Generic placeholder image

Current Catalysis

Editor-in-Chief

ISSN (Print): 2211-5447
ISSN (Online): 2211-5455

Review Article

Recent Advances in the Silver Catalysed Synthesis of Furan and Its Applications

Author(s): C.M.A. Afsina, Mohan Neetha, Thaipparambil Aneeja and Gopinathan Anilkumar*

Volume 9, Issue 2, 2020

Page: [111 - 127] Pages: 17

DOI: 10.2174/2211544709999201019162020

Price: $65

Abstract

Furan and its derivatives find wide-spread application as pharmaceuticals, pigments, dyes, brighteners, flavour & fragrance compounds and insecticides. They also exhibit antihyperglycemic, analgesic, anti-inflammatory, anti-bacterial, anti-fungal and anti-tumour activities. Silver catalysts are nowadays commonly used in organic synthesis due to the high oxidation potential and versatile nature of silver complexes. In this review, we summarise the recent advances in the synthesis and applications of furan moiety using silver catalysis and covers literature from 2015-2020.

Keywords: Silver, furan, catalysis, synthesis, silver catalysis, homogeneous catalysis.

Graphical Abstract

[1]
Blanc A, Bénéteau V, Weibel J-M, Pale P. Silver & gold-catalyzed routes to furans and benzofurans. Org Biomol Chem 2016; 14(39): 9184-205.
[http://dx.doi.org/10.1039/C6OB01468B] [PMID: 27722719]
[2]
European Food Safety Authority. Update on furan levels in food from monitoring years 2004–2010 and exposure assessment. EFSA J 2011; 9: 2347.
[3]
Moro S, Chipman JK, Wegener JW, Hamberger C, Dekant W, Mally A. Furan in heat-treated foods: formation, exposure, toxicity, and aspects of risk assessment. Mol Nutr Food Res 2012; 56(8): 1197-211.
[http://dx.doi.org/10.1002/mnfr.201200093] [PMID: 22641279]
[4]
Waizenegger J, Winkler G, Kuballa T, et al. Analysis and risk assessment of furan in coffee products targeted to adolescents. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2012; 29(1): 19-28.
[http://dx.doi.org/10.1080/19440049.2011.617012] [PMID: 22035212]
[5]
Shinonaga H, Kawamura Y, Ikeda A, et al. Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms. Tetrahedron Lett 2009; 50: 108-10.
[http://dx.doi.org/10.1016/j.tetlet.2008.10.099]
[6]
Vasamsetty L, Khan FA, Mehta G. Studies in Natural Products Chemistry. Tetrahedron Lett 2014; 55: 7068-71.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.141]
[7]
Wang S, Bao L, Zhao F, et al. Medicinal Plants and Fungi: Recent Advances in Research and Developmen. J Agric Food Chem 2013; 61: 5122-9.
[http://dx.doi.org/10.1021/jf401612t] [PMID: 23650961]
[8]
Harper JK, Arif AM, Ford EJ, et al. Microorganisms in Sustainable Agriculture and Biotechnology. Tetrahedron 2003; 59: 2471-6.
[http://dx.doi.org/10.1016/S0040-4020(03)00255-2]
[9]
Moore N, Verdoux H, Fantino B. Prospective, multicentre, randomized, double-blind study of the efficacy of escitalopram versus citalopram in outpatient treatment of major depressive disorder. Int Clin Psychopharmacol 2005; 20(3): 131-7.
[http://dx.doi.org/10.1097/00004850-200505000-00002] [PMID: 15812262]
[10]
Sum FW, Wong VS, Largis HE, Malvey R. Index Medicus. Bioorg Med Chem Lett 2003; 13: 2191-4.
[http://dx.doi.org/10.1016/S0960-894X(03)00387-1] [PMID: 12798332]
[11]
Summers JB, Moore JL. Synthesis of fully functionalized iminolactones via an isocyanide-based three-component reaction. Chem Abstr 1989; 110: 1183-7.
[12]
Gündoğdu-Karaburun N, Benkli K, Tunali Y, Uçucu U, Demirayak S. Synthesis and antifungal activities of some aryl [3-(imidazol-1-yl/triazol-1-ylmethyl) benzofuran-2-yl] ketoximes. Eur J Med Chem 2006; 41(5): 651-6.
[http://dx.doi.org/10.1016/j.ejmech.2005.12.013] [PMID: 16554110]
[13]
Baraldi PG, Romagnoli R, Beria I, et al. Synthesis and antitumor activity of new benzoheterocyclic derivatives of distamycin A. J Med Chem 2000; 43(14): 2675-84.
[http://dx.doi.org/10.1021/jm9911229] [PMID: 10893305]
[14]
Minetto G, Raveglia LF, Taddei M. Microwave-assisted Paal-Knorr reaction. A rapid approach to substituted pyrroles and furans. Org Lett 2004; 6(3): 389-92.
[http://dx.doi.org/10.1021/ol0362820] [PMID: 14748600]
[15]
Yuguchi M, Tokuda M, Orito K. Pd(0)-catalyzed conjugate addition of benzylzinc chlorides to α,β-enones in an atmosphere of carbon monoxide: preparation of 1,4-diketones. J Org Chem 2004; 69(3): 908-14.
[http://dx.doi.org/10.1021/jo035468+] [PMID: 14750821]
[16]
Chen Y-F, Wang H-F, Wang Y, Luo Y-C, Zhu H-L, Xu P-F. Economic Synthesis of Heterocycles: Zinc, Iron, Copper, Cobalt, Manganese and Nickel catalysts. Adv Synth Catal 2010; 352: 1163-8.
[http://dx.doi.org/10.1002/adsc.201000005]
[17]
Hashmi ASK, Sinha P. Gold Catalysis: Mild Conditions for the Transformation of Alkynyl Epoxides to Furans. Adv Synth Catal 2004; 346: 432-8.
[http://dx.doi.org/10.1002/adsc.200303201]
[18]
Gabriele B, Salerno G, de Pascali F, Costa M, Chiusoli GP. An Efficient and General Synthesis of Furan-2-acetic Esters by Palladium-Catalyzed Oxidative Carbonylation of (Z)-2-En-4-yn-1-ols. J Org Chem 1999; 64: 7693-9.
[http://dx.doi.org/10.1021/jo990848+]
[19]
Hashmi ASK, Schwarz L, Cho J-H, Frost TM. Transition Metal Catalyzed Carbonylative Synthesis of Heterocycles. Angew Chem Int Ed 2000; 112: 2382-3285.
[http://dx.doi.org/10.1002/1521-3757(20000703)112:13<2382:AID-ANGE2382>3.0.CO;2-R]
[20]
Jiang H, Yao W, Cao H, Huang H, Cao D. Iron-catalyzed domino process for the synthesis of α-carbonyl furan derivatives via one-pot cyclization reaction. J Org Chem 2010; 75(15): 5347-50.
[http://dx.doi.org/10.1021/jo100813w] [PMID: 20590131]
[21]
Wang J, Shen C, Wang T, Mo S, Li X, Zhanga Z. Synthesis of 3-Formylfurans via a Silver(I)-Catalyzed Epoxide Ring-Opening/1,2-Acyl Migration/Cyclization Cascade. Adv Synth Catal 2016; 358: 3943-8.
[http://dx.doi.org/10.1002/adsc.201600938]
[22]
Verrier C, Melchiorre P. Diastereodivergent organocatalysis for the asymmetric synthesis of chiral annulated furans. Chem Sci (Camb) 2015; 6(7): 4242-6.
[http://dx.doi.org/10.1039/C5SC01052G] [PMID: 29218190]
[23]
Sekine K, Takayanagi A, Kikuchi S, Yamada T. Silver-catalyzed C-C bond formation with carbon dioxide: significant synthesis of dihydroisobenzofurans. Chem Commun (Camb) 2013; 49(96): 11320-2.
[http://dx.doi.org/10.1039/c3cc47221c] [PMID: 24158105]
[24]
J.; Ghasemzadeh, M.A. Silver iodide nanoparticle as an efficient and reusable catalyst for the one-pot synthesis of benzofurans under aqueous conditions. J Chem Sci 2013; 125: 1003-8.
[http://dx.doi.org/10.1007/s12039-013-0451-5]
[25]
Raji Reddy C, Mohammed SZ. Synthetic Studies toward (±)-Furanocembranoid 1: Construction of the Acyclic Carbon Framework. ACS Omega 2018; 3(11): 15628-34.
[http://dx.doi.org/10.1021/acsomega.8b02328] [PMID: 31458219]
[26]
Mao S, Zhu X-Q, Gao YR, Guo DD, Wang Y-Q. Silver-Catalyzed Coupling of Two C sp(3)-H Groups and One-Pot Synthesis of Tetrasubstituted Furans, Thiophenes, and Pyrroles. Chemistry 2015; 21(32): 11335-9.
[http://dx.doi.org/10.1002/chem.201501410] [PMID: 26094845]
[27]
Hamal KB, Sitaula P, Chalifoux WA. Synthesis of Dihydroisobenzofuran Carboxaldehyde Derivatives via a Silver-catalyzed Sequential Protodesilylation/Cyclization/Oxidation Reaction. Eur J Org Chem 2019; 2019: 1225-8.
[http://dx.doi.org/10.1002/ejoc.201801606]
[28]
Ghosh P, Biswas P, Sarkar T, Drew MGB, Bandyopadhyay C. 5-Aryl-2-(2-hydroxyphenyl)furan-3-carbaldehyde: synthesis and study on its ring-chain tautomerism. Tetrahedron Lett 2016; 57: 3354-7.
[http://dx.doi.org/10.1016/j.tetlet.2016.06.069]
[29]
Dawande SG, Harode M, Kalepu J, Katukojvala S. Ag(i)-catalyzed intramolecular transannulation of enynone tethered donor-acceptor cyclopropanes: a new synthesis of 2,3-dihydronaphtho[1,2-b]furans. Chem Commun (Camb) 2016; 52(94): 13699-701.
[http://dx.doi.org/10.1039/C6CC07220H] [PMID: 27819079]
[30]
Mao S, Tang L, Wu C, Tu X, Gao Q, Deng G. Ag(I)-Catalyzed Tandem Reaction of Conjugated Ene-yne-ketones in the Presence of PhI(OAc)2 and Triethylamine: Synthesis of 2-Alkenylfurans. Org Lett 2019; 21(7): 2416-20.
[http://dx.doi.org/10.1021/acs.orglett.9b00712] [PMID: 30912661]
[31]
Qiu H, Deng Y, Marichev KO, Doyle MP. Diverse Pathways in Catalytic Reactions of Propargyl Aryldiazoacetates: Selectivity between Three Reaction Sites. J Org Chem 2017; 82(3): 1584-90.
[http://dx.doi.org/10.1021/acs.joc.6b02770] [PMID: 28029046]
[32]
Li Y, Wheeler KA, Dembinski R. Gold(I)-Catalyzed Cycloisomerization of 2-Fluoroalk-3-yn-1-ones: Synthesis of 2,5-Substituted 3-Fluorofurans. Adv Synth Catal 2010; 352: 2761-6.
[http://dx.doi.org/10.1002/adsc.201000411]
[33]
Li Y, Wheeler KA, Dembinski R. Room temperature syntheses of entirely diverse substituted β-fluorofurans. Org Biomol Chem 2012; 10(12): 2395-408.
[http://dx.doi.org/10.1039/c1ob06693e] [PMID: 22261647]
[34]
Ujwaldev SM, Rohit KR, Radhika S, Anilkumar G. Sonochemistry in transition metal catalyzed cross-coupling reactions: Recent developments. Curr Org Chem 2019; 23: 3137-53.
[http://dx.doi.org/10.2174/1385272823666191118103844]
[35]
Rohit KR, Ujwaldev SM, Saranya S, Anilkumar G. Recent advances in the creation of asymmetric carbon by generation of carbon-heteroatom bonds using metal-pybox complexes. Asian J Org Chem 2018; 7: 2338-56.
[http://dx.doi.org/10.1002/ajoc.201800488]
[36]
Babu SA, Krishnan KK, Ujwaldev SM, Anilkumar G. Applications of Pybox complexes in asymmetric catalysis. Asian J Org Chem 2018; 7: 1033-53.
[http://dx.doi.org/10.1002/ajoc.201800094]
[37]
Krishnan KK, Ujwaldev SM, Sindhu KS, Anilkumar G. Recent advances in the transition metal catalyzed etherification reactions. Tetrahedron 2016; 72: 7393-407.
[http://dx.doi.org/10.1016/j.tet.2016.10.002]
[38]
Ujwaldev SM, Saranya S, Harry NA, Anilkumar G. Novel Cobalt-Valine Catalyzed O-Arylation of Phenols with Electron Deficient Aryl iodides. Monatshefte 2019; 150: 339-46.
[http://dx.doi.org/10.1007/s00706-018-2324-6]
[39]
Ujwaldev SM, Harry NA, Divakar MA, Anilkumar G. Cobalt-catalyzed C-H activation: recent progress in heterocyclic chemistry. Cat Sci Tech 2018; 8: 5983-6018.
[http://dx.doi.org/10.1039/C8CY01418C]
[40]
Neetha M, Saranya S, Harry NA, Anilkumar G. Recent Advances and Perspectives in the Copper-Catalysed Amination of Aryl and Heteroaryl Halides. ChemistrySelect 2020; 5: 736-53.
[http://dx.doi.org/10.1002/slct.201904436]
[41]
Thomas AM, Sherin DR, Asha S, Manojkumar TK, Anilkumar G. Exploration of the mechanism and scope of the CuI/DABCO catalysed C-S coupling reaction. Polyhedron 2020; 176: 114269-75.
[http://dx.doi.org/10.1016/j.poly.2019.114269]
[42]
Radhika S, Harry NA, Neetha M, Anilkumar G. Recent trends and applications of the Cadiot-Chodkiewicz reaction. Org Biomol Chem 2019; 17(41): 9081-94.
[http://dx.doi.org/10.1039/C9OB01757G] [PMID: 31596306]
[43]
Meera G, Rohit KR, Treesa GSS. Anilkumar. G. Advances and Prospects in Gold-Catalyzed C-H Activation. Asian J Org Chem 2020; 9: 144-61.
[http://dx.doi.org/10.1002/ajoc.202000020]
[44]
Ujwaldev SM, Rohit KR, Harry NA, Anilkumar G. Novel one step synthesis of imidazo[1,2-a]pyridines and Zolidimine via iron/iodine catalysed Ortoleva-King type reaction. Tetrahedron Lett 2019; 60: 150950-5.
[http://dx.doi.org/10.1016/j.tetlet.2019.150950]
[45]
Sreedevi R, Saranya S, Rohit KR, Anilkumar G. Recent trends in Iron-catalyzed reactions towards the synthesis of nitrogen-containing heterocycles. Adv Synth Catal 2019; 361: 2236-49.
[http://dx.doi.org/10.1002/adsc.201801471]
[46]
Rohit KR, Saranya S, Harry NA, Anilkumar G. A novel ligand-free manganese-catalyzed C-O coupling protocol for the synthesis of biaryl ethers. ChemistrySelect 2019; 4: 5150-4.
[http://dx.doi.org/10.1002/slct.201901031]
[47]
Krishnan KK, Thomas AM, Sindhu KS, Anilkumar G. Recent advances and perspectives in the manganese-catalyzed epoxidation reactions. Tetrahedron 2016; 72: 1-16.
[http://dx.doi.org/10.1016/j.tet.2015.11.003]
[48]
Harry NA, Saranya S, Ujwaldev SM, Anilkumar G. Recent advances and prospects in nickel-catalyzed C-H activation. Catal Sci Technol 2019; 9: 1726-43.
[http://dx.doi.org/10.1039/C9CY00009G]
[49]
Kanchana US, Diana EJ, Mathew TV, Anilkumar G. Cyclodextrin based palladium catalysts for Suzuki reaction: An overview. Carbohydr Res 2020; 489: 107954-66.
[http://dx.doi.org/10.1016/j.carres.2020.107954] [PMID: 32087382]
[50]
Saranya S, Rohit KR, Radhika S, Anilkumar G. Palladium-catalyzed multicomponent reactions: an overview. Org Biomol Chem 2019; 17(35): 8048-61.
[http://dx.doi.org/10.1039/C9OB01538H] [PMID: 31410440]
[51]
Shilpa T, Dhanya R, Saranya S, Anilkumar G. An Overview of Rhodium-Catalysed Multi-Component Reactions. ChemistrySelect 2020; 5: 898-915.
[http://dx.doi.org/10.1002/slct.201904441]
[52]
Ujwaldev SM, Sindhu KS, Thankachan AP, Anilkumar G. Recent Developments and Perspectives in the Ruthenium-catalyzed Olefin Epoxidation. Tetrahedron 2016; 72: 6175-90.
[http://dx.doi.org/10.1016/j.tet.2016.08.052]
[53]
Sreedevi R, Saranya S, Anilkumar G. Recent Trends in the Silver-Catalyzed Synthesis of Nitrogen Heterocycles. Adv Synth Catal 2019; 361: 4625-44.
[http://dx.doi.org/10.1002/adsc.201900599]
[54]
Yoo K, Jwa DG, Lee H-E, Hyun Jin Kim HJ, Kim C, Kim M. Recent Organic Transformations with Silver Carbonate as a Key External Base and Oxidant. Catalysts 2019; 9: 1032.
[http://dx.doi.org/10.3390/catal9121032]
[55]
Neetha M, Rohit KR, Saranya S, Anilkumar G. Zinc-Catalysed Multi-Component Reactions: An Overview. ChemistrySelect 2020; 5: 1054-70.
[http://dx.doi.org/10.1002/slct.201904146]
[56]
Krishnan KK, Saranya S, Rohit KR, Anilkumar G. A novel zinc-catalyzed Suzuki-type cross-coupling reaction of aryl boronic acids with alkynyl bromides. J Catal 2019; 372: 266-71.
[http://dx.doi.org/10.1016/j.jcat.2019.03.005]
[57]
Krishnan KK, Ujwaldev SM, Saranya S, Anilkumar G, Beller M. Recent advances and perspectives in the synthesis of heterocycles via Zinc catalysis. Adv Synth Catal 2019; 361: 382-404.
[http://dx.doi.org/10.1002/adsc.201800868]
[58]
Lévay K, Hegedűs L. Recent Achievements in the Hydrogenation of Nitriles Catalyzed by Transitional Metals. Curr Org Chem 2019; 23: 1881-900.
[http://dx.doi.org/10.2174/1385272823666191007160341]
[59]
Qiao C, Cao Y, He L-N. Transition Metal-Catalyzed Carboxylation of Terminal Alkynes with CO2. Mini Rev Org Chem 2018; 15: 283-90.
[http://dx.doi.org/10.2174/1570193X15666180101150819]
[60]
Kundu D, Roy A, Panja S, Singh RK. Microwave-assisted Cobalt-copper Dual Catalyzed Ligand Free C-Se Cross-coupling. Curr Microw Chem 2020; 7: 1-7.
[http://dx.doi.org/10.2174/2213335607666200212101502]
[61]
Kaur N, Grewal P, Ahlawat N, et al. C-N Bond Forming Reactions for the Synthesis of Five-membered N-heterocycles using Copper Catalysis. Curr Organocatal 2019; 6: 1-42.
[http://dx.doi.org/10.2174/2213337206666191022105221]
[62]
Pellissier H. Green Copper Catalysis in Enantioselective Domino Reactions. Curr Org Chem 2018; 22: 2752-79.
[http://dx.doi.org/10.2174/1385272822666181207150337]
[63]
Kaur N. Copper Catalysts in the Synthesis of Five-membered N-polyheterocycles. Curr Org Synth 2018; 15: 940-71.
[http://dx.doi.org/10.2174/1570179415666180815144442]
[64]
Hu F, Xia Y, Ma C, Zhang Y, Wang J. Cu(I)-Catalyzed Synthesis of Furan-Substituted Allenes by Use of Conjugated Ene-yne Ketones as Carbene Precursors. J Org Chem 2016; 81(8): 3275-85.
[http://dx.doi.org/10.1021/acs.joc.6b00236] [PMID: 26983366]
[65]
Hu F, Xia Y, Ma C, Zhang Y, Wang J. Cu(I)-catalyzed cross-coupling of conjugated ene-yne-ketones and terminal alkynes: synthesis of furan-substituted allenes. Org Lett 2014; 16(16): 4082-5.
[http://dx.doi.org/10.1021/ol501747f] [PMID: 25075633]
[66]
Yu Y, Yi S, Zhu C, et al. Csp(3)-P versus Csp(2)-P Bond Formation: Catalyst-Controlled Highly Regioselective Tandem Reaction of Ene-Yne-Ketones with H-Phosphonates. Org Lett 2016; 18(3): 400-3.
[http://dx.doi.org/10.1021/acs.orglett.5b03415] [PMID: 26760227]
[67]
Barluenga J, Riesgo L, Vicente R, López LA, Tomás M. Cu(I)-catalyzed regioselective synthesis of polysubstituted furans from propargylic esters via postulated (2-furyl)carbene complexes. J Am Chem Soc 2008; 130(41): 13528-9.
[http://dx.doi.org/10.1021/ja8058342] [PMID: 18800797]
[68]
Cao H, Zhan H, Cen J, et al. Copper-catalyzed C-O bond formation: an efficient one-pot highly regioselective synthesis of furans from (2-furyl)carbene complexes. Org Lett 2013; 15(5): 1080-3.
[http://dx.doi.org/10.1021/ol400080e] [PMID: 23413974]
[69]
Yang JM, Li ZQ, Li ML, He Q, Zhu SF, Zhou QL. Catalytic B-H Bond Insertion Reactions Using Alkynes as Carbene Precursors. J Am Chem Soc 2017; 139(10): 3784-9.
[http://dx.doi.org/10.1021/jacs.6b13168] [PMID: 28195708]
[70]
Hamal KB, Chalifoux WA. One-Pot Synthesis of α-Carbonyl Bicyclic Furans via a Sequential Diels-Alder/5-Exo-Dig Cyclization/Oxidation Reaction. J Org Chem 2017; 82(23): 12920-7.
[http://dx.doi.org/10.1021/acs.joc.7b02479] [PMID: 29111730]
[71]
Kharitonov YV, Shakirov MM, Shults EE. Highly Selective Gold-Catalyzed Cycloisomerization of Furanolabdanoid Dialkynes with Alkynyl Substituents in the Furan Ring. Curr Org Synth 2018; 15: 1147-53.
[http://dx.doi.org/10.2174/1570179415666180918160421]
[72]
Justo RMS, Andrade GFS, Amarante GW. Au Nanoparticles Catalyzed Chemoselective Aldehyde Oxidation/Amine Coupling to Imines. Curr Catal 2018; 7: 209-16.
[http://dx.doi.org/10.2174/2211544707666181023120026]
[73]
Wang T, Zhang J. Synthesis of 2-acylfurans from 3-(1-alkynyl)-2-alken-1-ones via the oxidation of gold-carbene intermediates by H2O2. Dalton Trans 2010; 39(18): 4270-3.
[http://dx.doi.org/10.1039/c0dt00024h] [PMID: 20379602]
[74]
Ma J, Jiang H, Zhu S. NHC-AuCl/selectfluor: a highly efficient catalytic system for carbene-transfer reactions. Org Lett 2014; 16(17): 4472-5.
[http://dx.doi.org/10.1021/ol502018d] [PMID: 25119285]
[75]
Corma A, Leyva-Pérez A, Sabater MJ. Gold-catalyzed carbon-heteroatom bond-forming reactions. Chem Rev 2011; 111(3): 1657-712.
[http://dx.doi.org/10.1021/cr100414u] [PMID: 21391565]
[76]
Li Z, Brouwer C, He C. Gold-catalyzed organic transformations. Chem Rev 2008; 108(8): 3239-65.
[http://dx.doi.org/10.1021/cr068434l] [PMID: 18613729]
[77]
Matienko LI, Binyukov VI, Mil EM, Zaikov GE. Supramolecular Macrostructures in the Mechanisms of Catalysis with Nickel or Iron Heteroligand Complexes. Curr Organocatal 2019; 6: 36-43.
[http://dx.doi.org/10.2174/2213337206666181231120410]
[78]
Bie F, Liu X, Wang M, et al. Diarylmethanols Synthesis by Nickel(II)-catalyzed Addition of Arylboronic Acids to Aryl Aldehydes. Lett Org Chem 2020; 17: 248-53.
[http://dx.doi.org/10.2174/1570178616666190724124849]
[79]
Laxmi DS, Vardhini SV, Guttikonda VR, Rao MVB, Pal M. Synthesis of 2-substituted Furo[3,2-b]pyridines Under Pd/C-Cu Catalysis Assisted by Ultrasound: Their Evaluation as Potential Cytotoxic Agents. Anticancer Agents Med Chem 2020; 20(8): 932-40.
[http://dx.doi.org/10.2174/1871520620666200311102304] [PMID: 32160853]
[80]
Hershberger CJ. Recent Advances in Palladium-Catalyzed Oxidative Cyclizations. Curr Org Chem 2019; 23: 1019-44.
[http://dx.doi.org/10.2174/1385272823666190429155004]
[81]
Noreen S, Zahoor AF, Ahmad S, Shahzadi I, Irfan A. Faiz. S. Novel Chiral Ligands for Palladium-catalyzed Asymmetric Allylic Alkylation/Asymmetric Tsuji-Trost Reaction: A Review. Curr Org Chem 2019; 23: 1168-213.
[http://dx.doi.org/10.2174/1385272823666190624145039]
[82]
Oh CH, Park HM, Park DI. Highly functionalized and stereocontrolled syntheses of 2-(2-methylenecycloalkyl)-furan derivatives by Pd-catalyzed cycloreduction. Org Lett 2007; 9(7): 1191-3.
[http://dx.doi.org/10.1021/ol0629871] [PMID: 17323960]
[83]
Xia Y, Qu S, Xiao Q, et al. Palladium-catalyzed carbene migratory insertion using conjugated ene-yne-ketones as carbene precursors. J Am Chem Soc 2013; 135(36): 13502-11.
[http://dx.doi.org/10.1021/ja4058844] [PMID: 23947689]
[84]
Xia Y, Liu Z, Ge R, Xiao Q, Zhang Y, Wang J. Pd-catalyzed cross-coupling of terminal alkynes with ene-yne-ketones: access to conjugated enynes via metal carbene migratory insertion. Chem Commun (Camb) 2015; 51(56): 11233-5.
[http://dx.doi.org/10.1039/C5CC03559G] [PMID: 26077197]
[85]
Yang J, Wang C, Xie X, Li H, Li E, Li Y. Pd/Cu-catalyzed cascade Sonogashira coupling/cyclization reactions to highly substituted 3-formyl furans. Org Biomol Chem 2011; 9(5): 1342-6.
[http://dx.doi.org/10.1039/c0ob00985g] [PMID: 21225082]
[86]
Kaur N, Jangid NK, Rawat V. Synthesis of Heterocycles Through Platinum-Catalyzed Reactions. Curr Catal 2018; 7: 3-25.
[http://dx.doi.org/10.2174/2211544706666171010160527]
[87]
Kaur N, Ahlawat N, Verma Y, Grewal P, Bhardwaj P. A Review of Ruthenium-catalyzed C-N Bond Formation Reactions for the Synthesis of Five-membered N-heterocycles. Curr Org Chem 2019; 23: 1901-44.
[http://dx.doi.org/10.2174/1385272823666191021104118]
[88]
Miki K, Washitake Y, Ohe K, Uemura S. Polyaddition and polycondensation reactions of (2-furyl)carbenoid as step-growth polymerization strategies: synthesis of furylcyclopropane- and furfurylidene-containing polymers. Angew Chem Int Ed Engl 2004; 43(14): 1857-60.
[http://dx.doi.org/10.1002/anie.200352949] [PMID: 15054795]
[89]
Kato Y, Miki K, Nishino F, Ohe K, Uemura S. Doyle-Kirmse reaction of allylic sulfides with diazoalkane-free (2-furyl)carbenoid transfer. Org Lett 2003; 5(15): 2619-21.
[http://dx.doi.org/10.1021/ol034731q] [PMID: 12868873]
[90]
Miki K, Kato Y, Uemura S, Ohe K. Catalytic Nucleophilic Addition Reaction to (2-Furyl)carbene Intermediates Generated from Carbonyl–Ene–Ynes. Bull Chem Soc Jpn 2008; 81: 1158-65.
[http://dx.doi.org/10.1246/bcsj.81.1158]
[91]
Zhu D, Ma J, Luo K, Fu H, Zhang L, Zhu S. Enantioselective Intramolecular C-H Insertion of Donor and Donor/Donor Carbenes by a Nondiazo Approach. Angew Chem Int Ed Engl 2016; 55(29): 8452-6.
[http://dx.doi.org/10.1002/anie.201604211] [PMID: 27265896]
[92]
Treesa GSS, Saranya S, Meera G, Anilkumar G. Recent Advances and Perspectives in the Silver-Catalyzed Multi-Component Reactions. Curr Org Chem 2020; 24: 291-313.
[http://dx.doi.org/10.2174/1385272824666200217102036]
[93]
Mathapati SR, Jadhav AR, Swami MB, Dawle JK. Zinc Sulfamate Catalyzed Efficient Selective Synthesis of Benzimidazole Derivatives under Ambient Conditions. Lett Org Chem 2019; 16: 740-9.
[http://dx.doi.org/10.2174/1570178616666181211094040]
[94]
Vicente R, González J, Riesgo L, González J, López LA. Catalytic generation of zinc carbenes from alkynes: zinc-catalyzed cyclopropanation and Si-H bond insertion reactions. Angew Chem Int Ed Engl 2012; 51(32): 8063-7.
[http://dx.doi.org/10.1002/anie.201203914] [PMID: 22752968]
[95]
González MJ, López LA, Vicente R. Zinc-catalyzed cyclopropenation of alkynes via 2-furylcarbenoids. Org Lett 2014; 16(21): 5780-3.
[http://dx.doi.org/10.1021/ol502848n] [PMID: 25338218]
[96]
Nimnual P, Norseeda K, Akkachairin B, et al. Synthesis of b-Naphthols and Naphthofuranones from ortho- Alkynylarylketones via Sequential AgTFA-Catalyzed Ketonization Intramolecular Aldol Condensation: A Total Synthesis of Negundin A. Asian J Org Chem 2018; 7: 932-45.
[http://dx.doi.org/10.1002/ajoc.201800025]
[97]
Dagar A, Guin S, Samanta S. AgSbF6-Catalyzed Tandem Reaction of 2-Alkynylanilines with Cyclic Enynones: Efficient access to 3-Furo[3,2-c]chromenylindoles and Related Scaffolds. Asian J Org Chem 2018; 7: 123-7.
[http://dx.doi.org/10.1002/ajoc.201700511]
[98]
Hayes SJ, Knight DW, Smith AWT, O’Halloran MJ. A general route to 5-substituted-2-furylacetic acids: a brief synthesis of plakorsin B. Tetrahedron Lett 2010; 51: 717-9.
[http://dx.doi.org/10.1016/j.tetlet.2009.11.120]
[99]
Gandhi S, Tharra P, Baire B. Ag(I)-Catalyzed Cyclizative Hydration of Alkynes and Propargylic Alcohols. A Mild Approach to 2-Acylfuran Derivatives. ChemistrySelect 2017; 2: 1058-62.
[http://dx.doi.org/10.1002/slct.201601623]
[100]
Reddy CR, Mohammed SZ, Gaddam K, Prapurna YL. Synthesis of the southern furan segment of furanocembranoids. Synth Commun 2019; 49: 1153-8.
[http://dx.doi.org/10.1080/00397911.2019.1587780]
[101]
He T, Chi Y, Chen Y. Synthesis of trisubstituted furans via Ag-catalyzed cascade heterocyclization of 2-(1-alkynyl)-2-alken-1-ones with aryl-amines. Chem Pap 2018; 72: 691-6.
[http://dx.doi.org/10.1007/s11696-017-0323-4]
[102]
Chen P, Meng Y, Yang Q, et al. Selective synthesis of 2,5-disubstituted furan-3-carboxylates and the isomeric 2,4-disubstituted furan-3-carboxylates RSC Advances 2015; 5: 79906-14.
[http://dx.doi.org/10.1039/C5RA14273C]
[103]
Ismailov IE, Ivanov IK, Christov VC. Trifunctionalized allenes Part III Electrophilic cyclization and cycloisomerization of 4-phosphorylated 5-hydroxypenta-2,3-dienoates: An expedient synthetic method to construct 2,5-dihydro-1,2-oxaphospholes, furan-2(5H)-ones and 2,5- dihydrofurans 2019; 314-23.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy