Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Dendrimer Porphyrins: Applications in Nanomedicine

Author(s): Fernando García-Álvarez* and Marcos Martínez-García

Volume 24, Issue 24, 2020

Page: [2801 - 2822] Pages: 22

DOI: 10.2174/1385272824999201026203527

Price: $65

Abstract

Nanomedicine is a fascinating field of multidisciplinary study focused on developing techniques that fight various diseases using nanoparticles. Among the various nanoparticles used in nanomedicine, dendrimers have received increasing interest in recent years because of the versatility that their structural characteristics give them. Specifically, dendrimer porphyrins are compounds that incorporate macro heterocyclic-aromatic units within the dendritic architecture and exhibit interesting photodynamic properties that are used to combat various diseases using non-invasive methods. In the past 17 years, few studies of the application of dendrimer porphyrins in nanomedicine have been published. This review focuses on presenting recent studies of dendrimer porphyrins with possible applications in the field of nanomedicine.

Keywords: Dendrimers, porphyrin, nanomedicine, photodynamic therapy, delivery drug, delivery gene.Dendrimers, porphyrin, nanomedicine, photodynamic therapy, delivery drug, delivery gene.Dendrimers, porphyrin, nanomedicine, photodynamic therapy, delivery drug, delivery gene.Dendrimers, porphyrin, nanomedicine, photodynamic therapy, delivery drug, delivery gene.

Next »
Graphical Abstract

[1]
Wu, L.P.; Wang, D.; Li, Z. Grand challenges in nanomedicine. Mater. Sci. Eng. C, 2020, 106110302
[http://dx.doi.org/10.1016/j.msec.2019.110302] [PMID: 31753337]
[2]
Van der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W.J.M.; Lammers, T. Smart cancer nanomedicine. Nat. Nanotechnol., 2019, 14(11), 1007-1017.
[http://dx.doi.org/10.1038/s41565-019-0567-y] [PMID: 31695150]
[3]
Yang, B.; Chen, Y.; Shi, J. Reactive Oxygen Species (ROS)-based nanomedicine. Chem. Rev., 2019, 119(8), 4881-4985.
[http://dx.doi.org/10.1021/acs.chemrev.8b00626] [PMID: 30973011]
[4]
Wolfram, J.; Ferrari, M. Clinical cancer nanomedicine. Nano Today, 2019, 25, 85-98.
[http://dx.doi.org/10.1016/j.nantod.2019.02.005] [PMID: 31360214]
[5]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: properties, applications and toxicities. Arab. J. Chem., 2019, 12, 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[6]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9, 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[7]
Banik, B.L.; Fattahi, P.; Brown, J.L. Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(2), 271-299.
[http://dx.doi.org/10.1002/wnan.1364] [PMID: 26314803]
[8]
Kumar, H.; Venkatesh, N.; Bhowmik, H.; Kuila, A. Metallic nanoparticle: a review. Biomed. J. Sci. Tech. Res., 2018, 4, 3765-3775.
[9]
Panahi, Y.; Farshbaf, M.; Mohammadhosseini, M.; Mirahadi, M.; Khalilov, R.; Saghfi, S.; Akbarzadeh, A. Recent advances on liposomal nanoparticles: synthesis, characterization and biomedical applications. Artif. Cells Nanomed. Biotechnol., 2017, 45(4), 788-799.
[http://dx.doi.org/10.1080/21691401.2017.1282496] [PMID: 28278586]
[10]
Lee, R.; Shenoy, D.; Sheel, R. Micellar nanoparticles: applications for topical and passive transdermal drug delivery.In:Handbook of Non-invasive Drug Delivery Systems; Kulkarni, V., Ed.; Elsevier, 2010, pp. 37-58.
[11]
Fernandes, A.; Días-Ferreira, J.; Ferreira-da-Silva, C.; Severino, P.; Martins-Gomes, C.; Silva, A.; Souto, E. 11-Drug nanocrystals: present, past and future.In: Applications of Nanocomposite Materials in Drug Delivery; Inamuddin; Asiri, A.; Mohammad, A., Eds.; Woodhead Publishing, 2018, pp. 239-253.
[12]
Anzar, N.; Hasan, R.; Tyagi, M.; Yadav, N.; Narang, J. Carbon nanotube - a review on synthesis, properties and plethora of applications in the field of biomedical science. Sensors International, 2020, 1100003
[http://dx.doi.org/10.1016/j.sintl.2020.100003]
[13]
Poudel, Y.; Li, W. Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: a review. Mater. Today Phys., 2018, 7, 7-34.
[http://dx.doi.org/10.1016/j.mtphys.2018.10.002]
[14]
Santos, A.; Veiga, F.; Figueiras, A. Dendrimers as pharmaceutical excipients: synthesis, properties, toxicity and biomedical applications. Materials (Basel), 2019, 13(1), 65.
[http://dx.doi.org/10.3390/ma13010065] [PMID: 31877717]
[15]
Jones, A.D., III; Mi, G.; Webster, T.J. A status report on FDA approval of medical devices containing nanostructured materials. Trends Biotechnol., 2019, 37(2), 117-120.
[http://dx.doi.org/10.1016/j.tibtech.2018.06.003] [PMID: 30075863]
[16]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med., 2019, 4(3)e10143
[http://dx.doi.org/10.1002/btm2.10143] [PMID: 31572799]
[17]
Najafi, F.; Salami-Kalajahi, M.; Roghani-Mamaqani, H.; Kahaie-Khosrowshahi, A. A comparative study on solubility improvement of tetracycline and dexamethasone by poly(propylene imine) and polyamidoamine dendrimers: an insight into cytotoxicity and cell proliferation. J. Biomed. Mater. Res. A, 2020, 108(3), 485-495.
[http://dx.doi.org/10.1002/jbm.a.36830] [PMID: 31682311]
[18]
Chauhan, A.; Svenson, S.; Reyna, L.; Tomalia, D. Solubility enhancement propensity of PAMAM nanoconstructs. Mater. Matters Nanomater, 2007, 2, 24-26.
[19]
Kulhari, H.; Pooja, D.; Singh, M.K.; Chauhan, A.S. Optimization of carboxylate-terminated poly(amidoamine) dendrimer-mediated cisplatin formulation. Drug Dev. Ind. Pharm., 2015, 41(2), 232-238.
[http://dx.doi.org/10.3109/03639045.2013.858735] [PMID: 24237325]
[20]
Chauhan, A.S. Dendrimers for drug delivery. Molecules, 2018, 23(4), 938.
[http://dx.doi.org/10.3390/molecules23040938] [PMID: 29670005]
[21]
Shi, Y.; Ye, F.; Lu, K.; Hui, Q.; Miao, M. Characterizations and bioavailability of dendrimer-like glucan nanoparticulate system containing resveratrol. J. Agric. Food Chem., 2020, 68(23), 6420-6429.
[http://dx.doi.org/10.1021/acs.jafc.0c01315] [PMID: 32396340]
[22]
Patel, V.; Rajani, C.; Paul, D.; Borisa, P.; Rajpoot, K.; Youngren-Ortiz, S.R.; Tekade, R.K. Dendrimers as novel drug-delivery system and its applications.Drug Delivery Systems; Tekade, R.K., Ed.; Academic Press: Cambridge, 2020, pp. 333-392.
[http://dx.doi.org/10.1016/B978-0-12-814487-9.00008-9]
[23]
Ambekar, R.; Choudhary, M.; Kandasubramanian, B. Recent advances in dendrimer-based nanoplatform for cancer treatment: a review. Eur. Polym. J., 2020, 126109546
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109546]
[24]
Kim, H.; Choi, B.; Lim, H.; Min, H.; Oh, J.H.; Choi, S.; Cho, J.G.; Park, J.S.; Lee, S.J. Polyamidoamine dendrimer-conjugated triamcinolone acetonide attenuates nerve injury-induced spinal cord microglia activation and mechanical allodynia. Mol. Pain, 2017, 13, 1.
[http://dx.doi.org/10.1177/1744806917697006] [PMID: 28326946]
[25]
Yousefi, M.; Narmani, A.; Jafari, S.M. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv. Colloid Interface Sci., 2020, 278102125
[http://dx.doi.org/10.1016/j.cis.2020.102125] [PMID: 32109595]
[26]
Oliveira, J.; Salgado, A.; Sousa, N.; Mano, J.; Reis, R. Dendrimers and derivatives as a potential therapeutic tool in regenerative medicine strategies-a review. Prog. Polym. Sci., 2010, 35(9), 1163-1194.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.04.006]
[27]
Singh, M.K.; Pooja, D.; Kulhari, H.; Jain, S.K.; Sistla, R.; Chauhan, A.S. Poly (amidoamine) dendrimer-mediated hybrid formulation for combination therapy of ramipril and hydrochlorothiazide. Eur. J. Pharm. Sci., 2017, 96, 84-92.
[http://dx.doi.org/10.1016/j.ejps.2016.09.005] [PMID: 27614111]
[28]
Singh, T.; Sharma, N. Chapter 7 - Nanobiomaterials in cosmetics: current status and future prospects.In: Nanobiomaterials in Galenic Formulations and Cosmetics; Grumezcu, A; William Andrew Publishing, 2016, pp. 149-174.
[29]
Parat, A.; Felder-Flesch, D. General introduction on dendrimers, classical versus accelerated syntheses and characterizations.In: Dendrimers in Nanomedicine; Felder-Flesch, D; Pan Stanford Publishing, 2016, pp. 1-22.
[30]
Tomalia, D.; Fréchet, J. Introduction and progress in the control of macromolecular architecture: introduction to the dendritic state.In: Dendrimers and other Dendritic Polymers; Tomalia, D.; Fréchet, J; John Wiley & Sons, Ltd: UK, 2001, pp. 3-44.
[31]
Vögtle, F.; Richardt, G.; Werner, N. Dendrimer Chemistry: Concepts, Synthesis, Properties, Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2009.
[http://dx.doi.org/10.1002/9783527626953]
[32]
Militello, M.; Arbeloa, E.; Hérnandez, R.; Lijanova, I.; Montejano, H.; Previtali, C.; Bertolotti, S. Photophysics and photochemistry of porphyrin core PAMAM dendrimers. Excited states interaction with quinones. J. Photochem. Photobiol. Chem., 2020, 388112167
[http://dx.doi.org/10.1016/j.jphotochem.2019.112167]
[33]
Chung, U.S.; Kim, J.H.; Kim, B.; Kim, E.; Jang, W.D.; Koh, W.G. Dendrimer porphyrin-coated gold nanoshells for the synergistic combination of photodynamic and photothermal therapy. Chem. Commun. (Camb.), 2016, 52(6), 1258-1261.
[http://dx.doi.org/10.1039/C5CC09149G] [PMID: 26610400]
[34]
Vinogradov, S.; Wilson, D. Porphyrin dendrimers as biological oxygen sensors.In: Designing Dendrimers; Campagna, S.; Ceroni, P.; Puntoriero, F; John Wiley & Sons: New Jersey, 2011, pp. 463-504.
[35]
Jin, R.; Aida, T.; Inoue, S. ‘Caged’ porphyrin: the first dendritic molecule having a core photochemical functionality. J. Chem. Soc. Chem. Commun., 1993, 1993, 1260-1262.
[http://dx.doi.org/10.1039/C39930001260]
[36]
Li, W.S.; Aida, T. Dendrimer porphyrins and phthalocyanines. Chem. Rev., 2009, 109(11), 6047-6076.
[http://dx.doi.org/10.1021/cr900186c] [PMID: 19769361]
[37]
Singh, S.; Aggarwal, A.; Bhupathiraju, N.V.; Arianna, G.; Tiwari, K.; Drain, C.M. Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics. Chem. Rev., 2015, 115(18), 10261-10306.
[http://dx.doi.org/10.1021/acs.chemrev.5b00244] [PMID: 26317756]
[38]
Figueira, F.; Pereira, P.; Silva, S.; Cavaleiro, J.; Tomé, J. Porphyrins and phthalocyanines decorated with dendrimers: synthesis and biomedical applications. Curr. Org. Synth., 2014, 11, 110-126.
[http://dx.doi.org/10.2174/15701794113106660089]
[39]
Kubát, P.; Lang, K.; Janda, P.; Anzenbacher, P., Jr Interaction of porphyrins with a dendrimer template: self-aggregation controlled by pH. Langmuir, 2005, 21(21), 9714-9720.
[http://dx.doi.org/10.1021/la051106g] [PMID: 16207057]
[40]
Nishiyama, N.; Stapert, H.R.; Zhang, G.D.; Takasu, D.; Jiang, D.L.; Nagano, T.; Aida, T.; Kataoka, K. Light-harvesting ionic dendrimer porphyrins as new photosensitizers for photodynamic therapy. Bioconjug. Chem., 2003, 14(1), 58-66.
[http://dx.doi.org/10.1021/bc025597h] [PMID: 12526693]
[41]
Garfias-González, K.I.; Organista-Mateos, U.; Borja-Miranda, A.; Gomez-Vidales, V.; Hernández-Ortega, S.; Cortez-Maya, S.; Martínez-García, M. High fluorescent porphyrin-PAMAM-fluorene dendrimers. Molecules, 2015, 20(5), 8548-8559.
[http://dx.doi.org/10.3390/molecules20058548] [PMID: 25985356]
[42]
Li, Y.; Jang, W.; Nishiyama, N.; Kishimura, A.; Kawauchi, S.; Morimoto, Y.; Miake, S.; Yamashita, T.; Kikuchi, M.; Aida, T.; Katoaka, K. Dendrimer generation effects on photodynamic efficacy of dendrimer porphyrins and dendrimer-loaded supramolecular nanocarriers. Chem. Mater., 2007, 19, 5557-5562.
[http://dx.doi.org/10.1021/cm071451m]
[43]
Li, W.S.; Kim, K.S.; Jiang, D.L.; Tanaka, H.; Kawai, T.; Kwon, J.H.; Kim, D.; Aida, T. Construction of segregated arrays of multiple donor and acceptor units using a dendritic scaffold: remarkable dendrimer effects on photoinduced charge separation. J. Am. Chem. Soc., 2006, 128(32), 10527-10532.
[http://dx.doi.org/10.1021/ja063081t] [PMID: 16895420]
[44]
Steiner, U. Fundamentals of photophysics, photochemistry, and photobiology.In: Photodynamic Therapy: From Theory to Application; Abdel-Kader, M; Springer-Verlag: Berlín, 2014, pp. 25-58.
[45]
Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed. Pharmacother., 2018, 106, 1098-1107.
[http://dx.doi.org/10.1016/j.biopha.2018.07.049] [PMID: 30119176]
[46]
Pereira, P.M.; Silva, S.; Cavaleiro, J.A.; Ribeiro, C.A.; Tomé, J.P.; Fernandes, R. Galactodendritic phthalocyanine targets carbohydrate-binding proteins enhancing photodynamic therapy. PLoS One, 2014, 9(4)e95529
[http://dx.doi.org/10.1371/journal.pone.0095529] [PMID: 24763311]
[47]
Narsireddy, A.; Vijayashree, K.; Adimoolam, M.G.; Manorama, S.V.; Rao, N.M. Photosensitizer and peptide-conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy. Int. J. Nanomedicine, 2015, 10, 6865-6878.
[PMID: 26604753]
[48]
Wang, T.; Hu, J.; Luo, H.; Li, H.; Zhou, J.; Zhou, L.; Wei, S. Photosensitizer and autophagy promoter coloaded ROS-responsive dendrimer-assembled carrier for synergistic enhancement of tumor growth suppresion. Small, 2018, 141802337
[http://dx.doi.org/10.1002/smll.201802337]
[49]
Sztandera, K.; Marcinkowska, M.; Gorzkiewicz, M.; Janaszewska, A.; Laurent, R.; Zabłocka, M.; Mignani, S.; Majoral, J.P.; Klajnert-Maculewicz, B. In search of a phosphorus dendrimer-based carrier of rose bengal: tyramine linker limits fluorescent and phototoxic properties of a photosensitizer. Int. J. Mol. Sci., 2020, 21(12), 4456.
[http://dx.doi.org/10.3390/ijms21124456] [PMID: 32585884]
[50]
Kuo, Y.; Wang, C. Chapter 19: Colloidal drug delivery system for brain-targeting therapy.In: Colloid and Interface Science in Pharmaceutical Research and Development; Ohshima, H.; Makino, K; Elsevier: Amsterdam, 2014, pp. 389-410.
[51]
Peng, Y.; Chen, L.; Ye, S.; Kang, Y.; Liu, J.; Zeng, S.; Yu, L. Research and development of drug delivery systems based on drug transporter and nano-formulation. Asian J. Pharm. Sci, 2020, 15(2), 220-236.
[http://dx.doi.org/10.1016/j.ajps.2020.02.004] [PMID: 32373201]
[52]
Moss, D.M.; Siccardi, M. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling. Br. J. Pharmacol., 2014, 171(17), 3963-3979.
[http://dx.doi.org/10.1111/bph.12604] [PMID: 24467481]
[53]
Li, Z.; Tan, S.; Li, S.; Shen, Q.; Wang, K. Cancer drug delivery in the nano era: an overview and perspectives. Oncol. Rep., 2017, 38(2), 611-624.
[http://dx.doi.org/10.3892/or.2017.5718] [PMID: 28627697]
[54]
Gao, Y.G.; Lin, X.; Dang, K.; Jiang, S.F.; Tian, Y.; Liu, F.L.; Li, D.J.; Li, Y.; Miao, Z.P.; Qian, A.R. Structure-activity relationship of novel low-generation dendrimers for gene delivery. Org. Biomol. Chem., 2018, 16(42), 7833-7842.
[http://dx.doi.org/10.1039/C8OB01767K] [PMID: 30084471]
[55]
Mahato, R.I.; Smith, L.C.; Rolland, A. Pharmaceutical perspectives of nonviral gene therapy. Adv. Genet., 1999, 41, 95-156.
[http://dx.doi.org/10.1016/S0065-2660(08)60152-2] [PMID: 10494618]
[56]
Zhong, C.; He, M.; Lou, K.; Gao, F. The application, neurotoxicity, and related mechanism of silica nanoparticles.In: Neurotoxicity of Nanomaterials and Nanomedicine; Jiang, X.; Gao, H., Eds.; Academic Press, 2017, pp. 227-257.
[57]
Raghavendra, P.; Pullaiah, T. Chapter 4 –Biomedical imaging role in cellular and molecular diagnostics.In: Advances in Cell and Molecular Diagnostics; Raghavendra, P.; Pullaiah, T., Eds.; Academic Press, 2018, pp. 85-111.
[58]
Yoshihara, T.; Hirakawa, Y.; Hosaka, M.; Nangaku, M.; Tobita, S. Oxygen imaging of living cells and tissues using luminescent molecular probes. J. Photochem. Photobiol. Photochem. Rev., 2017, 30, 71-95.
[http://dx.doi.org/10.1016/j.jphotochemrev.2017.01.001]
[59]
Papkovsky, D.B.; Zhdanov, A.V. Phosphorescence based O2 sensors - essential tools for monitoring cell and tissue oxygenation and its impact on metabolism. Free Radic. Biol. Med., 2016, 101, 202-210.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.09.018] [PMID: 27789291]
[60]
Roussakis, E.; Li, Z.; Nowell, N.H.; Nichols, A.J.; Evans, C.L. Bright, “Clickable” porphyrins for the visualization of oxygenation under ambient light. Angew. Chem. Int. Ed., 2015, 54(49), 14728-14731.
[http://dx.doi.org/10.1002/anie.201506847] [PMID: 26510549]
[61]
Dunphy, I.; Vinogradov, S.A.; Wilson, D.F. Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence. Anal. Biochem., 2002, 310(2), 191-198.
[http://dx.doi.org/10.1016/S0003-2697(02)00384-6] [PMID: 12423638]
[62]
Son, K.J.; Yoon, H.J.; Kim, J.H.; Jang, W.D.; Lee, Y.; Koh, W.G. Photosensitizing hollow nanocapsules for combination cancer therapy. Angew. Chem. Int. Ed., 2011, 50(50), 11968-11971.
[http://dx.doi.org/10.1002/anie.201102658] [PMID: 22006833]
[63]
Yoon, H.J.; Lim, T.G.; Kim, J.H.; Cho, Y.M.; Kim, Y.S.; Chung, U.S.; Kim, J.H.; Choi, B.W.; Koh, W.G.; Jang, W.D. Fabrication of multifunctional layer-by-layer nanocapsules toward the design of theragnostic nanoplatform. Biomacromolecules, 2014, 15(4), 1382-1389.
[http://dx.doi.org/10.1021/bm401928f] [PMID: 24598017]
[64]
Kim, Y.; Seong, D. Effect of polymer matrix on the sensitivity of microfibrous fluorescent chemosensor containing dendritic porphyrin for the detection of dopamine. J. Mater. Sci., 2013, 48, 3486-3493.
[http://dx.doi.org/10.1007/s10853-013-7139-6]
[65]
Sapra, R.; Verma, R.P.; Maurya, G.P.; Dhawan, S.; Babu, J.; Haridas, V. Designer peptide and protein dendrimers: a cross-sectional analysis. Chem. Rev., 2019, 119(21), 11391-11441.
[http://dx.doi.org/10.1021/acs.chemrev.9b00153] [PMID: 31556597]
[66]
Santos, S.; Gonzaga, R.; Silva, J.; Savino, D.; Prieto, D.; Shinkay, J.; Silva, R.; Paulo, L.; Ferreira, E.; Giarolla, J. Peptide dendrimers: drug/gene delivery and other approaches. Can. J. Chem., 2018, 8(7), 149-153.
[67]
Mirakabad, T.; Khoramgah, M.; Keshavarz, K.; Tabarzad, M.; Ranjbari, J. Peptide dendrimers as valuable biomaterials in medical science. Life Sci., 2019, 233, 1-12.
[http://dx.doi.org/10.1016/j.lfs.2019.116754]
[68]
Kokil, G.R.; Veedu, R.N.; Le, B.T.; Ramm, G.A.; Parekh, H.S. Self-assembling asymmetric peptide-dendrimer micelles - a platform for effective and versatile in vitro nucleic acid delivery. Sci. Rep., 2018, 8(1), 4832.
[http://dx.doi.org/10.1038/s41598-018-22902-9] [PMID: 29556057]
[69]
Ma, D.; Liu, Z.H.; Zheng, Q.Q.; Zhou, X.Y.; Zhang, Y.; Shi, Y.F.; Lin, J.T.; Xue, W. Star-shaped polymer consisting of a porphyrin core and poly(L-lysine) dendron arms: synthesis, drug delivery, and in vitro chemo/photodynamic therapy. Macromol. Rapid Commun., 2013, 34(6), 548-552.
[http://dx.doi.org/10.1002/marc.201200742] [PMID: 23386244]
[70]
Ma, D.; Zhao, Y.; Zhou, X.Y.; Lin, Q.M.; Zhang, Y.; Lin, J.T.; Xue, W. Photoenhanced gene transfection by a star-shaped polymer consisting of a porphyrin core and poly(L-lysine) dendron arms. Macromol. Biosci., 2013, 13(9), 1221-1227.
[http://dx.doi.org/10.1002/mabi.201300139] [PMID: 23828851]
[71]
Ma, D.; Lin, Q.M.; Zhang, L.M.; Liang, Y.Y.; Xue, W. A star-shaped porphyrin-arginine functionalized poly(L-lysine) copolymer for photo-enhanced drug and gene co-delivery. Biomaterials, 2014, 35(14), 4357-4367.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.070] [PMID: 24576804]
[72]
Zhang, H.; Bo, S.; Zeng, K.; Wang, J.; Li, Y.; Yang, Z.; Zhou, X.; Chen, S.; Jiang, Z.X. Fluorinated porphyrin-based theranostics for dual imaging and chemo-photodynamic therapy. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(20), 4469-4474.
[http://dx.doi.org/10.1039/D0TB00083C] [PMID: 32363372]
[73]
Kurokawa, H.; Ito, H.; Inoue, M.; Tabata, K.; Sato, Y.; Yamagata, K.; Kizaka-Kondoh, S.; Kadonosono, T.; Yano, S.; Inoue, M.; Kamachi, T. High resolution imaging of intracellular oxygen concentration by phosphorescence lifetime. Sci. Rep., 2015, 5, 10657.
[http://dx.doi.org/10.1038/srep10657] [PMID: 26065366]
[74]
Odai, S.; Ito, H.; Kamachi, T. Dendrimer porphyrins as the oxygen sensor for intracellular imaging to suppress interaction towards biological molecules. J. Clin. Biochem. Nutr., 2019, 65(3), 178-184.
[http://dx.doi.org/10.3164/jcbn.19-13] [PMID: 31777418]
[75]
Roussakis, E.; Spencer, J.A.; Lin, C.P.; Vinogradov, S.A. Two-photon antenna-core oxygen probe with enhanced performance. Anal. Chem., 2014, 86(12), 5937-5945.
[http://dx.doi.org/10.1021/ac501028m] [PMID: 24848643]
[76]
Gao, B.; Liu, Y.; Yin, H.; Li, Y.; Bai, Q.; Zhang, L. Water-soluble dendritic polyaspartic porphyrins: potential photosensitizers for photodynamic therapy. New J. Chem., 2012, 36, 28-31.
[http://dx.doi.org/10.1039/C1NJ20733D]
[77]
Wan, K.; Shibue, T.; Gross, M. Non-covalent complexes between DNA-binding drugs and double-stranded oligodeoxynucleotides: a study by ESI ion-trap mass spectrometry. J. Am. Chem. Soc., 2000, 122, 300-307.
[http://dx.doi.org/10.1021/ja990684e]
[78]
Nitta, Y.; Kuroda, R. Quantitative analysis of DNA-porphyrin interactions. Biopolymers, 2006, 81(5), 376-391.
[http://dx.doi.org/10.1002/bip.20430] [PMID: 16358258]
[79]
Xu, N.; Lei, J.; Wang, Q.; Yang, Q.; Ju, H. Dendritic DNA-porphyrin as mimetic enzyme for amplified fluorescent detection of DNA. Talanta, 2016, 150, 661-665.
[http://dx.doi.org/10.1016/j.talanta.2016.01.005] [PMID: 26838456]
[80]
Xu, L.; Liu, L.; Liu, F.; Li, W.; Chen, R.; Gao, Y.; Zhang, W. Photodynamic therapy of oligoethylene glycol dendronized reduction-sensitive porphyrins. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(15), 3062-3071.
[http://dx.doi.org/10.1039/C5TB00276A] [PMID: 32262506]
[81]
Liu, F.; Zhang, Y.; Xiuwei, P.; Xu, L.; Xue, Y.; Zhang, W. Doxorubicin-loaded redox-responsive amphiphilic dendritic porphyrin conjugates for chemotherapy and photodynamic therapy. RSC Adv, 2016, 6, 57552-57562.
[http://dx.doi.org/10.1039/C6RA09356F]
[82]
Bryden, F.; Maruani, A.; Rodrigues, J.M.M.; Cheng, M.H.Y.; Savoie, H.; Beeby, A.; Chudasama, V.; Boyle, R.W. Assembly of high-potency photosensitizer-antibody conjugates through application of dendron multiplier technology. Bioconjug. Chem., 2018, 29(1), 176-181.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00678] [PMID: 29216717]
[83]
Mohammadpour, R.; Safarian, S.; Buckway, B.; Ghandehari, H. Comparative endocytosis mechanisms and anti-cancer effect of HPMA copolymer- and PAMAM dendrimer-MTCP conjugates for photodynamic therapy. Macromol. Biosci., 2017, 17(4)1600333
[http://dx.doi.org/10.1002/mabi.201600333] [PMID: 27779358]
[84]
Shieh, M.J.; Peng, C.L.; Lou, P.J.; Chiu, C.H.; Tsai, T.Y.; Hsu, C.Y.; Yeh, C.Y.; Lai, P.S. Non-toxic phototriggered gene transfection by PAMAM-porphyrin conjugates. J. Control. Release, 2008, 129(3), 200-206.
[http://dx.doi.org/10.1016/j.jconrel.2008.03.024] [PMID: 18541326]
[85]
Hernández-Ramírez, R.; Lijanova, I.; Likhanova, N.; Olivares, O. PAMAM dendrimers with porphyrin core: synthesis and metal-chelating behavior. J. Incl. Phenom. Macrocycl. Chem., 2016, 84, 49-60.
[http://dx.doi.org/10.1007/s10847-015-0582-z]
[86]
Hernández-Ramírez, R.; Lijanova, I.; Likhanova, N.; Olivares, O.; Hernández, A.; Alcalá, J.; Trejo, O. Synthesis of PAMAM dendrimers with porphyrin core and functionalized periphery as templates of metal composite materials and their toxicity evaluation. Arab. J. Chem., 2020, 13, 27-36.
[http://dx.doi.org/10.1016/j.arabjc.2017.01.013]
[87]
Militello, M.; Hernández-Ramírez, R.; Lijanova, I.; Previtalia, C.; Bertolotti, S.; Arbeloa, E. Novel PAMAM dendrimers with porphyrin core as potential photosensitizers for PDT applications. J. Photochem. Photobiol. Chem., 2018, 353, 71-76.
[http://dx.doi.org/10.1016/j.jphotochem.2017.10.057]
[88]
Sarosy, G.; Leyland-Jones, B.; Soochan, P.; Cheson, B.D. The systemic administration of intravenous melphalan. J. Clin. Oncol., 1988, 6(11), 1768-1782.
[http://dx.doi.org/10.1200/JCO.1988.6.11.1768] [PMID: 3054005]
[89]
Bertucci, F.; Viens, P.; Delpero, J.R.; Bardou, V.J.; Faucher, C.; Houvenaeghel, G.; Maraninchi, D. High-dose melphalan-based chemotherapy and autologous stem cell transplantation after second look laparotomy in patients with chemosensitive advanced ovarian carcinoma: long-term results. Bone Marrow Transplant., 2000, 26(1), 61-67.
[http://dx.doi.org/10.1038/sj.bmt.1702468] [PMID: 10918406]
[90]
Fan, F.S.; Yang, C.F. Complete response to orally administered melphalan in malignant pleural effusion from an occult female genital organ primary neoplasm with BRCA1/2 mutations: a case report. J. Med. Case Reports, 2018, 12(1), 122.
[http://dx.doi.org/10.1186/s13256-018-1674-3] [PMID: 29729664]
[91]
Lu, B.; Huang, D.; Zheng, H.; Huang, Z.; Xu, P.; Xu, H.; Yin, Y.; Liu, X.; Li, D.; Zhang, X. Preparation, characterization, and in vitro efficacy of O-carboxymethyl chitosan conjugate of melphalan. Carbohydr. Polym., 2013, 98(1), 36-42.
[http://dx.doi.org/10.1016/j.carbpol.2013.04.071] [PMID: 23987314]
[92]
Ramírez-Arroniz, J.C.; Martínez Klimova, E.; Pedro-Hernández, L.D.; Organista-Mateos, U.; Cortez-Maya, S.; Ramírez-Ápan, T.; Nieto-Camacho, A.; Calderón-Pardo, J.; Martínez-García, M. Water-soluble porphyrin-PAMAM-conjugates of melphalan and their anti-cancer activity. Drug Dev. Ind. Pharm., 2018, 44(8), 1342-1349.
[http://dx.doi.org/10.1080/03639045.2018.1449857] [PMID: 29521131]
[93]
Konopka, M.; Janaszewska, A.; Klajnert-Maculewicz, B. Intrinsic Fluorescence of PAMAM dendrimers-quenching studies. Polymers (Basel), 2018, 10(5), 540.
[http://dx.doi.org/10.3390/polym10050540] [PMID: 30966574]
[94]
Chang, D.; Yang, W.; Dai, X.; Wang, J.; Chen, L.; Pan, J.; Yan, Y.; Dai, Y. Click synthesis of glycosylated porphyrin-cored PAMAM dendrimers with specific recognition and thermosensitivity. J. Polym. Res., 2018, 25, 257.
[http://dx.doi.org/10.1007/s10965-018-1640-1]
[95]
Hofmann, A.F. The continuing importance of bile acids in liver and intestinal disease. Arch. Intern. Today, 1999, 159(22), 2647-2658.
[http://dx.doi.org/10.1001/archinte.159.22.2647] [PMID: 10597755]
[96]
Ðanić, M.; Stanimirov, B.; Pavlović, N.; Goločorbin-Kon, S.; Al-Salami, H.; Stankov, K.; Mikov, M. Pharmacological applications of bile acids and their derivatives in the treatment of metabolic syndrome. Front. Pharmacol., 2018, 9, 1382.
[http://dx.doi.org/10.3389/fphar.2018.01382] [PMID: 30559664]
[97]
Stojancevic, M.; Pavlovic, N.; Golocorbin-Kon, S.; Mikov, M. Application of bile acids in drug formulation and delivery. Front. Life Sci., 2013, 7, 112-122.
[http://dx.doi.org/10.1080/21553769.2013.879925]
[98]
Zhang, M.; Strandman, S.; Waldron, K.C.; Zhu, X.X. Supramolecular hydrogelation with bile acid derivatives: structures, properties and applications. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(47), 7506-7520.
[http://dx.doi.org/10.1039/C6TB02270G] [PMID: 32263808]
[99]
Anandkumar, D.; Raja, R.; Rajakumar, P. Synthesis, photophysical properties and anti-cancer activity of micro-environment sensitive amphiphilic bile acid dendrimers. RSC Adv, 2016, 6, 25808-25818.
[http://dx.doi.org/10.1039/C5RA20147K]
[100]
Anandkumar, D.; Rajakumar, P. Photophysical and electrochemical properties and anti-cancer activities of porphyrin-cored fluorenodendrimers synthesized by Click chemistry. Synlett, 2018, 29, 1995-2000.
[http://dx.doi.org/10.1055/s-0037-1610218]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy