Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Indolic Structure Metabolites as Potential Biomarkers of Non-infectious Diseases

Author(s): Natalia V. Beloborodova*, Ekaterina A. Chernevskaya and Maria L. Getsina

Volume 27, Issue 2, 2021

Published on: 22 October, 2020

Page: [238 - 249] Pages: 12

DOI: 10.2174/1381612826666201022121653

Price: $65

Abstract

Interest in indolic structure metabolites, including a number of products of microbial biotransformation of the aromatic amino acid tryptophan, is increasingly growing. The review prepared by a team of authors is based on in-depthscrutiny of data available in PubMed, Scopus, Cyberleninka, Clinical Trials, and Cochrane Library, eventually narrowing the search to a set of keywords such as tryptophan metabolites; plasma metabolomics profiling; metabolomics fingerprinting; gas-, liquid chromatography mass spectrometry; serotonin; melatonin; tryptamine; indoxyl sulfate; indole-3-acetic acid; indole-3-propionic acid; 5-hydroxyindole-3-acetic acid; gut microbiota and microbial metabolites. It provides a summary that outlines the pattern of changes in the level of indolic structure metabolites in a number of diseases and deals with the data from the field of human microbiota metabolites. In modern experimental studies, including the use of gnotobiological (germ-free) animals, it has been convincingly proved that the formation of tryptophan metabolites such as indole-3-acetic acid, indole-3-propionic acid, tryptamine, and indoxyl sulfate is associated with gut bacteria. Attention to some concentration changes of indolic compounds is due to the fact that pronounced deviations and a significant decrease of these metabolites in the blood were found in a number of serious cardiovascular, brain or gastrointestinal diseases.

The literature-based analysis allowed the authors to conclude that a constant (normal) level of the main metabolites of the indolic structure in the human body is maintained by a few strict anaerobic bacteria from the gut of a healthy body belonging to the species of Clostridium, Bacteroides, Peptostreptococcus, Eubacteria, etc. The authors focus on several metabolites of the indolic structure that can be called clinically significant in certain diseases, such as schizophrenia, depression, atherosclerosis, colorectal cancer, etc. Determining the level of indole metabolites in the blood can be used to diagnose and monitor the effectiveness of a comprehensive treatment approach.

Keywords: Tryptophan, tryptophan metabolites, indolic pathway, tryptophan pathway, microbiota, gut anaerobic bacteria, metabolites, indole- 3-acetic acid, indole-3-propionic acid, tryptamine, indoxyl sulfate, cardiovascular diseases, colorectal cancer, neurodegenerative diseases.

[1]
Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 2009; 106(10): 3698-703.
[http://dx.doi.org/10.1073/pnas.0812874106] [PMID: 19234110]
[2]
Beloborodova NV, Olenin AY, Pautova AK. Metabolomic findings in sepsis as a damage of host-microbial metabolism integration. J Crit Care 2018; 43: 246-55.
[http://dx.doi.org/10.1016/j.jcrc.2017.09.014] [PMID: 28942199]
[3]
Palego L, Betti L, Rossi A, et al. Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans J. Amino Acids 2016; 20168952520https://www.hindawi.com/journals/jaa/2016/8952520/
[4]
Keszthelyi D, Troost FJ, Masclee AAM. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterol Motil 2009; 21(12): 1239-49.
[http://dx.doi.org/10.1111/j.1365-2982.2009.01370.x] [PMID: 19650771]
[5]
Kline EL, Brown CS, Bankaitis V, Montefiori DC, Craig K. Metabolite gene regulation of the L-arabinose operon in Escherichia coli with indoleacetic acid and other indole derivatives. Proc Natl Acad Sci USA 1980; 77(4): 1768-72.
[http://dx.doi.org/10.1073/pnas.77.4.1768] [PMID: 6246502]
[6]
Chung KT, Anderson GM, Fulk GE. Formation of indoleacetic acid by intestinal anaerobes. J Bacteriol 1975; 124(1): 573-5.
[http://dx.doi.org/10.1128/JB.124.1.573-575.1975] [PMID: 1236846]
[7]
Furukawa S, Usuda K, Abe M, Ogawa I. Effect of indole-3-acetic acid derivatives on neuroepithelium in rat embryos. J Toxicol Sci 2005; 30(3): 165-74.
[http://dx.doi.org/10.2131/jts.30.165] [PMID: 16141651]
[8]
Jeong YM, Oh MH, Kim SY, et al. Indole-3-acetic acid/horseradish peroxidase induces apoptosis in TCCSUP human urinary bladder carcinoma cells. Pharmazie 2010; 65(2): 122-6.
[PMID: 20225657]
[9]
Dalmazzo LF, Santana-Lemos BA, Jácomo RH, et al. Antibody-targeted horseradish peroxidase associated with indole-3-acetic acid induces apoptosis in vitro in hematological malignancies. Leuk Res 2011; 35(5): 657-62.
[http://dx.doi.org/10.1016/j.leukres.2010.11.025] [PMID: 21168913]
[10]
Sitkin SI, Tkachenko EI, Vakhitov TIa, Oreshko LS, Zhigalova TN. [Serum metabolome by gas chromatography-mass spectrometry (GC-MS) in patients with ulcerative colitis and celiac disease. Eksp. Klin. Gastroenterol. . 2013; 12(12): 44-57.
[PMID: 24933989]
[11]
Shiomi Y, Nishiumi S, Ooi M, et al. GCMS-based metabolomic study in mice with colitis induced by dextran sulfate sodium. Inflamm Bowel Dis 2011; 17(11): 2261-74.
[http://dx.doi.org/10.1002/ibd.21616] [PMID: 21287666]
[12]
Vanholder R, Schepers E, Pletinck A, Neirynck N, Glorieux G. An update on protein-bound uremic retention solutes. J Ren Nutr 2012; 22(1): 90-4.
[http://dx.doi.org/10.1053/j.jrn.2011.10.026] [PMID: 22200422]
[13]
Duranton F, Cohen G, De Smet R, et al. European Uremic Toxin Work Group. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol 2012; 23(7): 1258-70.
[http://dx.doi.org/10.1681/ASN.2011121175] [PMID: 22626821]
[14]
Carling RS, Degg TJ, Allen KR, Bax ND, Barth JH. Evaluation of whole blood serotonin and plasma and urine 5-hydroxyindole acetic acid in diagnosis of carcinoid disease. Ann Clin Biochem 2002; 39(Pt. 6): 577-82.
[http://dx.doi.org/10.1177/000456320203900605] [PMID: 12564839]
[15]
Lau WL, Savoj J, Nakata MB, Vaziri ND. Altered microbiome in chronic kidney disease: systemic effects of gut-derived uremic toxins. Clin Sci (Lond) 2018; 132(5): 509-22.
[http://dx.doi.org/10.1042/CS20171107] [PMID: 29523750]
[16]
Etinger A, Kumar SR, Ackley W, et al. The effect of isohydric hemodialysis on the binding and removal of uremic retention solutes. PLoS One 2018; 13(2)e0192770
[http://dx.doi.org/10.1371/journal.pone.0192770] [PMID: 29470534]
[17]
Uchiyama K, Yagi N, Mizushima K, et al. Serum metabolomics analysis for early detection of colorectal cancer. J Gastroenterol 2017; 52(6): 677-94.
[http://dx.doi.org/10.1007/s00535-016-1261-6] [PMID: 27650200]
[18]
Karbownik M, Reiter RJ, Garcia JJ, et al. Indole-3-propionic acid, a melatonin-related molecule, protects hepatic microsomal membranes from iron-induced oxidative damage: relevance to cancer reduction. J Cell Biochem 2001; 81(3): 507-13.
[http://dx.doi.org/10.1002/1097-4644(20010601)81:3<507:AID-JCB1064>3.0.CO;2-M] [PMID: 11255233]
[19]
Chyan YJ, Poeggeler B, Omar RA, et al. Potent neuroprotective properties against the Alzheimer beta-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid. J Biol Chem 1999; 274(31): 21937-42.
[http://dx.doi.org/10.1074/jbc.274.31.21937] [PMID: 10419516]
[20]
Elsden SR, Hilton MG, Waller JM. The end products of the metabolism of aromatic amino acids by Clostridia. Arch Microbiol 1976; 107(3): 283-8.
[http://dx.doi.org/10.1007/BF00425340] [PMID: 1275638]
[21]
Young SN, Anderson GM, Gauthier S, Purdy WC. The origin of indoleacetic acid and indolepropionic acid in rat and human cerebrospinal fluid. J Neurochem 1980; 34(5): 1087-92.
[http://dx.doi.org/10.1111/j.1471-4159.1980.tb09944.x] [PMID: 6154772]
[22]
Dodd D, Spitzer MH, Van Treuren W, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 2017; 551(7682): 648-52.
[http://dx.doi.org/10.1038/nature24661] [PMID: 29168502]
[23]
Sinha R, Ahn J, Sampson JN, et al. Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLOS ONE 2016.Available at:. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152126
[24]
Wei J, Xie G, Zhou Z, et al. Salivary metabolite signatures of oral cancer and leukoplakia. Int J Cancer 2011; 129(9): 2207-17.
[http://dx.doi.org/10.1002/ijc.25881] [PMID: 21190195]
[25]
Cason CA, Dolan KT, Sharma G, et al. Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. J Vasc Surg 2018; 68(5): 1552-62.e7.
[http://dx.doi.org/10.1016/j.jvs.2017.09.029] [PMID: 29248242]
[26]
Orešič M, Posti JP, Kamstrup-Nielsen MH, et al. Human serum metabolites associate with severity and patient outcomes in traumatic brain injury. EBioMedicine 2016; 12: 118-26.
[http://dx.doi.org/10.1016/j.ebiom.2016.07.015] [PMID: 27665050]
[27]
Humane Metabolome Data Base – HMDB. The Metabolomics Innovation Centre. Available at:. http://www.hmdb.ca/metabolites/HMDB0000929
[28]
Zhang LS, Davies SS. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med 2016; 8(1): 46.
[http://dx.doi.org/10.1186/s13073-016-0296-x] [PMID: 27102537]
[29]
Lekawanvijit S, Adrahtas A, Kelly DJ, Kompa AR, Wang BH, Krum H. Does indoxyl sulfate, a uraemic toxin, have direct effects on cardiac fibroblasts and myocytes? Eur Heart J 2010; 31(14): 1771-9.
[http://dx.doi.org/10.1093/eurheartj/ehp574] [PMID: 20047993]
[30]
Barreto FC, Barreto DV, Liabeuf S, et al. European Uremic Toxin Work Group. (EUTox). Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol 2009; 4(10): 1551-8.
[http://dx.doi.org/10.2215/CJN.03980609] [PMID: 19696217]
[31]
Bataille S, Pelletier M, Sallée M, et al. Indole 3-acetic acid, indoxyl sulfate and paracresyl-sulfate do not influence anemia parameters in hemodialysis patients. BMC Nephrol 2017; 18(1): 251.
[http://dx.doi.org/10.1186/s12882-017-0668-5] [PMID: 28747155]
[32]
Niwa T. Indoxyl sulfate is a nephro-vascular toxin. J Ren Nutr 2010; 20(5)(Suppl.): S2-6.
[http://dx.doi.org/10.1053/j.jrn.2010.05.002] [PMID: 20797565]
[33]
Dou L, Jourde-Chiche N, Faure V, et al. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J Thromb Haemost 2007; 5(6): 1302-8.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02540.x] [PMID: 17403109]
[34]
Yu M, Kim YJ, Kang DH. Indoxyl sulfate-induced endothelial dysfunction in patients with chronic kidney disease via an induction of oxidative stress. Clin J Am Soc Nephrol 2011; 6(1): 30-9.
[http://dx.doi.org/10.2215/CJN.05340610] [PMID: 20876676]
[35]
Adesso S, Popolo A, Bianco G, et al. The uremic toxin indoxyl sulphate enhances macrophage response to LPS. PLoS One 2013; 8(9)e76778
[http://dx.doi.org/10.1371/journal.pone.0076778] [PMID: 24098806]
[36]
Lee CT, Kuo CC, Chen YM, et al. Factors associated with blood concentrations of indoxyl sulfate and p-cresol in patients undergoing peritoneal dialysis. Perit Dial Int 2010; 30(4): 456-63.
[http://dx.doi.org/10.3747/pdi.2009.00092] [PMID: 20338972]
[37]
Adesso S, Magnus T, Cuzzocrea S, et al. Indoxyl sulfate affects glial function increasing oxidative stress and neuroinflammation in chronic kidney disease: interaction between astrocytes and microglia. Front Pharmacol 2017; 8: 370.
[PMID: 28659803]
[38]
Ilkhanizadeh B, Owji AA, Tavangar SM, Vasei M, Tabei SM. Spot urine 5-hydroxy indole acetic acid and acute appendicitis. Hepatogastroenterology 2001; 48(39): 609-13.
[PMID: 11462886]
[39]
Jangjoo A, Varasteh AR, Mehrabi Bahar M, et al. Is urinary 5-hydroxyindoleacetic acid helpful for early diagnosis of acute appendicitis? Am J Emerg Med 2012; 30(4): 540-4.
[PMID: 21450436]
[40]
Mentes O, Eryilmaz M, Harlak A, et al. The importance of urine 5-hydroxyindoleacetic acid levels in the early diagnosis of acute appendicitis. Am J Emerg Med 2009; 27(4): 409-12.
[http://dx.doi.org/10.1016/j.ajem.2008.03.016] [PMID: 19555609]
[41]
Oruc MT, Kulah B, Ozozan O, et al. The value of 5-hydroxy indole acetic acid measurement in spot urine in diagnosis of acute appendicitis. East Afr Med J 2004; 81(1): 40-1.
[http://dx.doi.org/10.4314/eamj.v81i1.8793] [PMID: 15080514]
[42]
Bolandparvaz S, Vasei M, Owji AA, et al. Urinary 5-hydroxy indole acetic acid as a test for early diagnosis of acute appendicitis. Clin Biochem 2004; 37(11): 985-9.
[http://dx.doi.org/10.1016/j.clinbiochem.2004.07.003] [PMID: 15498526]
[43]
Rao A, Wilson M, Kennedy G, Mittapalli D, Tait I, Alijani A. Spot urinary 5-hydroxyindoleacetic acid is not an ideal diagnostic test for acute appendicitis. Am J Emerg Med 2016; 34(9): 1750-3.
[http://dx.doi.org/10.1016/j.ajem.2016.05.059] [PMID: 27364645]
[44]
Ardill JES, Armstrong L, Smye M, Doherty R, McCance DR, Johnston BT. Neuroendocrine tumours of the small bowel: interpretation of raised circulating chromogranin A, urinary 5 hydroxy indole acetic acid and circulating neurokinin A. QJM 2016; 109(2): 111-5.
[http://dx.doi.org/10.1093/qjmed/hcv095] [PMID: 25979268]
[45]
Bach H, Huang YY, Underwood MD, Dwork AJ, Mann JJ, Arango V. Elevated serotonin and 5-HIAA in the brainstem and lower serotonin turnover in the prefrontal cortex of suicides. Synapse 2014; 68(3): 127-30.
[http://dx.doi.org/10.1002/syn.21695] [PMID: 23813499]
[46]
Hou C, Jia F, Liu Y, Li L. CSF serotonin, 5-hydroxyindolacetic acid and neuropeptide Y levels in severe major depressive disorder. Brain Res 2006; 1095(1): 154-8.
[http://dx.doi.org/10.1016/j.brainres.2006.04.026] [PMID: 16713589]
[47]
Alfredsson G, Wiesel FA. Monoamine metabolites and amino acids in serum from schizophrenic patients before and during sulpiride treatment. Psychopharmacology (Berl) 1989; 99(3): 322-7.
[http://dx.doi.org/10.1007/BF00445551] [PMID: 2480613]
[48]
Getsina ML, Chernevskaya EA, Beloborodova NV. The role of human and microbial metabolites of triptophane in severe diseases and critical ill. Clin Pract 2020; 11(1): 92-102.
[49]
Kaumann AJ, Levy FO. 5-hydroxytryptamine receptors in the human cardiovascular system. Pharmacol Ther 2006; 111(3): 674-706.
[http://dx.doi.org/10.1016/j.pharmthera.2005.12.004] [PMID: 16960982]
[50]
Dahan D, Hien TT, Tannenberg P, et al. MicroRNA-dependent control of serotonin-induced pulmonary arterial contraction. J Vasc Res 2017; 54(4): 246-56.
[http://dx.doi.org/10.1159/000478013] [PMID: 28796998]
[51]
Haynes RL, Frelinger AL, Giles EK, et al. High serum serotonin in sudden infant death syndrome. Proc Natl Acad Sci USA 2017; 114(29): 7695-700.
[http://dx.doi.org/10.1073/pnas.1617374114]
[52]
Tomasi CD, Salluh J, Soares M, et al. Baseline acetylcholinesterase activity and serotonin plasma levels are not associated with delirium in critically ill patients. Rev Bras Ter Intensiva 2015; 27(2): 170-7.
[PMID: 26340158]
[53]
Collins CM, Kloek J, Elliott JM. Parallel changes in serotonin levels in brain and blood following acute administration of MDMA. J Psychopharmacol (Oxford) 2013; 27(1): 109-12.
[http://dx.doi.org/10.1177/0269881112463123] [PMID: 23054066]
[54]
Rihua X, Haiyan X, Krewski D, et al. Plasma concentrations of neurotran smitters and postpartum depression. J Cent South Univ 2018; 43(3): 274-81.
[55]
Peitl V, Vidrih B, Karlović Z, Getaldić B, Peitl M, Karlović D. Platelet serotonin concentration and depressive symptoms in patients with schizophrenia. Psychiatry Res 2016; 239: 105-10.
[http://dx.doi.org/10.1016/j.psychres.2016.03.006] [PMID: 27137969]
[56]
Marseglia L, D’Angelo G, Manti S, et al. Melatonin Secretion Is Increased in Children with Severe Traumatic Brain Injury. Int J Mol Sci 2017; 18(5): 1053.
[http://dx.doi.org/10.3390/ijms18051053] [PMID: 28505079]
[57]
Lorente L, Martín MM, Abreu-González P, et al. Serum melatonin levels in survivor and non-survivor patients with traumatic brain injury. BMC Neurol 2017; 17(1): 138.
[http://dx.doi.org/10.1186/s12883-017-0922-2] [PMID: 28724361]
[58]
Lorente L, Martín MM, Abreu-González P, et al. Serum melatonin levels are associated with mortality in severe septic patients. J Crit Care 2015; 30(4): 860.e1-6.
[http://dx.doi.org/10.1016/j.jcrc.2015.03.023] [PMID: 25869726]
[59]
Lin C, Chao H, Li Z, et al. Melatonin attenuates traumatic brain injury-induced inflammation: a possible role for mitophagy. J Pineal Res 2016; 61(2): 177-86.
[http://dx.doi.org/10.1111/jpi.12337] [PMID: 27117839]
[60]
Grima NA, Rajaratnam SMW, Mansfield D, Sletten TL, Spitz G, Ponsford JL. Efficacy of melatonin for sleep disturbance following traumatic brain injury: a randomised controlled trial. BMC Med 2018; 16(1): 8.
[http://dx.doi.org/10.1186/s12916-017-0995-1] [PMID: 29347988]
[61]
Mistraletti G, Paroni R, Umbrello M, et al. Melatonin pharmacological blood levels increase total antioxidant capacity in critically ill patients. Int J Mol Sci 2017; 18(4): 759.
[http://dx.doi.org/10.3390/ijms18040759] [PMID: 28368352]
[62]
Morera-Fumero AL, González PA, Henry M. Melatonin as a biological marker in schizophreniaThe Handbook of Neuropsychiatric Biomarkers, Endophenotypes, and Genes. Springer 2009; pp. 107-19.
[http://dx.doi.org/10.1007/978-1-4020-9838-3_8]
[63]
Konovalov SS, Polyakova VO, Drobintseva AO, Kvetnoy IM, Kvetnaia TV, Linkova NS. Melatonin: the possibility to analyse the marker of age-related pathology in the buccal epithelium and urine. Klin Med (Mosk) 2017; 95(2): 136-9.
[PMID: 30303666]
[64]
De Paepe E, Van Meulebroek L, Rombouts C, et al. A validated multi-matrix platform for metabolomic fingerprinting of human urine, feces and plasma using ultra-high performance liquid-chromatography coupled to hybrid orbitrap high-resolution mass spectrometry. Anal Chim Acta 2018; 1033: 108-18.
[http://dx.doi.org/10.1016/j.aca.2018.06.065] [PMID: 30172316]
[65]
Fernández-Ochoa Á, Quirantes-Piné R, Borrás-Linares I, et al. PRECISESADS Clinical Consortium. Urinary and plasma metabolite differences detected by HPLC-ESI-QTOF-MS in systemic sclerosis patients. J Pharm Biomed Anal 2019; 162: 82-90.
[http://dx.doi.org/10.1016/j.jpba.2018.09.021] [PMID: 30227356]
[66]
Palomino-Schatzlein M, Mayneris-Perxachs J, Caballano-Infantes E, et al. Combining metabolic profiling of plasma and faeces as a fingerprint of insulin resistance in obesity. Clin Nutr 2020; 39(7): 2292-300.https://www.sciencedirect.com/science/article/abs/pii/S0261561419331097
[67]
Lokhov PG, Dashtiev MI, Bondartsov LV, et al. Plasma metabolic fingerprinting blood of patient cancer patients. Biomedical Chemistry 2009; 55(3): 247-54.
[68]
Zhuang J, Tang X, Du Z, Yang M, Zhou Y. Prediction of biomarkers of therapeutic effects of patients with lung adenocarcinoma treated with gefitinib based on progression-free-survival by metabolomic fingerprinting. Talanta 2016; 160: 636-44.
[http://dx.doi.org/10.1016/j.talanta.2016.08.007] [PMID: 27591660]
[69]
Zeng M, Liang Y, Li H, et al. Plasma metabolic fingerprinting of childhood obesity by GC/MS in conjunction with multivariate statistical analysis. J Pharm Biomed Anal 2010; 52(2): 265-72.
[http://dx.doi.org/10.1016/j.jpba.2010.01.002] [PMID: 20092977]
[70]
Lu D, Yang F, Lin Z, et al. A prognostic fingerprint in liver transplantation for hepatocellular carcinoma based on plasma metabolomics profiling. Eur J Surg Oncol 2019; 45(12): 2347-52.
[http://dx.doi.org/10.1016/j.ejso.2019.07.004] [PMID: 31331801]
[71]
de Loor H, Poesen R, De Leger W, et al. A liquid chromatography - tandem mass spectrometry method to measure a selected panel of uremic retention solutes derived from endogenous and colonic microbial metabolism. Anal Chim Acta 2016; 936: 149-56.
[http://dx.doi.org/10.1016/j.aca.2016.06.057] [PMID: 27566350]
[72]
Danaceau JP, Anderson GM, McMahon WM, Crouch DJ. A liquid chromatographic-tandem mass spectrometric method for the analysis of serotonin and related indoles in human whole blood. J Anal Toxicol 2003; 27(7): 440-4.
[http://dx.doi.org/10.1093/jat/27.7.440] [PMID: 14606996]
[73]
Shevchenko VE. Modern mass spectrometry methods in early cancer diagnosis. Mass Spectrom (Tokyo) 2004; 1(2): 103-26.
[74]
Tan B, Qiu Y, Zou X, et al. Metabonomics identifies serum metabolite markers of colorectal cancer. J Proteome Res 2013; 12(6): 3000-9.
[http://dx.doi.org/10.1021/pr400337b] [PMID: 23675754]
[75]
Goedert JJ, Sampson JN, Moore SC, et al. Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis 2014; 35(9): 2089-96.
[http://dx.doi.org/10.1093/carcin/bgu131] [PMID: 25037050]
[76]
Roś-Mazurczyk M, Wojakowska A, Marczak Ł, et al. Panel of serum metabolites discriminates cancer patients and healthy participants of lung cancer screening - a pilot study Biocimica polonica acta 2017; 64(3): 513-8.
[77]
Ma Y, Liu W, Peng J, et al. A pilot study of gas chromatograph/mass spectrometry-based serum metabolic profiling of colorectal cancer after operation. Mol Biol Rep 2010; 37(3): 1403-11.
[http://dx.doi.org/10.1007/s11033-009-9524-4] [PMID: 19340605]
[78]
Moroz VV, Beloborodova NV, Osipov AA, et al. Phenylcarboxylic acids in the assessment of the severity of patient condition and the efficiency of intensive treatment in critical care medicine. Gen Reanimatol 2016; 12(4): 37-48.
[http://dx.doi.org/10.15360/1813-9779-2016-4-37-48]
[79]
Deutz NEP, Thaden JJ, Ten Have GAM, Walker DK, Engelen MPKJ. Metabolic phenotyping using kinetic measurements in young and older healthy adults. Metabolism 2018; 78: 167-78.
[http://dx.doi.org/10.1016/j.metabol.2017.09.015] [PMID: 28986165]
[80]
Lin Y-T, Wu P-H, Lee H-H, et al. Indole-3 acetic acid increased risk of impaired cognitive function in patients receiving hemodialysis. Neurotoxicology 2019; 73: 85-91.
[http://dx.doi.org/10.1016/j.neuro.2019.02.019] [PMID: 30826344]
[81]
Lowes DA, Almawash AM, Webster NR, Reid VL, Galley HF. Melatonin and structurally similar compounds have differing effects on inflammation and mitochondrial function in endothelial cells under conditions mimicking sepsis. Br J Anaesth 2011; 107(2): 193-201.
[http://dx.doi.org/10.1093/bja/aer149] [PMID: 21659405]
[82]
Kuwano N, Kato TA, Setoyama D, et al. Tryptophan-kynurenine and lipid related metabolites as blood biomarkers for first-episode drug-naïve patients with major depressive disorder: An exploratory pilot case-control study. J Affect Disord 2018; 231: 74-82.
[http://dx.doi.org/10.1016/j.jad.2018.01.014] [PMID: 29454180]
[83]
Boulet L, Faure P, Flore P, Montérémal J, Ducros V. Simultaneous determination of tryptophan and 8 metabolites in human plasma by liquid chromatography/tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1054: 36-43.
[http://dx.doi.org/10.1016/j.jchromb.2017.04.010] [PMID: 28415022]
[84]
Sadok I, Rachwał K, Staniszewska M. Application of the optimized and validated LC-MS method for simultaneous quantification of tryptophan metabolites in culture medium from cancer cells. J Pharm Biomed Anal 2019; 176112805
[http://dx.doi.org/10.1016/j.jpba.2019.112805] [PMID: 31415991]
[85]
Chen Y, Chen H, Shi G, et al. Ultra-performance liquid chromatography-tandem mass spectrometry quantitative profiling of tryptophan metabolites in human plasma and its application to clinical study. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1128121745
[http://dx.doi.org/10.1016/j.jchromb.2019.121745] [PMID: 31586884]
[86]
Williams BB, Van Benschoten AH, Cimermancic P, et al. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 2014; 16(4): 495-503.
[http://dx.doi.org/10.1016/j.chom.2014.09.001] [PMID: 25263219]
[87]
Pautova AK, Bedova AYu, Sarshor YuN, et al. Determination of Aromatic Microbial Metabolites in Blood Serum by Gas Chromatography-Mass Spectrometry. J Anal Chem 2018; 73(2): 160-6.
[http://dx.doi.org/10.1134/S1061934818020089]
[88]
Wu H, Xue R, Dong L, et al. Metabolomic profiling of human urine in hepatocellular carcinoma patients using gas chromatography/mass spectrometry. Anal Chim Acta 2009; 648(1): 98-104.
[http://dx.doi.org/10.1016/j.aca.2009.06.033] [PMID: 19616694]
[89]
Jiang G, Shen X, Kang H, Li K, Zheng J, Yu Y. Serum metabolite profiling of cutaneous T-cell lymphoma based on a multiplatform approach. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1077-1078: 71-6.
[PMID: 29413580]
[90]
Struck-Lewicka W, Kordalewska M, Bujak R, et al. Urine metabolic fingerprinting using LC-MS and GC-MS reveals metabolite changes in prostate cancer: A pilot study. J Pharm Biomed Anal 2015; 111: 351-61.
[PMID: 25684700]
[91]
Loftfield E, Vogtmann E, Sampson JN, et al. Comparison of collection methods for fecal samples for discovery metabolomics in epidemiological studies. Cancer Epidemiol Biomarkers Prev 2016; 25(11): 1483-90.https://cebp.aacrjournals.org/content/early/2016/10/13/1055-9965.EPI-16-0409.full-text.pdf
[92]
Pautova AK, Sobolev PD, Revelsky AI. Analysis of phenylcarboxylic acid-type microbial metabolites by microextraction by packed sorbent from blood serum followed by GC-MS detection. Clin Mass Spectrom 2019; 14: 46-53.
[http://dx.doi.org/10.1016/j.clinms.2019.05.005]
[93]
Pavlenko D, Giasafaki D, Charalambopoulou G, et al. Carbon adsorbents with dual porosity for efficient removal of uremic toxins and cytokines from human plasma. Sci Rep 2017; 7(1): 1-7.https://www.nature.com/articles/s41598-017-15116-y
[http://dx.doi.org/10.1038/s41598-017-15116-y]
[94]
Phonchai A, Wilairat P, Chantiwas R. Development of a solid-phase extraction method with simple MEKC-UV analysis for simultaneous detection of indole metabolites in human urine after administration of indole dietary supplement. Talanta 2017; 174: 314-9.
[http://dx.doi.org/10.1016/j.talanta.2017.06.019] [PMID: 28738586]
[95]
Gkalea V, Khaterchi A, Levy P, Jourdi G, Elalamy I. Prospective evaluation of a rapid functional assay for heparin-induced thrombocytopenia diagnosis in critically ill patients. Crit Care Med 2019; 47(3): 353-9.
[http://dx.doi.org/10.1097/CCM.0000000000003574] [PMID: 30507843]
[96]
Motohashi S, Matsuo T, Inoue H, Kaneko M, Shindo S. Clinical significance of the serotonin release assay and platelet count monitoring after cardiac surgery. Clin Appl Thromb Hemost 2018; 24(6): 944-9.
[http://dx.doi.org/10.1177/1076029617734308] [PMID: 29046071]
[97]
Mihmanli M, Uysalol M, Coşkun H, Demir U, Dilege E, Eroğlu T. The value of 5-hydroxyindolacetic acid levels in spot urine in the diagnosis of acute appendicitis. Ulus Travma Acil Cerrahi Derg 2004; 10(3): 173-6.
[PMID: 15286888]
[98]
Hood L. Tackling the microbiome. Science 2012; 336(6086): 1209.
[http://dx.doi.org/10.1126/science.1225475] [PMID: 22674329]
[99]
Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science 2012; 336(6086): 1262-7.
[http://dx.doi.org/10.1126/science.1223813] [PMID: 22674330]
[100]
Bik EM, Ugalde JA, Cousins J, Goddard AD, Richman J, Apte ZS. Microbial biotransformations in the human distal gut. Br J Pharmacol 2018; 175(24): 4404-14.
[http://dx.doi.org/10.1111/bph.14085] [PMID: 29116650]
[101]
Hall A, Versalovic J. Microbial metabolism in the mammalian gut: molecular mechanisms and clinical implications. J Pediatr Gastroenterol Nutr 2018; 66(3)(Suppl. 3): S72-9.
[http://dx.doi.org/10.1097/MPG.0000000000001857] [PMID: 29762384]
[102]
Shenderov BA, Sinitsa AV, Zakharchenko MM, et al. Metabolic Relationship Between the Host and Its Gut Microbiota Chapter Metabiotics. Cham: Springer 2020; pp. 15-21.
[http://dx.doi.org/10.1007/978-3-030-34167-1_5]
[103]
Midtvedt T. Microflora-associated characteristics (MACs) and germfree animal characteristics (GACs) in man and animal. Microecology and Therapy 1985; 15: 295-302.
[104]
Marcobal A, Kashyap PC, Nelson TA, et al. A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J 2013; 7(10): 1933-43.
[http://dx.doi.org/10.1038/ismej.2013.89] [PMID: 23739052]
[105]
Hoffmann TW, Pham H-Ph, Bridonneau C, et al. Microorganisms linked to inflammatory bowel disease-associated dysbiosis differentially impact host physiology in gnotobiotic mice. ISME J 2016; 10(2): 460-77.
[http://dx.doi.org/10.1038/ismej.2015.127] [PMID: 26218241]
[106]
Fischer DD, Kandasamy S, Paim FC, et al. Protein malnutrition alters tryptophan and angiotensin-converting enzyme 2 homeostasis and adaptive immune responses in human rotavirus-infected gnotobiotic pigs with human infant fecal microbiota transplant. Clin Vaccine Immunol 2017; 24(8): e00172-17.
[http://dx.doi.org/10.1128/CVI.00172-17] [PMID: 28637803]
[107]
Lee JH, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev 2010; 34(4): 426-44.
[http://dx.doi.org/10.1111/j.1574-6976.2009.00204.x] [PMID: 20070374]
[108]
Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 2018; 23(6): 716-24.
[http://dx.doi.org/10.1016/j.chom.2018.05.003] [PMID: 29902437]
[109]
Smith EA, Macfarlane GT. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol 1996; 81(3): 288-302.
[http://dx.doi.org/10.1111/j.1365-2672.1996.tb04331.x] [PMID: 8810056]
[110]
Russell WR, Duncan SH, Scobbie L, et al. Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res 2013; 57(3): 523-35.
[http://dx.doi.org/10.1002/mnfr.201200594] [PMID: 23349065]
[111]
Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun 2018; 9(1): 3294.
[http://dx.doi.org/10.1038/s41467-018-05470-4] [PMID: 30120222]
[112]
Wlodarska M, Luo C, Kolde R, et al. Indoleacrylic Acid Produced by Commensal Peptostreptococcus Species Suppresses Inflammation. Cell Host Microbe 2017; 22(1): 25-37.e6.
[http://dx.doi.org/10.1016/j.chom.2017.06.007] [PMID: 28704649]
[113]
Devlin AS, Marcobal A, Dodd D, et al. Modulation of a Circulating Uremic Solute via Rational Genetic Manipulation of the Gut Microbiota. Cell Host Microbe 2016; 20(6): 709-15.
[PMID: 27916477]
[114]
Beloborodova NV. Metabolism of Microbiota in Critical Illness (Review and Postulates). Gen Reanimatol 2019; 15(6): 62-79.
[115]
Oleskin AV, Shenderov BA, Rogovsky VS. Role of neurochemicals in the interaction between the microbiota and the immune and the nervous system of the host organism. Probiotics Antimicrob Proteins 2017; 9(3): 215-34.
[PMID: 28229287]
[116]
Shenderov BA, Mitrokhin DD, Zaslavskaya PL. The effect of antibiotics on excretion of different metabolites in the faeces of rats. Microecol Therapy 1990; 20: 53-61.
[117]
Shaikh AM, Sreeja V. Metabiotics and their Health Benefits. Intl J Food Ferment 2017; 6(1): 11-23.
[http://dx.doi.org/10.5958/2321-712X.2017.00002.3]
[118]
Chernevskaya EA, Beloborodova NV. Gut microbiome in critical illness. Gen Reanimatol 2018; 14(5): 96-119.
[http://dx.doi.org/10.15360/1813-9779-2018-5-96-119]
[119]
Maguire M, Maguire G. Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Rev Neurosci 2019; 30(2): 179-201.
[http://dx.doi.org/10.1515/revneuro-2018-0024] [PMID: 30173208]
[120]
Zhao ZH, Xin FZ, Xue Y, et al. Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to attenuate steatohepatitis in rats. Exp Mol Med 2019; 51(9): 1-14.
[http://dx.doi.org/10.1038/s12276-019-0304-5] [PMID: 31506421]
[121]
Abildgaard A, Elfving B, Hokland M, Wegener G, Lund S. The microbial metabolite indole-3-propionic acid improves glucose metabolism in rats, but does not affect behaviour. Arch Physiol Biochem 2018; 124(4): 306-12.
[http://dx.doi.org/10.1080/13813455.2017.1398262] [PMID: 29113509]
[122]
Engevik MA, Versalovic J. Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology. Microbiol Spectr 2017; 5(5)
[http://dx.doi.org/10.1128/microbiolspec.BAD-0012-2016] [PMID: 28984235]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy