S.; Malta, L.F.B.; Garrido, F.M.S.; Medeiros, M.E. Solid oxide fuel cells: Materials, components and configurations. Quim. Nova, 2007, 30, 189-197.
[http://dx.doi.org/10.1590/S0100-40422007000100031]
[103]
Singh, B.; Ghosh, S.; Aich, S.; Roy, B. Low temperature solid oxide electrolytes (LT-SOE): A review. J. Power Sources, 2017, 339, 103-135.
[http://dx.doi.org/10.1016/j.jpowsour.2016.11.019]
[104]
Zhang, Y.; Knibbe, R.; Sunarso, J.; Zhong, Y.; Zhou, W.; Shao, Z.; Zhu, Z. Recent progress on advanced materials for solid-oxide fuel cells operating below 500°C. Adv. Mater., 2017, 29(48), 1700132.
[http://dx.doi.org/10.1002/adma.201700132] [PMID: 28628239]
[105]
Fan, L.; Zhu, B.; Su, P.C.; He, C. Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities. Nano Energy, 2018, 45, 148-176.
[http://dx.doi.org/10.1016/j.nanoen.2017.12.044]
[106]
Prakash, B.S.; Senthil Kumar, S.; Aruna, S.T. Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review. Renew. Sustain. Energy Rev., 2014, 36, 149-179.
[http://dx.doi.org/10.1016/j.rser.2014.04.043]
[107]
Shao, Z.; Zhou, W.; Zhu, Z. Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Prog. Mater. Sci., 2012, 57, 804-874.
[http://dx.doi.org/10.1016/j.pmatsci.2011.08.002]
[108]
Hossain, M.K.; Kecsenovity, E.; Varga, A.; Molnár, M.; Janáky, C.; Rajeshwar, K. Solution combustion synthesis of complex oxide semiconductors. Int. J. Self-Propag. High-Temp. Synth., 2018, 27, 129-140.
[http://dx.doi.org/10.3103/S1061386218030032]
[109]
Specchia, S.; Ercolino, G.; Karimi, S.; Italiano, C.; Vita, A. Solution combustion synthesis for preparation of structured catalysts: A mini-review on process intensification for energy applications and pollution control. Int. J. Self-Propag. High-Temp. Synth., 2017, 26, 166-186.
[http://dx.doi.org/10.3103/S1061386217030062]
[110]
Tarragó, D.P.; Malfatti, C.F.; de Sousa, V.C. Influence of fuel on morphology of LSM powders obtained by solution combustion synthesis. Powder Technol., 2015, 269, 481-487.
[http://dx.doi.org/10.1016/j.powtec.2014.09.037]
[111]
Srikesh, G.; Samson, N.A. Synthesis and characterization of phase pure NiO nanoparticles via the combustion route using different organic fuels for electrochemical capacitor applications. J. Electrochem. Sci. Technol., 2015, 6, 16-25.
[http://dx.doi.org/10.33961/JECST.2015.6.1.16]
[112]
Giuliano, A.; Carpanese, M.P.; Clematis, D.; Boaro, M.; Pappacena, A.; Deganello, F.; Liotta, L.F.; Barbuccia, A. Infiltration, overpotential and ageing effects on cathodes for solid oxide fuel cells: La0.6Sr0.4Co0.2Fe0.8O3-δ versus Ba0.5Sr0.5Co0.8Fe0.2O3-δ. J. Electrochem. Soc., 2017, 164, F3114-F3122.
[http://dx.doi.org/10.1149/2.0161710jes]
[113]
Ashok, A.; Kumar, A.; Matin, M.A.; Tarlochan, F. Synthesis of highly efficient bifunctional Ag/Co3O4 catalyst for oxygen reduction and oxygen evolution reactions in alkaline medium. ACS Omega, 2018, 3(7), 7745-7756.
[http://dx.doi.org/10.1021/acsomega.8b00799] [PMID: 31458922]
[114]
Ashok, A.; Kumar, A.; Bhosale, R.R.; Almomani, F.; Malik, S.S.; Suslov, S.; Tarlochan, F. Combustion synthesis of bifunctional LaMO3 (M = Cr, Mn, Fe, Co, Ni) perovskites for oxygen reduction and oxygen evolution reaction in alkaline media. J. Electroanal. Chem. (Lausanne Switz.), 2018, 809, 22-30.
[http://dx.doi.org/10.1016/j.jelechem.2017.12.043]
[115]
Arabaci, A.; Altinçekiç, T.G.; Der, M.; Öksüzömer, M.A.F. Preparation and properties of ceramic electrolytes in the Nd and Gd co-doped ceria systems prepared by polyol method. J. Alloys Compd., 2019, 792, 1141-1149.
[http://dx.doi.org/10.1016/j.jallcom.2019.04.098]
[116]
Jadhav, S.T.; Puri, V.R.; Jadhav, L.D. NiO-GDC-BCY composites as an anode for SOFC. J. Alloys Compd., 2016, 685, 626-632.
[http://dx.doi.org/10.1016/j.jallcom.2016.05.243]
[117]
Jamale, A.P.; Bhosale, C.H.; Jadhav, L.D. Electrochemical behavior of LSCF/GDC interface in symmetric cell: An application in solid oxide fuel cells. J. Alloys Compd., 2015, 623, 136-139.
[http://dx.doi.org/10.1016/j.jallcom.2014.10.122]
[118]
Shajahan, I.; Ahn, J.; Nair, P.; Medisetti, S.; Patil, S.; Niveditha, V.; Bhaskar Babu, G.U.; Dasari, H.P.; Lee, J.H. Praseodymium doped ceria as electrolyte material for IT-SOFC application. Mater. Chem. Phys., 2018, 216, 136-142.
[http://dx.doi.org/10.1016/j.matchemphys.2018.05.078]
[119]
Yu, J.; Ni, Y.; Zhai, M. Simple solution-combustion synthesis of Ni-NiO@C nanocomposites with highly electrocatalytic activity for methanol oxidation. J. Phys. Chem. Solids, 2018, 112, 119-126.
[http://dx.doi.org/10.1016/j.jpcs.2017.09.022]
[120]
Shariatinia, Z.; Sardsahra, F.B. Synthesis and characterization of novel spinel Zn1.114La1.264Al0.5O4.271 nanoparticles. J. Alloys Compd., 2016, 686, 384-393.
[http://dx.doi.org/10.1016/j.jallcom.2016.06.061]
[121]
Liu, H.; Zhu, X.; Cheng, M.; Cong, Y.; Yang, W. Electrochemical performances of spinel oxides as cathodes for intermediate temperature solid oxide fuel cells. Int. J. Hydrogen Energy, 2013, 38, 1052-1057.
[http://dx.doi.org/10.1016/j.ijhydene.2012.10.095]
[122]
Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev., 2017, 117(15), 10121-10211.
[http://dx.doi.org/10.1021/acs.chemrev.7b00051] [PMID: 28745484]
[123]
Nuernberg, R.B.; Morelli, M.R. Synthesis of BSCF perovskites using a microwave-assisted combustion method. Ceram. Int., 2016, 42, 4204-4211.
[http://dx.doi.org/10.1016/j.ceramint.2015.11.094]
[124]
Hieu, N.T.; Park, J.; Tae, B. Synthesis and characterization of nanofiber-structured Ba0.5Sr0.5 Co0.8Fe0.2O3-δ perovskite oxide used as a cathode material for low-temperature solid oxide fuel cells. Mater. Sci. Eng. B, 2012, 177, 205-209.
[http://dx.doi.org/10.1016/j.mseb.2011.12.018]
[125]
Deganello, F.; Liotta, L.F.; Marcì, G.; Fabbri, E.; Traversa, E. Strontium and iron-doped barium cobaltite prepared by solution combustion synthesis: Exploring a mixed-fuel approach for tailored intermediate temperature solid oxide fuel cell cathode materials. Mater. Renew. Sustain. Energy, 2013, 2, 8.
[http://dx.doi.org/10.1007/s40243-013-0008-z]
[126]
Simões, I.F.; Silva, L.S.; Argolo-Lavandier, M.I.S.; Medeiros, M.E.; Garrido, F.M.S. Synthesis of cobalt doped NiO and Ni/Co alloy by the combustion sol-gel method.Proceedings of the 8th Technical Meeting on Materials and Chemistry (8th-ETMQ); Rio de Janeiro, Brazil, 2015, pp. 10-14.
[http://dx.doi.org/10.13140/RG.2.2.16991.48800]
[127]
Liu, S.Q. Magnetic Nano-photocatalysts: Preparation, Structure, and Application. Environmental Chemistry for a Sustainable World; Lichtfouse, E.; Schwarzbauer, J; Robert, D., Ed.; Springer Netherlands, 2012, Vol. 1, pp. 99-118.
[http://dx.doi.org/10.1007/978-94-007-2442-6_4]
[128]
Liu, S.Q. Magnetic semiconductor nano-photocatalysts for the degradation of organic pollutants. Environ. Chem. Lett., 2012, 10, 209-216.
[http://dx.doi.org/10.1007/s10311-011-0348-9]
[129]
Lu, F.; Astruc, D. Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coord. Chem. Rev., 2020, 408, 213180.
[http://dx.doi.org/10.1016/j.ccr.2020.213180]
[130]
Buthiyappan, A.; Abdul Aziz, A.R.; Wan Daud, W.M.A. Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents. Rev. Chem. Eng., 2016, 32, 1-47.
[http://dx.doi.org/10.1515/revce-2015-0034]
[131]
Xu, Y.; Wu, S.; Li, X.; Huang, Y.; Wang, Z.; Han, Y.; Wu, J.; Meng, H.; Zhang, X. Synthesis, characterization, and photocatalytic degradation properties of ZnO/ZnFe2O4 magnetic heterostructures. New J. Chem., 2017, 41, 15433-15438.
[http://dx.doi.org/10.1039/C7NJ03373G]
[132]
Shekofteh-Gohari, M.; Habibi-Yangjeh, A.; Abitorabi, M.; Rouhi, A. Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: A review. Crit. Rev. Environ. Sci. Technol., 2018, 48, 806-857.
[http://dx.doi.org/10.1080/10643389.2018.1487227]
[133]
Talebi, R. Preparation and characterization of cobalt ferrite nanoparticles with different capping agents and its photocatalyst application. J. Mater. Sci. Mater. Electron., 2017, 28, 9749-9754.
[http://dx.doi.org/10.1007/s10854-017-6726-8]
[134]
Ghasemi, H.; Ni, G.; Marconnet, A.M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nat. Commun., 2014, 5, 4449.
[http://dx.doi.org/10.1038/ncomms5449] [PMID: 25043613]
[135]
Chen, C.; Kuang, Y.; Hu, L. Challenges and opportunities for solar evaporation. Joule, 2019, 3, 683-718.
[http://dx.doi.org/10.1016/j.joule.2018.12.023]
[136]
Zhang, Y.; Xiong, T.; Nandakumar, D.K.; Tan, S.C. Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation. Adv. Sci. (Weinh.), 2020, 7(9), 1903478.
[http://dx.doi.org/10.1002/advs.201903478] [PMID: 32382483]
[137]
Pang, Y.; Zhang, J.; Ma, R.; Qu, Z.; Lee, E.; Luo, T. Solar-thermal water evaporation: A review. ACS Energy Lett., 2020, 5, 437-456.
[http://dx.doi.org/10.1021/acsenergylett.9b02611]
[138]
Li, Z.; Wang, C. Novel advances in metal-based solar absorber for photothermal vapor generation. Chin. Chem. Lett., in press
[http://dx.doi.org/10.1016/j.cclet.2019.09.030]
[139]
Kashyap, V.; Ghasemi, H. Solar heat localization: Concept and emerging applications. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8, 7035-7065.
[http://dx.doi.org/10.1039/D0TA01004A]
[140]
Dao, V.D.; Vu, N.H.; Yun, S. Recent advances and challenges for solar-driven water evaporation system toward applications. Nano Energy, 2020, 68, 104324.
[http://dx.doi.org/10.1016/j.nanoen.2019.104324]
[141]
Wang, Z.; Horseman, T.; Straub, A.P.; Yip, N.Y.; Li, D.; Elimelech, M.; Lin, S. Pathways and challenges for efficient solar-thermal desalination. Sci. Adv., 2019, 5(7), eaax0763.
[http://dx.doi.org/10.1126/sciadv.aax0763] [PMID: 31360770]
[142]
Li, H.; Yan, Z.; Li, Y.; Hong, W. Latest development in salt removal from solar-driven interfacial saline water evaporators: Advanced strategies and challenges. Water Res., 2020, 177, 115770.
[http://dx.doi.org/10.1016/j.watres.2020.115770] [PMID: 32305700]
[143]
Sun, Z.; Li, W.; Song, W.; Zhang, L.; Wang, Z. A high-efficiency solar desalination evaporator composite of corn stalk, MCNTs and TiO2: Ultra-fast capillary water moisture transportation and porous bio-tissue multi-layer filtration. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8, 349-357.
[http://dx.doi.org/10.1039/C9TA10898J]
[144]
Wang, C.B.; Wang, J.; Li, Z.; Xu, K.; Lei, T.; Wang, W. Superhydrophilic porous carbon foam as self-desalting monolithic solar steam generation device with high energy efficiency. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8, 9528-9535.
[http://dx.doi.org/10.1039/D0TA01439G]
[145]
Wu, X.; Chen, G.Y.; Owens, G.; Chu, D.; Xu, H. Photothermal materials: A key platform enabling highly efficient water evaporation driven by solar energy. Mater. Today Energy, 2019, 12, 277-296.
[http://dx.doi.org/10.1016/j.mtener.2019.02.001]
[146]
Li, Z.; Wang, C.; Su, J.; Ling, S.; Wang, W.; An, M. Fast-growing field of interfacial solar steam generation: Evolutional materials, engineered architectures, and synergistic applications. Solar RRL, 2019, 3, 1800206.
[http://dx.doi.org/10.1002/solr.201800206]
[147]
Li, Z.; Wang, C.; Li, Z.; Deng, L.; Su, J.; Shi, J.; An, M. Efficient interfacial solar steam generator with controlled macromorphology derived from flour via “Dough Figurine” technology. Energy Technol. (Weinheim), 2019, 7, 1900406.
[http://dx.doi.org/10.1002/ente.201900406]
[148]
Du, G.; Bian, Q.; Zhang, J.; Yang, X. Facile fabrication of hierarchical porous carbon for a high-performance electrochemical capacitor. RSC Advances, 2017, 7, 46329-46335.
[http://dx.doi.org/10.1039/C7RA08402A]
[149]
Wu, T.; Wang, G.; Dong, Q.; Zhan, F.; Zhang, X.; Li, S.; Qiao, H.; Qiu, J. Starch derived porous carbon nanosheets for high-performance photovoltaic capacitive deionization. Environ. Sci. Technol., 2017, 51(16), 9244-9251.
[http://dx.doi.org/10.1021/acs.est.7b01629] [PMID: 28700208]
[150]
Cao, J.; Zhu, C.; Aoki, Y.; Habazaki, H. Starch-derived hierarchical porous carbon with controlled porosity for high performance supercapacitors. ACS Sustain. Chem.& Eng., 2018, 6, 7292-7303.
[http://dx.doi.org/10.1021/acssuschemeng.7b04459]
[151]
Ghosh, S.; Santhosh, R.; Jeniffer, S.; Raghavan, V.; Jacob, G.; Nanaji, K.; Kollu, P.; Jeong, S.K.; Grace, A.N. Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes. Sci. Rep., 2019, 9(1), 16315.
[http://dx.doi.org/10.1038/s41598-019-52006-x] [PMID: 31704953]
[152]
Wang, Y.; Wang, C.; Liang, W.; Song, X.; Zhang, Y.; Huang, M.; Jiang, H. Multifunctional perovskite oxide for efficient solar-driven evaporation and energy-saving regeneration. Nano Energy, 2020, 70, 104538.
[http://dx.doi.org/10.1016/j.nanoen.2020.104538]
[153]
Schipper, F.; Nayak, P.K.; Erickson, E.M.; Amalraj, S.F.; Srur-Lavi, O.; Penki, T.R.; Talianker, M.; Grinblat, J.; Sclar, H.; Breuer, O.; Julien, C.M.; Munichandraiah, N.; Kovacheva, D.; Dixit, M.; Major, D.T.; Markovsky, B.; Aurbach, D. Study of cathode materials for lithium-ion batteries: Recent progress and new challenges. Inorganics, 2017, 5, 32.
[http://dx.doi.org/10.3390/inorganics5020032]
[154]
Julien, C.; Mauger, A.; Zaghib, K.; Groult, H. Optimization of layered cathode materials for lithium-ion batteries. Materials (Basel), 2016, 9(7), 595.
[http://dx.doi.org/10.3390/ma9070595] [PMID: 28773717]
[155]
Whittingham, M.S. Lithium batteries and cathode materials. Chem. Rev., 2004, 104(10), 4271-4301.
[http://dx.doi.org/10.1021/cr020731c] [PMID: 15669156]
[156]
Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy, 2018, 3, 267-278.
[http://dx.doi.org/10.1038/s41560-018-0107-2]
[157]
Liu, J.; Li, G.; Bai, H.; Shao, M.; Su, C.; Guo, J.; Liu, X.; Bai, W. Enhanced cycle and rate performances of Li(Li0.05Al0.05Mn1.90)O4 cathode material prepared via a solution combustion method for lithium-ion batteries. Solid State Ion., 2017, 307, 79-89.
[http://dx.doi.org/10.1016/j.ssi.2017.04.014]
[158]
Liu, J.; Li, G.; Yu, Y.; Bai, H.; Shao, M.; Guo, J.; Su, C.; Liu, X.; Bai, W. Synthesis and electrochemical performance evaluations of polyhedra spinel LiAlxMn2-XO4 (X ≦ 0.20) cathode materials prepared by a solution combustion technique. J. Alloys Compd., 2017, 728, 1315-1328.
[http://dx.doi.org/10.1016/j.jallcom.2017.09.098]
[159]
Hashem, A.M.; Abdel-Ghany, A.E.; Abuzeid, H.M.; El-Tawil, R.S.; Indris, S.; Ehrenberg, H.; Mauger, A.; Julien, C.M. EDTA as chelating agent for sol-gel synthesis of spinel LiMn2O4 cathode material for lithium batteries. J. Alloys Compd., 2018, 737, 758-766.
[http://dx.doi.org/10.1016/j.jallcom.2017.12.153]
[160]
Ragavendran, K.; Sherwood, D.; Vasudevan, D.; Emmanuel, B. On the observation of a huge lattice contraction and crystal habit modifications in LiMn2O4 prepared by a fuel assisted solution combustion. Physica B, 2009, 404, 2166-2171.
[http://dx.doi.org/10.1016/j.physb.2009.04.019]
[161]
Valanarasu, S.; Chandramohan, R. Improvement of the cycle life of LiCoO2 powder by Sr doping. J. Alloys Compd., 2010, 494, 434-438.
[http://dx.doi.org/10.1016/j.jallcom.2010.01.070]
[162]
Ramasami, A.K.; Reddy, M.V.; Nithyadharseni, P.; Chowdari, B.V.R.; Balakrishna, G.R. Gel-combustion synthesized vanadium pentoxide nanowire clusters for rechargeable lithium batteries. J. Alloys Compd., 2017, 695, 850-858.
[http://dx.doi.org/10.1016/j.jallcom.2016.10.143]
[163]
Mathew, V.; Sambandam, B.; Kim, S.; Kim, S.; Park, S.; Lee, S.; Lee, J.; Park, S.; Song, J.; Kim, J. High-voltage cathode materials by combustion-based preparative approaches for Li-ion batteries application. J. Power Sources, 2020, 472, 228368.
[http://dx.doi.org/10.1016/j.jpowsour.2020.228368]
[164]
Mastalska-Popławska, J.; Sikora, M.; Izak, P.; Góral, Z. Role of starch in the ceramic powder synthesis: A review. J. Sol-Gel Sci. Technol., in press
[http://dx.doi.org/10.1007/s10971-020-05404-x]
[165]
Siong, V.L.E.; Lai, C.W.; Juan, J.C.; Lee, K.M.; Leo, B.F.; Khe, C.S. One-step solvothermal synthesis of RGO/TiO2 nanocomposite for efficient solar photocatalytic degradation of methylene blue dye. Curr. Nanosci., 2019, 15(2), 157-162.
[http://dx.doi.org/10.2174/1573413714666180426092927]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy