Abstract
Introduction: The microalga Parachlorella kessleri-I produces high biomass and lipid content that could be suitable for producing economically viable biofuel at a commercial scale. Sequencing the complete chloroplast genome is crucial for the construction of a species-specific chloroplast transformation vector.
Methods: In this study, the complete chloroplast genome sequence (cpDNA) of P. kessleri-I was assembled; annotated and genetic transformation of the chloroplast was optimized. For the chloroplast transformation, we have tested two antibiotic resistance makers, aminoglycoside adenine transferase (aadA) gene and Sh-ble gene conferring resistance to spectinomycin and zeocin, respectively. Transgene integration and homoplasty determination were confirmed using PCR, Southern blot and Droplet Digital PCR.
Results: The chloroplast genome (109,642 bp) exhibited a quadripartite structure with two reverse repeat regions (IRA and IRB), a long single copy (LSC), and a small single copy (SSC) region. The genome encodes 116 genes, with 80 protein-coding genes, 32 tRNAs and 4 rRNAs. The cpDNA provided essential information like codons, UTRs and flank sequences for homologous recombination to make a species-specific vector that facilitated the transformation of P. kessleri-I chloroplast. The transgenic algal colonies were retrieved on a TAP medium containing 400 mg. L-1 spectinomycin, but no transgenic was recovered on the zeocin-supplemented medium. PCR and Southern blot analysis ascertained the transgene integration into the chloroplast genome, via homologous recombination. The chloroplast genome copy number in wildtype and transgenic P. kessleri-I was determined using Droplet Digital PCR.
Conclusion: The optimization of stable chloroplast transformation in marine alga P. kessleri-I should open a gateway for directly engineering the strain for carbon concentration mechanisms to fix more CO2, improving the photosynthetic efficiency and reducing the overall biofuels production cost.
Keywords: Chloroplast genome, genetic engineering, homologous recombination, photosynthetic organism, microalgae biofuels, parachlorella.
Graphical Abstract
[http://dx.doi.org/10.3732/ajb.91.10.1535] [PMID: 21652308]
[http://dx.doi.org/10.1111/j.1529-8817.1995.tb02559.x]
[http://dx.doi.org/10.1007/978-3-7091-6542-3_4]
[http://dx.doi.org/10.1093/molbev/msh099] [PMID: 15014170]
[http://dx.doi.org/10.1093/molbev/msi182] [PMID: 15930151]
[http://dx.doi.org/10.1186/1741-7007-4-3] [PMID: 16472375]
[http://dx.doi.org/10.1073/pnas.182432999] [PMID: 12218172]
[http://dx.doi.org/10.1007/BF02344471]
[http://dx.doi.org/10.1079/9780851999043.0000]
[http://dx.doi.org/10.1104/pp.107.106690] [PMID: 18056863]
[http://dx.doi.org/10.1186/s13059-016-1004-2] [PMID: 27339192]
[http://dx.doi.org/10.1016/j.cbpa.2013.03.038] [PMID: 23684717]
[http://dx.doi.org/10.1371/journal.pone.0098607] [PMID: 24911932]
[http://dx.doi.org/10.1007/s11120-013-9930-2] [PMID: 24097049]
[http://dx.doi.org/10.1016/j.vaccine.2004.11.013] [PMID: 15734050]
[http://dx.doi.org/10.3389/fpls.2016.00505] [PMID: 27148328]
[http://dx.doi.org/10.1023/A:1022100404542]
[http://dx.doi.org/10.1038/298481a0] [PMID: 7088193]
[http://dx.doi.org/10.1073/pnas.0702219104] [PMID: 17440039]
[http://dx.doi.org/10.1038/nbt0602-581] [PMID: 12042861]
[http://dx.doi.org/10.1002/bit.24595] [PMID: 22766749]
[http://dx.doi.org/10.1016/j.algal.2012.10.003]
[http://dx.doi.org/10.1139/m62-029] [PMID: 13902807]
[http://dx.doi.org/10.1007/s10811-013-0125-1]
[PMID: 28204566]
[http://dx.doi.org/10.1093/nar/gkx391] [PMID: 28486635]
[http://dx.doi.org/10.1016/S0022-2836(05)80360-2] [PMID: 2231712]
[http://dx.doi.org/10.1093/bioinformatics/bth352] [PMID: 15180927]
[http://dx.doi.org/10.1007/s00294-007-0161-y] [PMID: 17957369]
[http://dx.doi.org/10.1093/nar/gkh152] [PMID: 14704338]
[http://dx.doi.org/10.1101/gr.2289704] [PMID: 15231754]
[http://dx.doi.org/10.1093/nar/gkw1129] [PMID: 27899674]
[http://dx.doi.org/10.1093/bioinformatics/btx431] [PMID: 29036616]
[http://dx.doi.org/10.1104/pp.41.10.1643] [PMID: 16656452]
[http://dx.doi.org/10.1080/09670262.2010.550386]
[http://dx.doi.org/10.1007/978-3-642-01144-3_32]
[http://dx.doi.org/10.1007/s00299-017-2193-1] [PMID: 28849385]
[http://dx.doi.org/10.1093/emboj/16.20.6095] [PMID: 9321389]
[http://dx.doi.org/10.1093/molbev/msp138] [PMID: 19578159]
[http://dx.doi.org/10.1186/1471-2164-12-402] [PMID: 21824423]
[http://dx.doi.org/10.1111/j.1365-313X.2011.04541.x] [PMID: 21443621]
[http://dx.doi.org/10.1099/mic.0.000599] [PMID: 29297850]
[http://dx.doi.org/10.1186/s13007-017-0179-1] [PMID: 28428810]
[http://dx.doi.org/10.3389/fpls.2014.00061] [PMID: 24611069]
[http://dx.doi.org/10.1371/journal.pone.0108760] [PMID: 25272288]
[http://dx.doi.org/10.1105/tpc.010446] [PMID: 12045286]
[http://dx.doi.org/10.1046/j.1365-313X.2002.01340.x] [PMID: 12121445]
[http://dx.doi.org/10.1111/j.1467-7652.2010.00564.x] [PMID: 20809927]
[http://dx.doi.org/10.1105/tpc.112.103051] [PMID: 23292734]
[http://dx.doi.org/10.1016/j.bbabio.2015.05.008] [PMID: 25988717]
[http://dx.doi.org/10.1016/j.bbamcr.2012.04.004] [PMID: 23457718]
[http://dx.doi.org/10.1105/tpc.107.054882] [PMID: 18055604]
[http://dx.doi.org/10.1111/tpj.13017] [PMID: 26340426]
[http://dx.doi.org/10.1021/ja405967h] [PMID: 23927491]
[http://dx.doi.org/10.1111/j.1467-7652.2011.00620.x] [PMID: 21535358]
[http://dx.doi.org/10.1016/j.bdq.2016.08.002] [PMID: 27617230]
[http://dx.doi.org/10.1128/EC.2.3.486-493.2003] [PMID: 12796293]
[PMID: 1356049]
[http://dx.doi.org/10.1016/j.algal.2019.101453]