Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Evidence and the Main Adverse Effects Regarding Drug Therapies in the War Against COVID-19

Author(s): Mauricio Mora-Ramírez, Paulina Melgoza-Hernández, Sebastian Eduardo Toledo-Ramírez and Juan Manuel Mejía Aranguré*

Volume 28, Issue 16, 2021

Published on: 26 October, 2020

Page: [3147 - 3157] Pages: 11

DOI: 10.2174/0929867327666201026145630

Price: $65

Abstract

Background: Nowadays, the breakthrough of COVID-19 pandemic around the world is the biggest health challenge for the clinicians, and it represents an unexpected effort to identify an effective treatment for those patients. No proven definitive therapies for this infection currently exist. Unfortunately, the infected patients increased in an alarming way every day, faster than medical evidence. At present, the expanding knowledge regarding SARS-COV-2 virology provides several potential drug targets.

Objective: Therefore, clinicians need a rapid review and guideline about the main adverse effects regarding the most prescribed drugs and, specifically, the efficacy and potential risk of each pharmacological therapy, during hospital care.

Methods: The articles review was performed using PubMed to identify relevant papers in English language reported through July 20th, 2020; a second review was performed using Web of Science until August 28th, 2020. Due to the lack of randomized clinical trials, we included case reports, case series and reviews. We found a total of 1606 related articles. The authors independently reviewed the titles and abstracts for inclusion.

Conclusion: At present, despite the enormous medical effort for publishing several trials or case reports, we have not yet discovered a definitive therapy against the COVID-19 infection. This brief review aims to prompt identification of risk factors and main adverse effects in a systematic view related to therapy with partial evidence proposed to date.

Keywords: COVID-19 pandemic, SARS-COV-2, infection, randomized clinical trials, definitive therapies, treatment.

[1]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[2]
Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2020, 71(15), 732-739.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[3]
World Health Organization. The Cardiotoxicity of Antimalarials, 2017. Available at: https://www.who.int/malaria/mpac/mpac-mar2017-erg-cardiotoxicity-report-session2.pdf (Accessed: April, 2020).
[4]
US Food and Drug Administration. Request for Emergency Use Authorization For Use of Chloroquine Phosphate or Hydroxychloroquine Sulfate Supplied From the Strategic National Stockpile for Treatment of 2019 Coronavirus Disease, 2020. Available at: https://www.fda.gov/media/136534/download (Accessed: April, 2020).
[5]
Centers for Disease Control and Prevention. Information for Clinicians on Investigational Therapeutics for Patients with COVID-19, 2020. Available at: https://www.cdc.gov/coronavirus/2019-ncov/hcp/therapeutic-options.html (Accessed: April, 2020).
[6]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1), 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[7]
Chen, J.; Liu, D.; Liu, L.; Liu, P.; Xu, Q.; Xia, L.; Ling, Y.; Huang, D.; Song, S.; Zhang, D.; Qian, Z.; Li, T.; Shen, Y.; Lu, H. A pilot study of hydroxychloroquine in treatment of patients with moderate COVID-19. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2020, 49(2), 215-219.
[http://dx.doi.org/10.3785/j.issn.1008-9292.2020.03.03] [PMID: 32391667]
[8]
Molina, J.M.; Delaugerre, C.; Le Goff, J.; Mela-Lima, B.; Ponscarme, D.; Goldwirt, L.; de Castro, N. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med. Mal. Infect., 2020, 50(4), 384.
[http://dx.doi.org/10.1016/j.medmal.2020.03.006] [PMID: 32240719]
[9]
Cavalcanti, A.B.; Zampieri, F.G.; Rosa, R.G.; Azevedo, L.C.P.; Veiga, V.C.; Avezum, A.; Damiani, L.P.; Marcadenti, A.; Kawano-Dourado, L.; Lisboa, T.; Junqueira, D.L.M.; de Barros E Silva, P.G.M.; Tramujas, L.; Abreu-Silva, E.O.; Laranjeira, L.N.; Soares, A.T.; Echenique, L.S.; Pereira, A.J.; Freitas, F.G.R.; Gebara, O.C.E.; Dantas, V.C.S.; Furtado, R.H.M.; Milan, E.P.; Golin, N.A.; Cardoso, F.F.; Maia, I.S.; Hoffmann Filho, C.R.; Kormann, A.P.M.; Amazonas, R.B.; Bocchi de Oliveira, M.F.; Serpa-Neto, A.; Falavigna, M.; Lopes, R.D.; Machado, F.R.; Berwanger, O. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. N. Engl. J. Med., 2020, 383(21), 2041-2052.
[http://dx.doi.org/10.1056/NEJMoa2019014] [PMID: 32706953]
[10]
Tisdale, J.E.; Jaynes, H.A.; Kingery, J.R.; Mourad, N.A.; Trujillo, T.N.; Overholser, B.R.; Kovacs, R.J. Development and validation of a risk score to predict QT interval prolongation in hospitalized patients. Circ. Cardiovasc. Qual. Outcomes, 2013, 6(4), 479-487.
[http://dx.doi.org/10.1161/CIRCOUTCOMES.113.000152] [PMID: 23716032]
[11]
Chugh, S.S.; Reinier, K.; Singh, T.; Uy-Evanado, A.; Socoteanu, C.; Peters, D.; Mariani, R.; Gunson, K.; Jui, J. Determinants of prolonged QT interval and their contribution to sudden death risk in coronary artery disease: the Oregon Sudden Unexpected Death Study. Circulation, 2009, 119(5), 663-670.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.797035] [PMID: 19171855]
[12]
Sapp, J.L.; Alqarawi, W.; MacIntyre, C.J.; Tadros, R.; Steinberg, C.; Roberts, J.D.; Laksman, Z.; Healey, J.S.; Krahn, A.D. Guidance on minimizing risk of drug-induced ventricular arrhythmia during treatment of covid-19: a statement from the Canadian Heart Rhythm Society. Can. J. Cardiol., 2020, 36(6), 948-951.
[http://dx.doi.org/10.1016/j.cjca.2020.04.003] [PMID: 32299753]
[13]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[14]
Bernstein, B.; King, M.; Brun, S.; Cernohous, P.; Potthoff, A.; Moseley, J.; Sullivan, M.; Grebner, K.; Sun, E. Safety of Kaletra: data from phase II and phase III clinical trials. In: 1st International AIDS Society Conference on HIV Pathogenesis & Treatment, 2001.
[15]
Cupp, M.J.; Tracy, T.S. Cytochrome P450: new nomenclature and clinical implications. Am. Fam. Physician, 1998, 57(1), 107-116.
[PMID: 9447218]
[16]
World Health Organization. WHO R&D blueprint: ad-hoc expert consultation on clinical trials for Ebola therapeutics, 2018. Available at: https://www.who.int/ebola/drc-2018/treatments-approved-for-compassionate-use-update/en/ (Accessed: August, 2020).
[17]
Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M.L.; Lescure, F.X.; Nicastri, E.; Oda, R.; Yo, K.; Quiros-Roldan, E.; Studemeister, A.; Redinski, J.; Ahmed, S.; Bernett, J.; Chelliah, D.; Chen, D.; Chihara, S.; Cohen, S.H.; Cunningham, J.; D’Arminio Monforte, A.; Ismail, S.; Kato, H.; Lapadula, G.; L’Her, E.; Maeno, T.; Majumder, S.; Massari, M.; Mora-Rillo, M.; Mutoh, Y.; Nguyen, D.; Verweij, E.; Zoufaly, A.; Osinusi, A.O.; DeZure, A.; Zhao, Y.; Zhong, L.; Chokkalingam, A.; Elboudwarej, E.; Telep, L.; Timbs, L.; Henne, I.; Sellers, S.; Cao, H.; Tan, S.K.; Winterbourne, L.; Desai, P.; Mera, R.; Gaggar, A.; Myers, R.P.; Brainard, D.M.; Childs, R.; Flanigan, T. Compassionate use of remdesivir for patients with severe covid-19. N. Engl. J. Med., 2020, 382(24), 2327-2336.
[http://dx.doi.org/10.1056/NEJMoa2007016] [PMID: 32275812]
[18]
Avirutnan, P. Efficacy and Safety of Ivermectin against Dengue Infection: A Phase III, Randomized, Double-blind, Placebo-controlled Trial, 2015. NCT Trial NCT02045069, Available at: https:// clinicaltrials.gov/ct2/show/NCT02045069 (Accessed: April, 2020).
[19]
Poyiadji, N.; Shahin, G.; Noujaim, D.; Stone, M.; Patel, S.; Griffith, B. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology, 2020, 296(2), E119-E120.
[http://dx.doi.org/10.1148/radiol.2020201187] [PMID: 32228363]
[20]
Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 2006, 440(7081), 237-241.
[http://dx.doi.org/10.1038/nature04516] [PMID: 16407889]
[21]
Shi, C.-S.; Nabar, N.R.; Huang, N-N.; Kehrl, J.H. SARS- Coronavirus open reading frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov., 2019, 5, 101.
[http://dx.doi.org/10.1038/s41420-019-0181-7] [PMID: 31231549]
[22]
Chen, I.-Y.; Moriyama, M.; Chang, M.-F.; Ichinohe, T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front. Microbiol., 2019, 10, 50.
[http://dx.doi.org/10.3389/fmicb.2019.00050] [PMID: 30761102]
[23]
Karakike, E.; Giamarellos-Bourboulis, E.J. Macrophage activation-like syndrome: a distinct entity leading to early death in sepsis. Front. Immunol., 2019, 10, 55.
[http://dx.doi.org/10.3389/fimmu.2019.00055] [PMID: 30766533]
[24]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[25]
Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med., 2020, 46(5), 846-848.
[http://dx.doi.org/10.1007/s00134-020-05991-x] [PMID: 32125452]
[26]
Chinese Clinical Trial Registry. A multicenter, randomized controlled trial for the efficacy and safety of tocilizumab in the treatment of new coronavirus pneumonia (COVID-19), 2020. Available at: http://www.chictr.org.cn/ (Accessed: September, 2020).
[27]
Mair-Jenkins, J.; Saavedra-Campos, M.; Baillie, J.K.; Cleary, P.; Khaw, F.M.; Lim, W.S.; Makki, S.; Rooney, K.D.; Nguyen-Van-Tam, J.S.; Beck, C.R. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J. Infect. Dis., 2015, 211(1), 80-90.
[http://dx.doi.org/10.1093/infdis/jiu396] [PMID: 25030060]
[28]
Cao, W.; Liu, X.; Bai, T.; Fan, H.; Hong, K.; Song, H.; Han, Y.; Lin, L.; Ruan, L.; Li, T. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infect. Dis., 2020, 7(3), ofaa102.
[http://dx.doi.org/10.1093/ofid/ofaa102] [PMID: 32258207]
[29]
Stiehm, E.R. Adverse effects of human immunoglobulin therapy. Transfus. Med. Rev., 2013, 27(3), 171-178.
[http://dx.doi.org/10.1016/j.tmrv.2013.05.004] [PMID: 23835249]
[30]
Imbach, P.; Barandun, S.; d’Apuzzo, V.; Baumgartner, C.; Hirt, A.; Morell, A.; Rossi, E.; Schöni, M.; Vest, M.; Wagner, H.P. High-dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet, 1981, 1(8232), 1228-1231.
[http://dx.doi.org/10.1016/S0140-6736(81)92400-4] [PMID: 6112565]
[31]
Orbach, H.; Katz, U.; Sherer, Y.; Shoenfeld, Y. Intravenous immunoglobulin: adverse effects and safe administration. Clin. Rev. Allergy Immunol., 2005, 29(3), 173-184.
[http://dx.doi.org/10.1385/CRIAI:29:3:173] [PMID: 16391392]
[32]
Russell, C.D.; Millar, J.E.; Baillie, J.K. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet, 2020, 395(10223), 473-475.
[http://dx.doi.org/10.1016/S0140-6736(20)30317-2] [PMID: 32043983]
[33]
World Health Organization. Novel Coronavirus (2019-nCoV) technical guidance: Patient management, 2019. Available at: https://www.who.int/emergencies/diseases/novel- coronavirus-2019/technical-guidance/patient-management (Accessed: September, 2020).
[34]
Xu, Z.; Shi, L; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Med., 2020, 8(4), 420-422.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[35]
Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; Zhang, Y.; Song, J.; Wang, S.; Chao, Y.; Yang, Z.; Xu, J.; Zhou, X.; Chen, D.; Xiong, W.; Xu, L.; Zhou, F.; Jiang, J.; Bai, C.; Zheng, J.; Song, Y. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med., 2020, 180(7), 934-943.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[36]
Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; Prudon, B.; Green, C.; Felton, T.; Chadwick, D.; Rege, K.; Fegan, C.; Chappell, L.C.; Faust, S.N.; Jaki, T.; Jeffery, K.; Montgomery, A.; Rowan, K.; Juszczak, E.; Baillie, J.K.; Haynes, R.; Landray, M.J. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med., 2021, 384(8), 693-704.
[http://dx.doi.org/10.1056/NEJMoa2021436] [PMID: 32678530]
[37]
Migita, K.; Arai, T.; Ishizuka, N.; Jiuchi, Y.; Sasaki, Y.; Izumi, Y.; Kiyokawa, T.; Suematsu, E.; Miyamura, T.; Tsutani, H.; Kawabe, Y.; Matsumura, R.; Mori, S.; Ohshima, S.; Yoshizawa, S.; Kawakami, K.; Suenaga, Y.; Nishimura, H.; Sugimoto, T.; Iwase, H.; Sawada, H.; Yamashita, H.; Kuratsu, S.; Ogushi, F.; Kawabata, M.; Matsui, T.; Furukawa, H.; Bito, S.; Tohma, S. Rates of serious intracellular infections in autoimmune disease patients receiving initial glucocorticoid therapy. PLoS One, 2013, 8(11), e78699.
[http://dx.doi.org/10.1371/journal.pone.0078699] [PMID: 24260127]
[38]
Singh, A.V.; Laux, P.; Lunch, A.; Balkrishnan, S.; Dakua, S.P. Bottom-UP assembly of nanorobots: extending synthetic biology to complex material design. Front. Nanosci. Nanotechnol., 2019, 5, 1, 2.
[http://dx.doi.org/10.15761/FNN.1000S2005]
[39]
Jácome, R.; Campillo-Balderas, J.A.; Ponce de León, S.; Becerra, A.; Lazcano, A. Sofosbuvir as a potential alternative to treat the SARS-CoV-2 epidemic. Sci. Rep., 2020, 10(1), 9294.
[http://dx.doi.org/10.1038/s41598-020-66440-9] [PMID: 32518317]
[40]
Singh, A.V.; Ansari, M.H.D.; Laux, P.; Luch, A. Micro- nanorobots: important considerations when developing novel drug delivery platforms. Expert Opin. Drug Deliv., 2019, 16(11), 1259-1275.
[http://dx.doi.org/10.1080/17425247.2019.1676228] [PMID: 31580731]
[41]
Singh, A.V.; Batuwangala, M.; Mundra, R.; Mehta, K.; Patke, S.; Falletta, E.; Patil, R.; Gade, W.N. Biomineralized anisotropic gold microplate-macrophage interactions reveal frustrated phagocytosis-like phenomenon: a novel paclitaxel drug delivery vehicle. ACS Appl. Mater. Interfaces, 2014, 6(16), 14679-14689.
[http://dx.doi.org/10.1021/am504051b] [PMID: 25046687]
[42]
Keech, C.; Albert, G.; Cho, I.; Robertson, A.; Reed, P.; Neal, S.; Plested, J.S.; Zhu, M.; Cloney-Clark, S.; Zhou, H.; Smith, G.; Patel, N.; Frieman, M.B.; Haupt, R.E.; Logue, J.; McGrath, M.; Weston, S.; Piedra, P.A.; Desai, C.; Callahan, K.; Lewis, M.; Price-Abbott, P.; Formica, N.; Shinde, V.; Fries, L.; Lickliter, J.D.; Griffin, P.; Wilkinson, B.; Glenn, G.M. Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N. Engl. J. Med., 2020, 383(24), 2320-2332.
[http://dx.doi.org/10.1056/NEJMoa2026920] [PMID: 32877576]
[43]
Dang, D.; Wang, L.; Zhang, C.; Li, Z.; Wu, H. Potential effects of SARS-CoV-2 infection during pregnancy on fetuses and newborns are worthy of attention. J. Obstet. Gynaecol. Res., 2020, 46(10), 1951-1957.
[http://dx.doi.org/10.1111/jog.14406] [PMID: 32779309]
[44]
Favilli, A.; Mattei Gentili, M.; Raspa, F.; Giardina, I.; Parazzini, F.; Vitagliano, A.; Borisova, A.V.; Gerli, S. Effectiveness and safety of available treatments for COVID-19 during pregnancy: a critical review. J. Matern. Fetal Neonatal Med., 2020, 1-14.
[http://dx.doi.org/10.1080/14767058.2020.1774875] [PMID: 32508168]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy