Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Applications of Poly(caprolactone)-based Nanofibre Electrospun Scaffolds in Tissue Engineering and Regenerative Medicine

Author(s): Wei Zhang, Tingting Weng, Qiong Li, Ronghua Jin, Chuangang You, Pan Wu, Jiaming Shao, Sizhan Xia, Min Yang, Chunmao Han and Xingang Wang*

Volume 16, Issue 4, 2021

Published on: 14 October, 2020

Page: [414 - 442] Pages: 29

DOI: 10.2174/1574888X15666201014145703

Price: $65

Abstract

Diseases, trauma, and injuries are highly prevalent conditions that lead to many critical tissue defects. Tissue engineering has great potentials to develop functional scaffolds that mimic natural tissue structures to improve or replace biological functions. In many kinds of technologies, electrospinning has received widespread attention for its outstanding functions, which is capable of producing nanofibre structures similar to the natural extracellular matrix. Amongst the available biopolymers for electrospinning, poly (caprolactone) (PCL) has shown favorable outcomes for tissue regeneration applications. According to the characteristics of different tissues, PCL can be modified by altering the functional groups or combining with other materials, such as synthetic polymers, natural polymers, and metal materials, to improve its physicochemical, mechanical, and biological properties, making the electrospun scaffolds meet the requirements of different tissue engineering and regenerative medicine. Moreover, efforts have been made to modify nanofibres with several bioactive substances to provide cells with the necessary chemical cues and a more in vivo like environment. In this review, some recent developments in both the design and utility of electrospun PCL-based scaffolds in the fields of bone, cartilage, skin, tendon, ligament, and nerve are highlighted, along with their potential impact on future research and clinical applications.

Keywords: Poly(caprolactone), tissue engineering, regeneration, biomaterials, regenerative medicine, nanofibre.

[1]
Peck MD. Epidemiology of burns throughout the world. Part I: Distribution and risk factors. Burns 2011; 37(7): 1087-100.
[http://dx.doi.org/10.1016/j.burns.2011.06.005] [PMID: 21802856]
[2]
Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: Current concepts and future directions. BMC Med 2011; 9: 66.
[http://dx.doi.org/10.1186/1741-7015-9-66] [PMID: 21627784]
[3]
Smith BD, Grande DA. The current state of scaffolds for musculoskeletal regenerative applications. Nat Rev Rheumatol 2015; 11(4): 213-22.
[http://dx.doi.org/10.1038/nrrheum.2015.27] [PMID: 25776947]
[4]
Liu Y, Zhou G, Cao Y. Recent Progress in Cartilage Tissue Engineering-Our Experience and Future Directions. Engineering 2017; 3(1): 28-35.
[http://dx.doi.org/10.1016/J.ENG.2017.01.010]
[5]
O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today 2011; 14(3): 88-95.
[http://dx.doi.org/10.1016/S1369-7021(11)70058-X]
[6]
Hollister SJ, Murphy WL. Scaffold translation: barriers between concept and clinic. Tissue Eng Part B Rev 2011; 17(6): 459-74.
[http://dx.doi.org/10.1089/ten.teb.2011.0251] [PMID: 21902613]
[7]
Eatemadi A, Daraee H, Zarghami N, Melat Yar H, Akbarzadeh A. Nanofiber: Synthesis and biomedical applications. Artif Cells Nanomed Biotechnol 2016; 44(1): 111-21.
[http://dx.doi.org/10.3109/21691401.2014.922568] [PMID: 24905339]
[8]
Erratum: Borderud SP, Li Y, Burkhalter JE, Sheffer CE and Ostroff JS. Electronic cigarette use among patients with cancer: Characteristics of electronic cigarette users and their smoking cessation outcomes Cancer 2015; 121(5): 800.
[9]
Ye L, Cao J, Chen L, et al. The fabrication of double layer tubular vascular tissue engineering scaffold via coaxial electrospinning and its 3D cell coculture. J Biomed Mater Res A 2015; 103(12): 3863-71.
[http://dx.doi.org/10.1002/jbm.a.35531] [PMID: 26123627]
[10]
De-Paula MMM, Afewerki S, Viana BC, Webster TJ, Lobo AO, Marciano FR. Dual effective core-shell electrospun scaffolds: Promoting osteoblast maturation and reducing bacteria activity. Mater Sci Eng C 2019; 103: 109778.
[http://dx.doi.org/10.1016/j.msec.2019.109778] [PMID: 31349506]
[11]
Zamani R, Aval SF, Pilehvar-Soltanahmadi Y, Nejati-Koshki K, Zarghami N. Recent advances in cell electrospining of natural and synthetic nanofibers for regenerative medicine. Drug Res (Stuttg) 2018; 68(8): 425-35.
[http://dx.doi.org/10.1055/s-0043-125314] [PMID: 29359298]
[12]
Qasim SB, Zafar MS, Najeeb S, et al. Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. Int J Mol Sci 2018; 19(2): E407.
[http://dx.doi.org/10.3390/ijms19020407] [PMID: 29385727]
[13]
Saino E, Focarete ML, Gualandi C, et al. Effect of electrospun fiber diameter and alignment on macrophage activation and secretion of proinflammatory cytokines and chemokines. Biomacromolecules 2011; 12(5): 1900-11.
[http://dx.doi.org/10.1021/bm200248h] [PMID: 21417396]
[14]
Zhuang Y, Lin K, Yu H. Advance of nano-composite electrospun fibers in periodontal regeneration. Front Chem 2019; 7: 495.
[http://dx.doi.org/10.3389/fchem.2019.00495] [PMID: 31355186]
[15]
Qasim SB, Najeeb S, Delaine-Smith RM, Rawlinson A, Ur Rehman I. Potential of electrospun chitosan fibers as a surface layer in functionally graded GTR membrane for periodontal regeneration. Dent Mater 2017; 33(1): 71-83.
[http://dx.doi.org/10.1016/j.dental.2016.10.003] [PMID: 27842886]
[16]
Saito M, Tsuji T. Extracellular matrix administration as a potential therapeutic strategy for periodontal ligament regeneration. Expert Opin Biol Ther 2012; 12(3): 299-309.
[http://dx.doi.org/10.1517/14712598.2012.655267] [PMID: 22276595]
[17]
Sell SA, Wolfe PS, Garg K, McCool JM, Rodriguez IA, Bowlin GL. The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues. Polymers (Basel) 2010; 2(4): 522-53.
[http://dx.doi.org/10.3390/polym2040522]
[18]
Da Silva GR, Lima TH, Fernandes-Cunha GM, et al. Ocular biocompatibility of dexamethasone acetate loaded poly(ɛ-caprolactone) nanofibers. Eur J Pharm Biopharm 2019; 142: 20-30.
[http://dx.doi.org/10.1016/j.ejpb.2019.05.010] [PMID: 31129274]
[19]
Eskitoros-Togay SM, Bulbul YE, Tort S, Demirtaş Korkmaz F, Acartürk F, Dilsiz N. Fabrication of doxycycline-loaded electrospun PCL/PEO membranes for a potential drug delivery system. Int J Pharm 2019; 565: 83-94.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.073] [PMID: 31063838]
[20]
Contreras-Cáceres R, Cabeza L, Perazzoli G, et al. Electrospun Nanofibers: Recent Applications in Drug Delivery and Cancer Therapy. Nanomaterials (Basel) 2019; 9(4): E656.
[http://dx.doi.org/10.3390/nano9040656] [PMID: 31022935]
[21]
Siddiqui N, Asawa S, Birru B, Baadhe R, Rao S. PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications. Mol Biotechnol 2018; 60(7): 506-32.
[http://dx.doi.org/10.1007/s12033-018-0084-5] [PMID: 29761314]
[22]
Mondal D, Griffith M, Venkatraman SS. Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges. International Journal of Polymeric Materials and Polymeric Biomaterials 2016; 65(5): 255-65.
[http://dx.doi.org/10.1080/00914037.2015.1103241]
[23]
Bezwada RS, Jamiolkowski DD, Lee IY, et al. Monocryl suture, a new ultra-pliable absorbable monofilament suture. Biomaterials 1995; 16(15): 1141-8.
[http://dx.doi.org/10.1016/0142-9612(95)93577-Z] [PMID: 8562789]
[24]
Young You B-MM. Seung Jin Lee, Taek Seung Lee, Won Ho Park. In Vitro Degradation Behavior of Electrospun Polyglycolide, Polylactide, and Poly(lactide-co-glycolide). J Appl Polym Sci 2004; 95: 193-200.
[25]
Green BJ, Worthington KS, Thompson JR, et al. Effect of molecular weight and functionality on acrylated poly(caprolactone) for stereolithography and biomedical applications. Biomacromolecules 2018; 19(9): 3682-92.
[http://dx.doi.org/10.1021/acs.biomac.8b00784] [PMID: 30044915]
[26]
Dwivedi R, Kumar S, Pandey R, et al. Polycaprolactone as biomaterial for bone scaffolds: Review of literature. J Oral Biol Craniofac Res 2020; 10(1): 381-8.
[http://dx.doi.org/10.1016/j.jobcr.2019.10.003] [PMID: 31754598]
[27]
Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A. Poly-epsilon-caprolactone microspheres and nanospheres: An overview. Int J Pharm 2004; 278(1): 1-23.
[http://dx.doi.org/10.1016/j.ijpharm.2004.01.044] [PMID: 15158945]
[28]
Ritter MA, Herbst SA, Keating EM, Faris PM, Meding JB. Patellofemoral complications following total knee arthroplasty. Effect of a lateral release and sacrifice of the superior lateral geniculate artery. J Arthroplasty 1996; 11(4): 368-72.
[http://dx.doi.org/10.1016/S0883-5403(96)80024-6] [PMID: 8792241]
[29]
Mohammed Abedalwafa FW, Wang L, Li C. Biodegradable poly-epsilon-caprolactone (pcl) for tissue engineering applications: a review. Rev Adv Mater Sci 2012; 34: 123-40.
[30]
Zhu Z, Liu Y, Xue Y, et al. Tazarotene released from aligned electrospun membrane facilitates cutaneous wound healing by promoting angiogenesis. ACS Appl Mater Interfaces 2019; 11(39): 36141-53.
[http://dx.doi.org/10.1021/acsami.9b13271] [PMID: 31503444]
[31]
Wiggenhauser PS, Schwarz S, Koerber L, Hoffmann TK, Rotter N. Addition of decellularized extracellular matrix of porcine nasal cartilage improves cartilage regenerative capacities of PCL-based scaffolds in vitro. J Mater Sci Mater Med 2019; 30(11): 121.
[http://dx.doi.org/10.1007/s10856-019-6323-x] [PMID: 31655914]
[32]
Liu W, Thomopoulos S, Xia Y. Electrospun nanofibers for regenerative medicine. Adv Healthc Mater 2012; 1(1): 10-25.
[http://dx.doi.org/10.1002/adhm.201100021] [PMID: 23184683]
[33]
Goto T, Hagiwara K, Shirai N, Yoshida K, Hagiwara H. Apigenin inhibits osteoblastogenesis and osteoclastogenesis and prevents bone loss in ovariectomized mice. Cytotechnology 2015; 67(2): 357-65.
[http://dx.doi.org/10.1007/s10616-014-9694-3] [PMID: 24500394]
[34]
Darrell H, Reneker IC. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 2016; 7(3)
[35]
Hu ST, Shen YF, Gong JM, Yang YJ. Effect of sophoridine on Ca(2+) induced Ca(2+) release during heart failure Physiological research / Academia Scientiarum Bohemoslovaca 2016; 65(1): 43-52.
[36]
Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv 2010; 28(3): 325-47.
[http://dx.doi.org/10.1016/j.biotechadv.2010.01.004] [PMID: 20100560]
[37]
Koenig K, Beukenberg K, Langensiepen F, Seide G. A new prototype melt-electrospinning device for the production of biobased thermoplastic sub-microfibers and nanofibers. Biomater Res 2019; 23: 10.
[http://dx.doi.org/10.1186/s40824-019-0159-9] [PMID: 30976458]
[38]
Lian H, Meng Z. Melt electrospinning vs. solution electrospinning: A comparative study of drug-loaded poly (ε-caprolactone) fibres. Mater Sci Eng C 2017; 74: 117-23.
[http://dx.doi.org/10.1016/j.msec.2017.02.024] [PMID: 28254275]
[39]
Greiner A, Wendorff JH. Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed Engl 2007; 46(30): 5670-703.
[http://dx.doi.org/10.1002/anie.200604646] [PMID: 17585397]
[40]
Rogina A. Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl Surf Sci 2014; 296: 221-30.
[http://dx.doi.org/10.1016/j.apsusc.2014.01.098]
[41]
Lozano-Calderon SA, Colman MW, Raskin KA, Hornicek FJ, Gebhardt M. Use of bisphosphonates in orthopedic surgery: Pearls and pitfalls. Orthop Clin North Am 2014; 45(3): 403-16.
[http://dx.doi.org/10.1016/j.ocl.2014.03.006] [PMID: 24975766]
[42]
Seeram Ramakrishna KF. Electrospun nanofibers: solving global issues materialstoday 2006; 9(3): 40-50.
[43]
Soares RMD, Siqueira NM, Prabhakaram MP, Ramakrishna S. Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Mater Sci Eng C 2018; 92: 969-82.
[http://dx.doi.org/10.1016/j.msec.2018.08.004] [PMID: 30184827]
[44]
Mu Y, Wu F, Lu Y, Wei L, Yuan W. Progress of electrospun fibers as nerve conduits for neural tissue repair. Nanomedicine (Lond) 2014; 9(12): 1869-83.
[http://dx.doi.org/10.2217/nnm.14.70] [PMID: 25325242]
[45]
Kosuge D, Khan WS, Haddad B, Marsh D. Biomaterials and scaffolds in bone and musculoskeletal engineering. Curr Stem Cell Res Ther 2013; 8(3): 185-91.
[http://dx.doi.org/10.2174/1574888X11308030002] [PMID: 23317466]
[46]
Nguyen LH, Annabi N, Nikkhah M, et al. Vascularized bone tissue engineering: Approaches for potential improvement. Tissue Eng Part B Rev 2012; 18(5): 363-82.
[http://dx.doi.org/10.1089/ten.teb.2012.0012] [PMID: 22765012]
[47]
Griffith LG. Emerging design principles in biomaterials and scaffolds for tissue engineering. Ann N Y Acad Sci 2002; 961: 83-95.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb03056.x] [PMID: 12081872]
[48]
Woodard LN, Grunlan MA. Hydrolytic degradation and erosion of polyester biomaterials. ACS Macro Lett 2018; 7(8): 976-82.
[http://dx.doi.org/10.1021/acsmacrolett.8b00424] [PMID: 30705783]
[49]
Jones EM, Cochrane CA, Percival SL. The effect of ph on the extracellular matrix and biofilms. Adv Wound Care (New Rochelle) 2015; 4(7): 431-9.
[http://dx.doi.org/10.1089/wound.2014.0538] [PMID: 26155386]
[50]
Zhang X, Bogdanowicz D, Erisken C, Lee NM, Lu HH. Biomimetic scaffold design for functional and integrative tendon repair. J Shoulder Elbow Surg 2012; 21(2): 266-77.
[http://dx.doi.org/10.1016/j.jse.2011.11.016] [PMID: 22244070]
[51]
Ma B, Xie J, Jiang J, Shuler FD, Bartlett DE. Rational design of nanofiber scaffolds for orthopedic tissue repair and regeneration. Nanomedicine (Lond) 2013; 8(9): 1459-81.
[http://dx.doi.org/10.2217/nnm.13.132] [PMID: 23987110]
[52]
Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol 2014; 14(1): 15-56.
[http://dx.doi.org/10.1166/jnn.2014.9127] [PMID: 24730250]
[53]
Tevlin R, McArdle A, Atashroo D, et al. Biomaterials for craniofacial bone engineering. J Dent Res 2014; 93(12): 1187-95.
[http://dx.doi.org/10.1177/0022034514547271] [PMID: 25139365]
[54]
Li WJ, Danielson KG, Alexander PG, Tuan RS. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res A 2003; 67(4): 1105-14.
[http://dx.doi.org/10.1002/jbm.a.10101] [PMID: 14624495]
[55]
Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003; 24(12): 2077-82.
[http://dx.doi.org/10.1016/S0142-9612(02)00635-X] [PMID: 12628828]
[56]
Moroder P, Runge MB, Wang H, et al. Material properties and electrical stimulation regimens of polycaprolactone fumarate-polypyrrole scaffolds as potential conductive nerve conduits. Acta Biomater 2011; 7(3): 944-53.
[http://dx.doi.org/10.1016/j.actbio.2010.10.013] [PMID: 20965280]
[57]
Sabino MA. Oxidation of polycaprolactone to induce compatibility with other degradable polyesters. Polym Degrad Stabil 2007; 92(6): 986-96.
[http://dx.doi.org/10.1016/j.polymdegradstab.2007.03.010]
[58]
Yarlagadda PK, Chandrasekharan M, Shyan JY. Recent advances and current developments in tissue scaffolding. Biomed Mater Eng 2005; 15(3): 159-77.
[PMID: 15911997]
[59]
Sung HJ, Meredith C, Johnson C, Galis ZS. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 2004; 25(26): 5735-42.
[http://dx.doi.org/10.1016/j.biomaterials.2004.01.066] [PMID: 15147819]
[60]
Badylak S, Meurling S, Chen M, Spievack A, Simmons-Byrd A. Resorbable bioscaffold for esophageal repair in a dog model. J Pediatr Surg 2000; 35(7): 1097-103.
[http://dx.doi.org/10.1053/jpsu.2000.7834] [PMID: 10917304]
[61]
Badylak SF, Kropp B, McPherson T, Liang H, Snyder PW. Small intestinal submucosa: a rapidly resorbed bioscaffold for augmentation cystoplasty in a dog model. Tissue Eng 1998; 4(4): 379-87.
[http://dx.doi.org/10.1089/ten.1998.4.379] [PMID: 9916170]
[62]
Luttikhuizen DT, Harmsen MC, Van Luyn MJ. Cellular and molecular dynamics in the foreign body reaction. Tissue Eng 2006; 12(7): 1955-70.
[http://dx.doi.org/10.1089/ten.2006.12.1955] [PMID: 16889525]
[63]
Chen L, Bai Y, Liao G, et al. Electrospun poly(L-lactide)/poly(ε- caprolactone) blend nanofibrous scaffold: characterization and biocompatibility with human adipose-derived stem cells. PLoS One 2013; 8(8): e71265.
[http://dx.doi.org/10.1371/journal.pone.0071265] [PMID: 23990941]
[64]
Shakhssalim N, Rasouli J, Moghadasali R, Aghdas FS, Naji M, Soleimani M. Bladder smooth muscle cells interaction and proliferation on PCL/PLLA electrospun nanofibrous scaffold. Int J Artif Organs 2013; 36(2): 113-20.
[http://dx.doi.org/10.5301/ijao.5000175] [PMID: 23280074]
[65]
Kwon IK, Kidoaki S, Matsuda T. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials 2005; 26(18): 3929-39.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.007] [PMID: 15626440]
[66]
Mobarra N, Soleimani M, Pakzad R, Enderami SE, Pasalar P. Three-dimensional nanofiberous PLLA/PCL scaffold improved biochemical and molecular markers hiPS cell-derived insulin-producing islet-like cells Artif Cells Nanomed Biotechnol 2018; 46(3): 685-92.
[67]
Fadaie M, Mirzaei E, Geramizadeh B, Asvar Z. Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohydr Polym 2018; 199: 628-40.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.061] [PMID: 30143171]
[68]
Wang J, Planz V, Vukosavljevic B, Windbergs M. Multifunctional electrospun nanofibers for wound application - Novel insights into the control of drug release and antimicrobial activity. Eur J Pharm Biopharm 2018; 129: 175-83.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.035] [PMID: 29859280]
[69]
Levengood SL, Erickson AE, Chang FC, Zhang M. Chitosan-poly(caprolactone) nanofibers for skin repair. J Mater Chem B Mater Biol Med 2017; 5(9): 1822-33.
[http://dx.doi.org/10.1039/C6TB03223K] [PMID: 28529754]
[70]
Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 2005; 6(5): 2583-9.
[http://dx.doi.org/10.1021/bm050314k] [PMID: 16153095]
[71]
Lee BK, Ju YM, Cho JG, et al. End-to-side neurorrhaphy using an electrospun PCL/collagen nerve conduit for complex peripheral motor nerve regeneration. Biomaterials 2012; 33(35): 9027-36.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.008] [PMID: 22998812]
[72]
Mahjour SB, Fu X, Yang X, Fong J, Sefat F, Wang H. Rapid creation of skin substitutes from human skin cells and biomimetic nanofibers for acute full-thickness wound repair. Burns 2015; 41(8): 1764-74.
[http://dx.doi.org/10.1016/j.burns.2015.06.011] [PMID: 26187057]
[73]
Ehterami A, Salehi M, Farzamfar S, et al. In vitro and in vivo study of PCL/COLL wound dressing loaded with insulin-chitosan nanoparticles on cutaneous wound healing in rats model. Int J Biol Macromol 2018; 117: 601-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.184] [PMID: 29807077]
[74]
Kim MS, Kim G. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds. Carbohydr Polym 2014; 114: 213-21.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.008] [PMID: 25263884]
[75]
Hu WW, Lin CH, Hong ZJ. The enrichment of cancer stem cells using composite alginate/polycaprolactone nanofibers. Carbohydr Polym 2019; 206: 70-9.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.087] [PMID: 30553375]
[76]
Qian Y, Li L, Song Y, et al. Surface modification of nanofibrous matrices via layer-by-layer functionalized silk assembly for mitigating the foreign body reaction. Biomaterials 2018; 164: 22-37.
[http://dx.doi.org/10.1016/j.biomaterials.2018.02.038] [PMID: 29482061]
[77]
Han F, Zhang P, Wen X, Lin C, Zhao P. Bioactive LbL-assembled multilayer nanofilms upregulate tenogenesis and angiogenesis enabling robust healing of degenerative rotator cuff tendons in vivo. Biomater Sci 2019; 7(10): 4388-98.
[http://dx.doi.org/10.1039/C9BM00413K] [PMID: 31441908]
[78]
Li X, Cho B, Martin R, et al. Nanofiber-hydrogel composite-mediated angiogenesis for soft tissue reconstruction. Sci Transl Med 2019; 11(490): eaau6210.
[http://dx.doi.org/10.1126/scitranslmed.aau6210] [PMID: 31043572]
[79]
Sydow S, de Cassan D, Hänsch R, et al. Layer-by-layer deposition of chitosan nanoparticles as drug-release coatings for PCL nanofibers. Biomater Sci 2018; 7(1): 233-46.
[http://dx.doi.org/10.1039/C8BM00657A] [PMID: 30511062]
[80]
Qian Y, Li L, Jiang C, et al. The effect of hyaluronan on the motility of skin dermal fibroblasts in nanofibrous scaffolds. Int J Biol Macromol 2015; 79: 133-43.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.04.059] [PMID: 25940528]
[81]
Heidari M, Bahrami SH, Ranjbar-Mohammadi M, Milan PB. Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering. Mater Sci Eng C 2019; 103: 109768.
[http://dx.doi.org/10.1016/j.msec.2019.109768] [PMID: 31349413]
[82]
Zheng R, Duan H, Xue J, et al. The influence of Gelatin/PCL ratio and 3-D construct shape of electrospun membranes on cartilage regeneration. Biomaterials 2014; 35(1): 152-64.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.082] [PMID: 24135269]
[83]
Lee J, Yoo JJ, Atala A, Lee SJ. The effect of controlled release of PDGF-BB from heparin-conjugated electrospun PCL/gelatin scaffolds on cellular bioactivity and infiltration. Biomaterials 2012; 33(28): 6709-20.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.017] [PMID: 22770570]
[84]
Ren K, Wang Y, Sun T, Yue W, Zhang H. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Mater Sci Eng C 2017; 78: 324-32.
[http://dx.doi.org/10.1016/j.msec.2017.04.084] [PMID: 28575991]
[85]
Kobsa S, Kristofik NJ, Sawyer AJ, Bothwell AL, Kyriakides TR, Saltzman WM. An electrospun scaffold integrating nucleic acid delivery for treatment of full-thickness wounds. Biomaterials 2013; 34(15): 3891-901.
[http://dx.doi.org/10.1016/j.biomaterials.2013.02.016] [PMID: 23453058]
[86]
Yao Q, Cosme JG, Xu T, et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials 2017; 115: 115-27.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.018] [PMID: 27886552]
[87]
Hiep NT, Lee BT. Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility. J Mater Sci Mater Med 2010; 21(6): 1969-78.
[http://dx.doi.org/10.1007/s10856-010-4048-y] [PMID: 20232234]
[88]
Shamsah AH, Cartmell SH, Richardson SM, Bosworth LA. Tissue Engineering the Annulus Fibrosus Using 3D Rings of Electrospun PCL:PLLA Angle-Ply Nanofiber Sheets. Front Bioeng Biotechnol 2020; 7: 437.
[http://dx.doi.org/10.3389/fbioe.2019.00437] [PMID: 31993415]
[89]
Wang Z, Liang R, Jiang X, et al. Electrospun PLGA/PCL/OCP nanofiber membranes promote osteogenic differentiation of mesenchymal stem cells (MSCs). Mater Sci Eng C 2019; 104: 109796.
[http://dx.doi.org/10.1016/j.msec.2019.109796] [PMID: 31500029]
[90]
Vogt L, Rivera LR, Liverani L, Piegat A, El Fray M, Boccaccini AR. Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents. Mater Sci Eng C 2019; 103: 109712.
[http://dx.doi.org/10.1016/j.msec.2019.04.091] [PMID: 31349433]
[91]
Paskiabi FA, Mirzaei E, Amani A, Shokrgozar MA, Saber R, Faridi-Majidi R. Optimizing parameters on alignment of PCL/PGA nanofibrous scaffold: An artificial neural networks approach. Int J Biol Macromol 2015; 81: 1089-97.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.040] [PMID: 25450538]
[92]
Kim CH, Khil MS, Kim HY, Lee HU, Jahng KY. An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J Biomed Mater Res B Appl Biomater 2006; 78(2): 283-90.
[http://dx.doi.org/10.1002/jbm.b.30484] [PMID: 16362963]
[93]
Hodge J, Quint C. The improvement of cell infiltration in an electrospun scaffold with multiple synthetic biodegradable polymers using sacrificial PEO microparticles. J Biomed Mater Res A 2019; 107(9): 1954-64.
[http://dx.doi.org/10.1002/jbm.a.36706] [PMID: 31033146]
[94]
Gong T, Liu T, Zhang L, Ye W, Guo X, Wang L, et al. Design Redox-Sensitive Drug-Loaded Nanofibers for Bone Reconstruction. ACS Biomater Sci Eng 2017; 4(1): 240-7.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00827]
[95]
Fu SZ, Meng XH, Fan J, et al. Acceleration of dermal wound healing by using electrospun curcumin-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous mats. J Biomed Mater Res B Appl Biomater 2014; 102(3): 533-42.
[http://dx.doi.org/10.1002/jbm.b.33032] [PMID: 24115465]
[96]
Chen CH, Chen SH, Shalumon KT, Chen JP. Prevention of peritendinous adhesions with electrospun polyethylene glycol/polycaprolactone nanofibrous membranes. Colloids Surf B Biointerfaces 2015; 133: 221-30.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.012] [PMID: 26115533]
[97]
Rahmati Nejad M, Yousefzadeh M, Solouk A. Electrospun PET/PCL small diameter nanofibrous conduit for biomedical application. Mater Sci Eng C 2020; 110: 110692.
[http://dx.doi.org/10.1016/j.msec.2020.110692] [PMID: 32204006]
[98]
Xie J, Macewan MR, Willerth SM, et al. Conductive core-sheath nanofibers and their potential application in neural tissue engineering. Adv Funct Mater 2009; 19(14): 2312-8.
[http://dx.doi.org/10.1002/adfm.200801904] [PMID: 19830261]
[99]
Kareem MM, Hodgkinson T, Sanchez MS, Dalby MJ, Tanner KE. Hybrid core-shell scaffolds for bone tissue engineering. Biomed Mater 2019; 14(2): 025008.
[http://dx.doi.org/10.1088/1748-605X/aafbf1] [PMID: 30609417]
[100]
Qian Y, Zhou X, Zhang F, Diekwisch TGH, Luan X, Yang J. Triple PLGA/PCL scaffold modification including silver impregnation, collagen coating, and electrospinning significantly improve biocompatibility, antimicrobial, and osteogenic properties for orofacial tissue regeneration. ACS Appl Mater Interfaces 2019; 11(41): 37381-96.
[http://dx.doi.org/10.1021/acsami.9b07053] [PMID: 31517483]
[101]
Jiang T, Kai D, Liu S, et al. Mechanically cartilage-mimicking poly(PCL-PTHF urethane)/collagen nanofibers induce chondrogenesis by blocking NF-kappa B signaling pathway. Biomaterials 2018; 178: 281-92.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.023] [PMID: 29945065]
[102]
Cheng G, Yin C, Tu H, et al. Controlled Co-delivery of Growth Factors through Layer-by-Layer Assembly of Core-Shell Nanofibers for Improving Bone Regeneration. ACS Nano 2019; 13(6): 6372-82.
[http://dx.doi.org/10.1021/acsnano.8b06032] [PMID: 31184474]
[103]
Brugmans MM, Soekhradj-Soechit RS, van Geemen D, et al. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering. Tissue Eng Part A 2016; 22(1-2): 123-32.
[http://dx.doi.org/10.1089/ten.tea.2015.0203] [PMID: 26466917]
[104]
Li X, Yang C, Li L, et al. A therapeutic strategy for spinal cord defect: Human dental follicle cells combined with aligned PCL/PLGA electrospun material. BioMed Res Int 2015; 2015: 197183.
[http://dx.doi.org/10.1155/2015/197183] [PMID: 25695050]
[105]
Chou SF, Woodrow KA. Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends. J Mech Behav Biomed Mater 2017; 65: 724-33.
[http://dx.doi.org/10.1016/j.jmbbm.2016.09.004] [PMID: 27756048]
[106]
Phipps MC, Clem WC, Grunda JM, Clines GA, Bellis SL. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials 2012; 33(2): 524-34.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.080] [PMID: 22014462]
[107]
Baker BM, Gee AO, Metter RB, et al. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 2008; 29(15): 2348-58.
[http://dx.doi.org/10.1016/j.biomaterials.2008.01.032] [PMID: 18313138]
[108]
Saraf A, Lozier G, Haesslein A, et al. Fabrication of nonwoven coaxial fiber meshes by electrospinning. Tissue Eng Part C Methods 2009; 15(3): 333-44.
[http://dx.doi.org/10.1089/ten.tec.2008.0422] [PMID: 19196125]
[109]
Dalton PD, Lleixà Calvet J, Mourran A, Klee D, Möller M. Melt electrospinning of poly-(ethylene glycol-block-epsilon-caprolactone). Biotechnol J 2006; 1(9): 998-1006.
[http://dx.doi.org/10.1002/biot.200600064] [PMID: 16941438]
[110]
Valizadeh A, Bakhtiary M, Akbarzadeh A, et al. Preparation and characterization of novel electrospun poly(ϵ-caprolactone)-based nanofibrous scaffolds. Artif Cells Nanomed Biotechnol 2016; 44(2): 504-9.
[http://dx.doi.org/10.3109/21691401.2014.965310] [PMID: 25307268]
[111]
Alishahi A, Aïder M. Applications of Chitosan in the Seafood Industry and Aquaculture: A Review. Food Bioprocess Technol 2011; 5(3): 817-30.
[http://dx.doi.org/10.1007/s11947-011-0664-x]
[112]
van den Broek LA, Knoop RJ, Kappen FH, Boeriu CG. Chitosan films and blends for packaging material. Carbohydr Polym 2015; 116: 237-42.
[http://dx.doi.org/10.1016/j.carbpol.2014.07.039] [PMID: 25458295]
[113]
Jayakumar R, Prabaharan M, Nair SV, Tamura H. Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 2010; 28(1): 142-50.
[http://dx.doi.org/10.1016/j.biotechadv.2009.11.001] [PMID: 19913083]
[114]
Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials 2003; 24(13): 2339-49.
[http://dx.doi.org/10.1016/S0142-9612(03)00026-7] [PMID: 12699672]
[115]
No HK, Park NY, Lee SH, Meyers SP. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 2002; 74(1-2): 65-72.
[http://dx.doi.org/10.1016/S0168-1605(01)00717-6] [PMID: 11929171]
[116]
Zhou Y, Yang D, Chen X, Xu Q, Lu F, Nie J. Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules 2008; 9(1): 349-54.
[http://dx.doi.org/10.1021/bm7009015] [PMID: 18067266]
[117]
Prabhakaran MP, Venugopal JR, Chyan TT, et al. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng Part A 2008; 14(11): 1787-97.
[http://dx.doi.org/10.1089/ten.tea.2007.0393] [PMID: 18657027]
[118]
Yahia S, Khalil IA, El-Sherbiny IM. Sandwich-like nanofibrous scaffolds for bone tissue regeneration. ACS Appl Mater Interfaces 2019; 11(32): 28610-20.
[http://dx.doi.org/10.1021/acsami.9b06359] [PMID: 31328910]
[119]
Nourmohammadi J, Ghaee A, Liavali SH. Preparation and characterization of bioactive composite scaffolds from polycaprolactone nanofibers-chitosan-oxidized starch for bone regeneration. Carbohydr Polym 2016; 138: 172-9.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.055] [PMID: 26794750]
[120]
Gritsch L, Liverani L, Lovell C, Boccaccini AR. Polycaprolactone electrospun fiber mats prepared using benign solvents: Blending with copper(ii)-chitosan increases the secretion of vascular endothelial growth factor in a bone marrow stromal cell line. Macromol Biosci 2020; 20(3): e1900355.
[http://dx.doi.org/10.1002/mabi.201900355] [PMID: 32022997]
[121]
Buttafoco L, Kolkman NG, Engbers-Buijtenhuijs P, et al. Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials 2006; 27(5): 724-34.
[http://dx.doi.org/10.1016/j.biomaterials.2005.06.024] [PMID: 16111744]
[122]
Yıldız A, Kara AA, Acartürk F. Peptide-protein based nanofibers in pharmaceutical and biomedical applications. Int J Biol Macromol 2020; 148: 1084-97.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.275] [PMID: 31917213]
[123]
Chong C, Wang Y, Fathi A, Parungao R, Maitz PK, Li Z. Skin wound repair: Results of a pre-clinical study to evaluate electropsun collagen-elastin-PCL scaffolds as dermal substitutes. Burns 2019; 45(7): 1639-48.
[http://dx.doi.org/10.1016/j.burns.2019.04.014] [PMID: 31076208]
[124]
Bertram U, Steiner D, Poppitz B, et al. Vascular Tissue Engineering: Effects of Integrating Collagen into a PCL Based Nanofiber Material. BioMed Res Int 2017; 2017: 9616939.
[http://dx.doi.org/10.1155/2017/9616939] [PMID: 28932749]
[125]
Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater 2005; 72(1): 156-65.
[http://dx.doi.org/10.1002/jbm.b.30128] [PMID: 15389493]
[126]
Chong EJ, Phan TT, Lim IJ, et al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 2007; 3(3): 321-30.
[http://dx.doi.org/10.1016/j.actbio.2007.01.002] [PMID: 17321811]
[127]
Zeugolis DI, Khew ST, Yew ES, et al. Electro-spinning of pure collagen nano-fibres - just an expensive way to make gelatin? Biomaterials 2008; 29(15): 2293-305.
[http://dx.doi.org/10.1016/j.biomaterials.2008.02.009] [PMID: 18313748]
[128]
Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules 2002; 3(2): 232-8.
[http://dx.doi.org/10.1021/bm015533u] [PMID: 11888306]
[129]
Fee T, Surianarayanan S, Downs C, Zhou Y, Berry J. Nanofiber Alignment Regulates NIH3T3 Cell Orientation and Cytoskeletal Gene Expression on Electrospun PCL+Gelatin Nanofibers. PLoS One 2016; 11(5): e0154806.
[http://dx.doi.org/10.1371/journal.pone.0154806] [PMID: 27196306]
[130]
Dias JR, Baptista-Silva S, Sousa A, Oliveira AL, Bártolo PJ, Granja PL. Biomechanical performance of hybrid electrospun structures for skin regeneration. Mater Sci Eng C 2018; 93: 816-27.
[http://dx.doi.org/10.1016/j.msec.2018.08.050] [PMID: 30274117]
[131]
Alvarez-Perez MA, Guarino V, Cirillo V, Ambrosio L. Influence of gelatin cues in PCL electrospun membranes on nerve outgrowth. Biomacromolecules 2010; 11(9): 2238-46.
[http://dx.doi.org/10.1021/bm100221h] [PMID: 20690634]
[132]
Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 2008; 29(34): 4532-9.
[http://dx.doi.org/10.1016/j.biomaterials.2008.08.007] [PMID: 18757094]
[133]
Lee J, Tae G, Kim YH, Park IS, Kim SH, Kim SH. The effect of gelatin incorporation into electrospun poly(L-lactide-co-epsilon-caprolactone) fibers on mechanical properties and cytocompatibility. Biomaterials 2008; 29(12): 1872-9.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.029] [PMID: 18234330]
[134]
Yao L, O’Brien N, Windebank A, Pandit A. Orienting neurite growth in electrospun fibrous neural conduits. J Biomed Mater Res B Appl Biomater 2009; 90(2): 483-91.
[http://dx.doi.org/10.1002/jbm.b.31308] [PMID: 19130615]
[135]
Huang X, Li B, Shen L. Studies on the anti-inflammatory effect and its mechanisms of sophoridine. J Anal Methods Chem 2014; 2014: 502626.
[http://dx.doi.org/10.1155/2014/502626] [PMID: 24812589]
[136]
Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K. Skin tissue engineering--in vivo and in vitro applications. Adv Drug Deliv Rev 2011; 63(4-5): 352-66.
[http://dx.doi.org/10.1016/j.addr.2011.01.005] [PMID: 21241756]
[137]
Krasner D, Kennedy KL, Rolstad BS, Roma AW. The ABCs of wound care dressings Ostomy Wound Manage 1993; 39(8): 66.
[138]
Bolton L, van Rijswijk L. Wound dressings: Meeting clinical and biological needs. Dermatol Nurs 1991; 3(3): 146-61.
[PMID: 1828677]
[139]
Metcalfe AD, Ferguson MW. Bioengineering skin using mechanisms of regeneration and repair. Biomaterials 2007; 28(34): 5100-13.
[http://dx.doi.org/10.1016/j.biomaterials.2007.07.031] [PMID: 17688942]
[140]
García-Salinas S, Evangelopoulos M, Gámez-Herrera E, et al. Electrospun anti-inflammatory patch loaded with essential oils for wound healing. Int J Pharm 2020; 577: 119067.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119067] [PMID: 31981705]
[141]
Zhang Y, Chang M, Bao F, et al. Multifunctional Zn doped hollow mesoporous silica/polycaprolactone electrospun membranes with enhanced hair follicle regeneration and antibacterial activity for wound healing. Nanoscale 2019; 11(13): 6315-33.
[http://dx.doi.org/10.1039/C8NR09818B] [PMID: 30882821]
[142]
Adhikari U, An X, Rijal N, et al. Embedding magnesium metallic particles in polycaprolactone nanofiber mesh improves applicability for biomedical applications. Acta Biomater 2019; 98: 215-34.
[http://dx.doi.org/10.1016/j.actbio.2019.04.061] [PMID: 31059833]
[143]
Vocetkova K, Buzgo M, Sovkova V, Bezdekova D, Kneppo P, Amler E. Nanofibrous polycaprolactone scaffolds with adhered platelets stimulate proliferation of skin cells. Cell Prolif 2016; 49(5): 568-78.
[http://dx.doi.org/10.1111/cpr.12276] [PMID: 27452632]
[144]
Choi JS, Leong KW, Yoo HS. In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials 2008; 29(5): 587-96.
[http://dx.doi.org/10.1016/j.biomaterials.2007.10.012] [PMID: 17997153]
[145]
Aragón J, Costa C, Coelhoso I, Mendoza G, Aguiar-Ricardo A, Irusta S. Electrospun asymmetric membranes for wound dressing applications. Mater Sci Eng C 2019; 103: 109822.
[http://dx.doi.org/10.1016/j.msec.2019.109822] [PMID: 31349490]
[146]
Ajmal G, Bonde GV, Mittal P, et al. Biomimetic PCL-gelatin based nanofibers loaded with ciprofloxacin hydrochloride and quercetin: A potential antibacterial and anti-oxidant dressing material for accelerated healing of a full thickness wound. Int J Pharm 2019; 567: 118480.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118480] [PMID: 31255776]
[147]
Zahiri M, Khanmohammadi M, Goodarzi A, Ababzadeh S, Sagharjoghi Farahani M, Mohandesnezhad S, et al. Encapsulation of curcumin loaded chitosan nanoparticle within poly (epsilon-caprolactone) and gelatin fiber mat for wound healing and layered dermal reconstitution. Int J Biol Macromol 2019; 153: 1241-50.
[PMID: 31759002]
[148]
Anjum F, Agabalyan NA, Sparks HD, Rosin NL, Kallos MS, Biernaskie J. Biocomposite nanofiber matrices to support ECM remodeling by human dermal progenitors and enhanced wound closure. Sci Rep 2017; 7(1): 10291.
[http://dx.doi.org/10.1038/s41598-017-10735-x] [PMID: 28860484]
[149]
Chanda A, Adhikari J, Ghosh A, et al. Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications. Int J Biol Macromol 2018; 116: 774-85.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.099] [PMID: 29777811]
[150]
Zhou X, Wang H, Zhang J, et al. Functional poly(ε-caprolactone)/chitosan dressings with nitric oxide-releasing property improve wound healing. Acta Biomater 2017; 54: 128-37.
[http://dx.doi.org/10.1016/j.actbio.2017.03.011] [PMID: 28285076]
[151]
Mao W, Kang MK, Shin JU, Son YJ, Kim HS, Yoo HS. Coaxial hydro-nanofibrils for self-assembly of cell sheets producing skin bilayers. ACS Appl Mater Interfaces 2018; 10(50): 43503-11.
[http://dx.doi.org/10.1021/acsami.8b17740] [PMID: 30462476]
[152]
Ranjbar-Mohammadi M, Rabbani S, Bahrami SH, Joghataei MT, Moayer F. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers. Mater Sci Eng C 2016; 69: 1183-91.
[http://dx.doi.org/10.1016/j.msec.2016.08.032] [PMID: 27612816]
[153]
Albright V, Xu M, Palanisamy A, et al. Micelle-coated, hierarchically structured nanofibers with dual-release capability for accelerated wound healing and infection control. Adv Healthc Mater 2018; 7(11): e1800132.
[http://dx.doi.org/10.1002/adhm.201800132] [PMID: 29683273]
[154]
Chen S, Liu B, Carlson MA, Gombart AF, Reilly DA, Xie J. Recent advances in electrospun nanofibers for wound healing. Nanomedicine (Lond) 2017; 12(11): 1335-52.
[http://dx.doi.org/10.2217/nnm-2017-0017] [PMID: 28520509]
[155]
Pal P, Dadhich P, Srivas PK, Das B, Maulik D, Dhara S. Bilayered nanofibrous 3D hierarchy as skin rudiment by emulsion electrospinning for burn wound management. Biomater Sci 2017; 5(9): 1786-99.
[http://dx.doi.org/10.1039/C7BM00174F] [PMID: 28650050]
[156]
Brandl F, Sommer F, Goepferich A. Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials 2007; 28(2): 134-46.
[http://dx.doi.org/10.1016/j.biomaterials.2006.09.017] [PMID: 17011028]
[157]
Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 2002; 60(4): 613-21.
[http://dx.doi.org/10.1002/jbm.10167] [PMID: 11948520]
[158]
Gümüşderelioğlu M, Dalkıranoğlu S, Aydın RS, Cakmak S. A novel dermal substitute based on biofunctionalized electrospun PCL nanofibrous matrix. J Biomed Mater Res A 2011; 98(3): 461-72.
[http://dx.doi.org/10.1002/jbm.a.33143] [PMID: 21661095]
[159]
Pedram Rad Z, Mokhtari J, Abbasi M. Fabrication and characterization of PCL/zein/gum arabic electrospun nanocomposite scaffold for skin tissue engineering. Mater Sci Eng C 2018; 93: 356-66.
[http://dx.doi.org/10.1016/j.msec.2018.08.010] [PMID: 30274067]
[160]
Zhang F, Jin H, Wu L, Shao J, Wu X, Lu Y, et al. Ligustrazine disrupts lipopolysaccharide-activated NLRP3 inflammasome pathway associated with inhibition of Toll-like receptor 4 in hepatocytes Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2016; 78: 204-9.
[http://dx.doi.org/10.1016/j.biopha.2016.01.018]
[161]
Venugopal JR, Zhang Y, Ramakrishna S. In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Artif Organs 2006; 30(6): 440-6.
[http://dx.doi.org/10.1111/j.1525-1594.2006.00239.x] [PMID: 16734595]
[162]
Hou J, Chen L, Liu Z, et al. Sustained release of N-acetylcysteine by sandwich structured polycaprolactone/collagen scaffolds for wound healing. J Biomed Mater Res A 2019; 107(7): 1414-24.
[http://dx.doi.org/10.1002/jbm.a.36656] [PMID: 30737888]
[163]
Bahrami H, Keshel SH, Chari AJ, Biazar E. Human unrestricted somatic stem cells loaded in nanofibrous PCL scaffold and their healing effect on skin defects. Artif Cells Nanomed Biotechnol 2016; 44(6): 1556-60.
[http://dx.doi.org/10.3109/21691401.2015.1062390] [PMID: 26140614]
[164]
Croisier F, Atanasova G, Poumay Y, Jérôme C. Polysaccharide-coated PCL nanofibers for wound dressing applications. Adv Healthc Mater 2014; 3(12): 2032-9.
[http://dx.doi.org/10.1002/adhm.201400380] [PMID: 25263074]
[165]
Wang J, Windbergs M. Functional electrospun fibers for the treatment of human skin wounds. Eur J Pharm Biopharm 2017; 119: 283-99.
[http://dx.doi.org/10.1016/j.ejpb.2017.07.001] [PMID: 28690200]
[166]
Wang Z, Qian Y, Li L, et al. Evaluation of emulsion electrospun polycaprolactone/hyaluronan/epidermal growth factor nanofibrous scaffolds for wound healing. J Biomater Appl 2016; 30(6): 686-98.
[http://dx.doi.org/10.1177/0885328215586907] [PMID: 26012354]
[167]
Jiang H, Wang L, Zhu K. Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents. J Control Release 2014; 193: 296-303.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.025] [PMID: 24780265]
[168]
Roy T, Maity PP, Rameshbabu AP, et al. Core-shell nanofibrous scaffold based on polycaprolactone-silk fibroin emulsion electrospinning for tissue engineering applications. Bioengineering (Basel) 2018; 5(3): E68.
[http://dx.doi.org/10.3390/bioengineering5030068] [PMID: 30134543]
[169]
Ye K, Kuang H, You Z, Morsi Y, Mo X. Electrospun Nanofibers for Tissue Engineering with Drug Loading and Release. Pharmaceutics 2019; 11(4): E182.
[http://dx.doi.org/10.3390/pharmaceutics11040182] [PMID: 30991742]
[170]
Prado-Prone G, Silva-Bermudez P, Almaguer-Flores A, et al. Enhanced antibacterial nanocomposite mats by coaxial electrospinning of polycaprolactone fibers loaded with Zn-based nanoparticles. Nanomedicine (Lond) 2018; 14(5): 1695-706.
[http://dx.doi.org/10.1016/j.nano.2018.04.005] [PMID: 29673978]
[171]
Choi JS, Choi SH, Yoo HS. Coaxial electrospun nanofibers for treatment of diabetic ulcers with binary release of multiple growth factors. J Mater Chem 2011; 21(14): 5258.
[http://dx.doi.org/10.1039/c0jm03706k]
[172]
Fröhlich M, Grayson WL, Wan LQ, Marolt D, Drobnic M, Vunjak-Novakovic G. Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr Stem Cell Res Ther 2008; 3(4): 254-64.
[http://dx.doi.org/10.2174/157488808786733962] [PMID: 19075755]
[173]
Li Y, Chen SK, Li L, Qin L, Wang XL, Lai YX. Bone defect animal models for testing efficacy of bone substitute biomaterials. J Orthop Translat 2015; 3(3): 95-104.
[http://dx.doi.org/10.1016/j.jot.2015.05.002] [PMID: 30035046]
[174]
Ren J, Blackwood KA, Doustgani A, et al. Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration. J Biomed Mater Res A 2014; 102(9): 3140-53.
[http://dx.doi.org/10.1002/jbm.a.34985] [PMID: 24133006]
[175]
Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials 2011; 32(36): 9622-9.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.009] [PMID: 21944829]
[176]
Seong JM, Kim BC, Park JH, Kwon IK, Mantalaris A, Hwang YS. Stem cells in bone tissue engineering. Biomed Mater 2010; 5(6): 062001.
[http://dx.doi.org/10.1088/1748-6041/5/6/062001] [PMID: 20924139]
[177]
Miszuk JM, Xu T, Yao Q, et al. Functionalization of PCL-3D Electrospun Nanofibrous Scaffolds for Improved BMP2-Induced Bone Formation. Appl Mater Today 2018; 10: 194-202.
[http://dx.doi.org/10.1016/j.apmt.2017.12.004] [PMID: 29577064]
[178]
Monteiro N, Ribeiro D, Martins A, et al. Instructive nanofibrous scaffold comprising runt-related transcription factor 2 gene delivery for bone tissue engineering. ACS Nano 2014; 8(8): 8082-94.
[http://dx.doi.org/10.1021/nn5021049] [PMID: 25046548]
[179]
Martins A, Duarte AR, Faria S, Marques AP, Reis RL, Neves NM. Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality. Biomaterials 2010; 31(22): 5875-85.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.010] [PMID: 20452016]
[180]
Rodrigues MT, Martins A, Dias IR, et al. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering. J Tissue Eng Regen Med 2012; 6(10): e24-30.
[http://dx.doi.org/10.1002/term.499] [PMID: 22451140]
[181]
Heydari Z, Mohebbi-Kalhori D, Afarani MS. Engineered electrospun polycaprolactone (PCL)/octacalcium phosphate (OCP) scaffold for bone tissue engineering. Mater Sci Eng C 2017; 81: 127-32.
[http://dx.doi.org/10.1016/j.msec.2017.07.041] [PMID: 28887955]
[182]
Wang Y, Cui W, Zhao X, et al. Bone remodeling-inspired dual delivery electrospun nanofibers for promoting bone regeneration. Nanoscale 2018; 11(1): 60-71.
[http://dx.doi.org/10.1039/C8NR07329E] [PMID: 30350839]
[183]
Marins NH, Lee BEJ, E Silva RM, Raghavan A, Villarreal Carreño NL, Grandfield K. Niobium pentoxide and hydroxyapatite particle loaded electrospun polycaprolactone/gelatin membranes for bone tissue engineering. Colloids Surf B Biointerfaces 2019; 182: 110386.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110386] [PMID: 31369954]
[184]
Wang Y, Jiang Y, Zhang Y, Wen S, Wang Y, Zhang H. Dual functional electrospun core-shell nanofibers for anti-infective guided bone regeneration membranes. Mater Sci Eng C 2019; 98: 134-9.
[http://dx.doi.org/10.1016/j.msec.2018.12.115] [PMID: 30813013]
[185]
Lobo AO, Afewerki S, de Paula MMM, et al. Electrospun nanofiber blend with improved mechanical and biological performance. Int J Nanomedicine 2018; 13: 7891-903.
[http://dx.doi.org/10.2147/IJN.S175619] [PMID: 30538466]
[186]
Phipps MC, Clem WC, Catledge SA, et al. Mesenchymal stem cell responses to bone-mimetic electrospun matrices composed of polycaprolactone, collagen I and nanoparticulate hydroxyapatite. PLoS One 2011; 6(2): e16813.
[http://dx.doi.org/10.1371/journal.pone.0016813] [PMID: 21346817]
[187]
Wang T, Zhai Y, Nuzzo M, Yang X, Yang Y, Zhang X. Layer-by-layer nanofiber-enabled engineering of biomimetic periosteum for bone repair and reconstruction. Biomaterials 2018; 182: 279-88.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.028] [PMID: 30142527]
[188]
Carvalho MS, Silva JC, Udangawa RN, et al. Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering. Mater Sci Eng C 2019; 99: 479-90.
[http://dx.doi.org/10.1016/j.msec.2019.01.127] [PMID: 30889723]
[189]
Sedghi R, Shaabani A, Sayyari N. Electrospun triazole-based chitosan nanofibers as a novel scaffolds for bone tissue repair and regeneration. Carbohydr Polym 2020; 230: 115707.
[http://dx.doi.org/10.1016/j.carbpol.2019.115707] [PMID: 31887957]
[190]
Balagangadharan K, Trivedi R, Vairamani M, Selvamurugan N. Sinapic acid-loaded chitosan nanoparticles in polycaprolactone electrospun fibers for bone regeneration in vitro and in vivo. Carbohydr Polym 2019; 216: 1-16.
[http://dx.doi.org/10.1016/j.carbpol.2019.04.002] [PMID: 31047045]
[191]
Zhang H, Migneco F, Lin CY, Hollister SJ. Chemically-conjugated bone morphogenetic protein-2 on three-dimensional polycaprolactone scaffolds stimulates osteogenic activity in bone marrow stromal cells. Tissue Eng Part A 2010; 16(11): 3441-8.
[http://dx.doi.org/10.1089/ten.tea.2010.0132] [PMID: 20560772]
[192]
Srouji S, Kizhner T, Suss-Tobi E, Livne E, Zussman E. 3-D Nanofibrous electrospun multilayered construct is an alternative ECM mimicking scaffold. J Mater Sci Mater Med 2008; 19(3): 1249-55.
[http://dx.doi.org/10.1007/s10856-007-3218-z] [PMID: 17701297]
[193]
Mousavi SH, Abroun S, Soleimani M, Mowla SJ. Expansion of human cord blood hematopoietic stem/progenitor cells in three-dimensional Nanoscaffold coated with Fibronectin. Int J Hematol Oncol Stem Cell Res 2015; 9(2): 72-9.
[PMID: 25922647]
[194]
Deng Y, Yang Y, Wei S. Peptide-decorated nanofibrous niche augments in vitro directed osteogenic conversion of human pluripotent stem cells. Biomacromolecules 2017; 18(2): 587-98.
[http://dx.doi.org/10.1021/acs.biomac.6b01748] [PMID: 28068081]
[195]
Idini M, Wieringa P, Rocchiccioli S, et al. Glycosaminoglycan functionalization of electrospun scaffolds enhances Schwann cell activity. Acta Biomater 2019; 96: 188-202.
[http://dx.doi.org/10.1016/j.actbio.2019.06.054] [PMID: 31265920]
[196]
Hofmann S, Hagenmüller H, Koch AM, et al. Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials 2007; 28(6): 1152-62.
[http://dx.doi.org/10.1016/j.biomaterials.2006.10.019] [PMID: 17092555]
[197]
Uebersax L, Hagenmüller H, Hofmann S, et al. Effect of scaffold design on bone morphology in vitro. Tissue Eng 2006; 12(12): 3417-29.
[http://dx.doi.org/10.1089/ten.2006.12.3417] [PMID: 17518678]
[198]
Yang X, Tare RS, Partridge KA, et al. Induction of human osteoprogenitor chemotaxis, proliferation, differentiation, and bone formation by osteoblast stimulating factor-1/pleiotrophin: Osteoconductive biomimetic scaffolds for tissue engineering. J Bone Miner Res 2003; 18(1): 47-57.
[http://dx.doi.org/10.1359/jbmr.2003.18.1.47] [PMID: 12510805]
[199]
Yang XB, Bhatnagar RS, Li S, Oreffo RO. Biomimetic collagen scaffolds for human bone cell growth and differentiation. Tissue Eng 2004; 10(7-8): 1148-59.
[http://dx.doi.org/10.1089/ten.2004.10.1148] [PMID: 15363171]
[200]
Motamedian SR, Hosseinpour S, Ahsaie MG, Khojasteh A. Smart scaffolds in bone tissue engineering: A systematic review of literature. World J Stem Cells 2015; 7(3): 657-68.
[http://dx.doi.org/10.4252/wjsc.v7.i3.657] [PMID: 25914772]
[201]
Han C, Jin J, Xu S, Liu H, Li N, Cao X. Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nat Immunol 2010; 11(8): 734-42.
[http://dx.doi.org/10.1038/ni.1908] [PMID: 20639876]
[202]
Roohani-Esfahani SI, Nouri-Khorasani S, Lu Z, Appleyard R, Zreiqat H. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Biomaterials 2010; 31(21): 5498-509.
[http://dx.doi.org/10.1016/j.biomaterials.2010.03.058] [PMID: 20398935]
[203]
Yilgor P, Sousa RA, Reis RL, Hasirci N, Hasirci V. Effect of scaffold architecture and BMP-2/BMP-7 delivery on in vitro bone regeneration. J Mater Sci Mater Med 2010; 21(11): 2999-3008.
[http://dx.doi.org/10.1007/s10856-010-4150-1] [PMID: 20740306]
[204]
Jansen JA, Vehof JW, Ruhé PQ, et al. Growth factor-loaded scaffolds for bone engineering. J Control Release 2005; 101(1-3): 127-36.
[http://dx.doi.org/10.1016/j.jconrel.2004.07.005] [PMID: 15588899]
[205]
Babensee JE, McIntire LV, Mikos AG. Growth factor delivery for tissue engineering. Pharm Res 2000; 17(5): 497-504.
[http://dx.doi.org/10.1023/A:1007502828372] [PMID: 10888299]
[206]
Luo J, Zhang H, Zhu J, et al. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Colloids Surf B Biointerfaces 2018; 163: 369-78.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.043] [PMID: 29335199]
[207]
Kim YJ. The impact of time to surgery on outcomes in patients with traumatic brain injury: a literature review. Int Emerg Nurs 2014; 22(4): 214-9.
[http://dx.doi.org/10.1016/j.ienj.2014.02.005] [PMID: 24680689]
[208]
Sun Y, Feng Y, Zhang CQ, Chen SB, Cheng XG. The regenerative effect of platelet-rich plasma on healing in large osteochondral defects. Int Orthop 2010; 34(4): 589-97.
[http://dx.doi.org/10.1007/s00264-009-0793-2] [PMID: 19434411]
[209]
Fortier LA, Barker JU, Strauss EJ, McCarrel TM, Cole BJ. The role of growth factors in cartilage repair. Clin Orthop Relat Res 2011; 469(10): 2706-15.
[http://dx.doi.org/10.1007/s11999-011-1857-3] [PMID: 21403984]
[210]
Cheng G, Ma X, Li J, et al. Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering. Int J Pharm 2018; 547(1-2): 656-66.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.020] [PMID: 29886100]
[211]
Scaduto AA, Lieberman JR. Gene therapy for osteoinduction. Orthop Clin North Am 1999; 30(4): 625-33.
[http://dx.doi.org/10.1016/S0030-5898(05)70115-2] [PMID: 10471767]
[212]
Petrie NC, Yao F, Eriksson E. Gene therapy in wound healing. Surg Clin North Am 2003; 83(3): 597-616, vii. [vii.].
[http://dx.doi.org/10.1016/S0039-6109(02)00194-9] [PMID: 12822728]
[213]
Lahmy R, Soleimani M, Sanati MH, Behmanesh M, Kouhkan F, Mobarra N. Pancreatic islet differentiation of human embryonic stem cells by microRNA overexpression. J Tissue Eng Regen Med 2016; 10(6): 527-34.
[http://dx.doi.org/10.1002/term.1787] [PMID: 23897763]
[214]
Mayet N, Choonara YE, Kumar P, et al. A comprehensive review of advanced biopolymeric wound healing systems. J Pharm Sci 2014; 103(8): 2211-30.
[http://dx.doi.org/10.1002/jps.24068] [PMID: 24985412]
[215]
Fischer J, Kolk A, Wolfart S, et al. Future of local bone regeneration - Protein versus gene therapy. J Craniomaxillofac Surg 2011; 39(1): 54-64.
[http://dx.doi.org/10.1016/j.jcms.2010.03.016] [PMID: 20434921]
[216]
Kim HS, Yoo HS. In vitro and in vivo epidermal growth factor gene therapy for diabetic ulcers with electrospun fibrous meshes. Acta Biomater 2013; 9(7): 7371-80.
[http://dx.doi.org/10.1016/j.actbio.2013.03.018] [PMID: 23528498]
[217]
Yang Y, Xia T, Chen F, et al. Electrospun fibers with plasmid bFGF polyplex loadings promote skin wound healing in diabetic rats. Mol Pharm 2012; 9(1): 48-58.
[http://dx.doi.org/10.1021/mp200246b] [PMID: 22091745]
[218]
Frank CB. Ligament structure, physiology and function. J Musculoskelet Neuronal Interact 2004; 4(2): 199-201.
[PMID: 15615126]
[219]
Nemati S, Kim SJ, Shin YM, Shin H. Current progress in application of polymeric nanofibers to tissue engineering. Nano Converg 2019; 6(1): 36.
[http://dx.doi.org/10.1186/s40580-019-0209-y] [PMID: 31701255]
[220]
Li WJ, Mauck RL, Cooper JA, Yuan X, Tuan RS. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 2007; 40(8): 1686-93.
[http://dx.doi.org/10.1016/j.jbiomech.2006.09.004] [PMID: 17056048]
[221]
Gelse K, Pöschl E, Aigner T. Collagens--structure, function, and biosynthesis. Adv Drug Deliv Rev 2003; 55(12): 1531-46.
[http://dx.doi.org/10.1016/j.addr.2003.08.002] [PMID: 14623400]
[222]
Dahlin RL, Kasper FK, Mikos AG. Polymeric nanofibers in tissue engineering. Tissue Eng Part B Rev 2011; 17(5): 349-64.
[http://dx.doi.org/10.1089/ten.teb.2011.0238] [PMID: 21699434]
[223]
Sheng D, Li J, Ai C, et al. Electrospun PCL/Gel-aligned scaffolds enhance the biomechanical strength in tendon repair. J Mater Chem B Mater Biol Med 2019; 7(31): 4801-10.
[http://dx.doi.org/10.1039/C9TB00837C] [PMID: 31389951]
[224]
Lin Y, Zhang L, Liu NQ, et al. In vitro behavior of tendon stem/progenitor cells on bioactive electrospun nanofiber membranes for tendon-bone tissue engineering applications. Int J Nanomedicine 2019; 14: 5831-48.
[http://dx.doi.org/10.2147/IJN.S210509] [PMID: 31534327]
[225]
Baudequin T, Gaut L, Mueller M, et al. The osteogenic and tenogenic differentiation potential of C3H10T1/2 (mesenchymal stem cell model) cultured on PCL/PLA electrospun scaffolds in the absence of specific differentiation medium. Materials (Basel) 2017; 10(12): E1387.
[http://dx.doi.org/10.3390/ma10121387] [PMID: 29207566]
[226]
Chen SH, Chen CH, Shalumon KT, Chen JP. Preparation and characterization of antiadhesion barrier film from hyaluronic acid-grafted electrospun poly(caprolactone) nanofibrous membranes for prevention of flexor tendon postoperative peritendinous adhesion. Int J Nanomedicine 2014; 9: 4079-92.
[http://dx.doi.org/10.2147/IJN.S67931] [PMID: 25187711]
[227]
Thayer PS, Verbridge SS, Dahlgren LA, Kakar S, Guelcher SA, Goldstein AS. Fiber/collagen composites for ligament tissue engineering: Influence of elastic moduli of sparse aligned fibers on mesenchymal stem cells. J Biomed Mater Res A 2016; 104(8): 1894-901.
[http://dx.doi.org/10.1002/jbm.a.35716] [PMID: 27037972]
[228]
Shalumon KT, Sheu C, Chen CH, et al. Multi-functional electrospun antibacterial core-shell nanofibrous membranes for prolonged prevention of post-surgical tendon adhesion and inflammation. Acta Biomater 2018; 72: 121-36.
[http://dx.doi.org/10.1016/j.actbio.2018.03.044] [PMID: 29626695]
[229]
Rothrauff BB, Lauro BB, Yang G, Debski RE, Musahl V, Tuan RS. Braided and stacked electrospun nanofibrous scaffolds for tendon and ligament tissue engineering. Tissue Eng Part A 2017; 23(9-10): 378-89.
[http://dx.doi.org/10.1089/ten.tea.2016.0319] [PMID: 28071988]
[230]
Wu G, Deng X, Song J, Chen F. Enhanced biological properties of biomimetic apatite fabricated polycaprolactone/chitosan nanofibrous bio-composite for tendon and ligament regeneration. J Photochem Photobiol B 2018; 178: 27-32.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.10.011] [PMID: 29101870]
[231]
Domingues RM, Chiera S, Gershovich P, Motta A, Reis RL, Gomes ME. Enhancing the biomechanical performance of anisotropic nanofibrous scaffolds in tendon tissue engineering: Reinforcement with cellulose nanocrystals. Adv Healthc Mater 2016; 5(11): 1364-75.
[http://dx.doi.org/10.1002/adhm.201501048] [PMID: 27059281]
[232]
Ramos DM, Abdulmalik S, Arul MR, et al. Insulin immobilized PCL-cellulose acetate micro-nanostructured fibrous scaffolds for tendon tissue engineering. Polym Adv Technol 2019; 30(5): 1205-15.
[http://dx.doi.org/10.1002/pat.4553] [PMID: 30956516]
[233]
Han F, Zhang P, Chen T, Lin C, Wen X, Zhao P. A LBL-assembled bioactive coating modified nanofibrous membrane for rapid tendon-bone healing in acl reconstruction. Int J Nanomedicine 2019; 14: 9159-72.
[http://dx.doi.org/10.2147/IJN.S214359] [PMID: 31819424]
[234]
Leong NL, Kabir N, Arshi A, et al. Evaluation of polycaprolactone scaffold with basic fibroblast growth factor and fibroblasts in an athymic rat model for anterior cruciate ligament reconstruction. Tissue Eng Part A 2015; 21(11-12): 1859-68.
[http://dx.doi.org/10.1089/ten.tea.2014.0366] [PMID: 25744933]
[235]
Lui YS, Lewis MP, Loo SC. Sustained-release of naproxen sodium from electrospun-aligned PLLA-PCL scaffolds. J Tissue Eng Regen Med 2017; 11(4): 1011-21.
[http://dx.doi.org/10.1002/term.2000] [PMID: 25712012]
[236]
Naumann A, Dennis JE, Awadallah A, et al. Immunochemical and mechanical characterization of cartilage subtypes in rabbit. J Histochem Cytochem 2002; 50(8): 1049-58.
[http://dx.doi.org/10.1177/002215540205000807] [PMID: 12133908]
[237]
Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health 2009; 1(6): 461-8.
[http://dx.doi.org/10.1177/1941738109350438] [PMID: 23015907]
[238]
Linn FC. Lubrication of animal joints. I. The arthrotripsometer. J Bone Joint Surg Am 1967; 49(6): 1079-98.
[http://dx.doi.org/10.2106/00004623-196749060-00005] [PMID: 6038858]
[239]
Benjamin M, Ralphs JR. Fibrocartilage in tendons and ligaments--an adaptation to compressive load. J Anat 1998; 193(Pt 4): 481-94.
[http://dx.doi.org/10.1046/j.1469-7580.1998.19340481.x] [PMID: 10029181]
[240]
Tompson SW, Merriman B, Funari VA, et al. A recessive skeletal dysplasia, SEMD aggrecan type, results from a missense mutation affecting the C-type lectin domain of aggrecan. Am J Hum Genet 2009; 84(1): 72-9.
[http://dx.doi.org/10.1016/j.ajhg.2008.12.001] [PMID: 19110214]
[241]
Reinholz GG, Lu L, Saris DB, Yaszemski MJ, O’Driscoll SW. Animal models for cartilage reconstruction. Biomaterials 2004; 25(9): 1511-21.
[http://dx.doi.org/10.1016/S0142-9612(03)00498-8] [PMID: 14697854]
[242]
Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 2001; (391): (Suppl.)S362-9.
[http://dx.doi.org/10.1097/00003086-200110001-00033] [PMID: 11603719]
[243]
Hangody L, Füles P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: Ten years of experimental and clinical experience. J Bone Joint Surg Am 2003; 85-A(Suppl. 2): 25-32.
[http://dx.doi.org/10.2106/00004623-200300002-00004] [PMID: 12721342]
[244]
Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331(14): 889-95.
[http://dx.doi.org/10.1056/NEJM199410063311401] [PMID: 8078550]
[245]
Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive. Science 2012; 338(6109): 917-21.
[http://dx.doi.org/10.1126/science.1222454] [PMID: 23161992]
[246]
Moran CJ, Pascual-Garrido C, Chubinskaya S, et al. Restoration of articular cartilage. J Bone Joint Surg Am 2014; 96(4): 336-44.
[http://dx.doi.org/10.2106/JBJS.L.01329] [PMID: 24553893]
[247]
Silva JC, Udangawa RN, Chen J, et al. Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering. Mater Sci Eng C 2020; 107: 110291.
[http://dx.doi.org/10.1016/j.msec.2019.110291] [PMID: 31761240]
[248]
Duan H, Feng B, Guo X, et al. Engineering of epidermis skin grafts using electrospun nanofibrous gelatin/ polycaprolactone membranes. Int J Nanomedicine 2013; 8: 2077-84.
[PMID: 23766645]
[249]
Li Y, Liu Y, Xun X, Zhang W, Xu Y, Gu D. Three-Dimensional Porous Scaffolds with Biomimetic Microarchitecture and Bioactivity for Cartilage Tissue Engineering. ACS Appl Mater Interfaces 2019; 11(40): 36359-70.
[http://dx.doi.org/10.1021/acsami.9b12206] [PMID: 31509372]
[250]
Gao S, Chen M, Wang P, et al. An electrospun fiber reinforced scaffold promotes total meniscus regeneration in rabbit meniscectomy model. Acta Biomater 2018; 73: 127-40.
[http://dx.doi.org/10.1016/j.actbio.2018.04.012] [PMID: 29654991]
[251]
Gao S, Guo W, Chen M, et al. Fabrication and characterization of electrospun nanofibers composed of decellularized meniscus extracellular matrix and polycaprolactone for meniscus tissue engineering. J Mater Chem B Mater Biol Med 2017; 5(12): 2273-85.
[http://dx.doi.org/10.1039/C6TB03299K] [PMID: 32263618]
[252]
Liang R, Zhao J, Li B, et al. Implantable and degradable antioxidant poly(ε-caprolactone)-lignin nanofiber membrane for effective osteoarthritis treatment. Biomaterials 2020; 230: 119601.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119601] [PMID: 31711715]
[253]
Gluais M, Clouet J, Fusellier M, et al. In vitro and in vivo evaluation of an electrospun-aligned microfibrous implant for Annulus fibrosus repair. Biomaterials 2019; 205: 81-93.
[http://dx.doi.org/10.1016/j.biomaterials.2019.03.010] [PMID: 30909111]
[254]
Liu J, Nie H, Xu Z, et al. Construction of PRP-containing nanofibrous scaffolds for controlled release and their application to cartilage regeneration. J Mater Chem B Mater Biol Med 2015; 3(4): 581-91.
[http://dx.doi.org/10.1039/C4TB00515E] [PMID: 32262340]
[255]
Yang J, Yang X, Wang L, et al. Biomimetic nanofibers can construct effective tissue-engineered intervertebral discs for therapeutic implantation. Nanoscale 2017; 9(35): 13095-103.
[http://dx.doi.org/10.1039/C7NR03944A] [PMID: 28848971]
[256]
Baker BM, Nathan AS, Gee AO, Mauck RL. The influence of an aligned nanofibrous topography on human mesenchymal stem cell fibrochondrogenesis. Biomaterials 2010; 31(24): 6190-200.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.036] [PMID: 20494438]
[257]
Garrigues NW, Little D, Sanchez-Adams J, Ruch DS, Guilak F. Electrospun cartilage-derived matrix scaffolds for cartilage tissue engineering. J Biomed Mater Res A 2014; 102(11): 3998-4008.
[http://dx.doi.org/10.1002/jbm.a.35068] [PMID: 24375991]
[258]
Chen N, Tian L, He L, Ramakrishna S. Nanobiomaterials for neural regeneration. Neural Regen Res 2016; 11(9): 1372-4.
[http://dx.doi.org/10.4103/1673-5374.191195] [PMID: 27857724]
[259]
Gaudin R, Knipfer C, Henningsen A, Smeets R, Heiland M, Hadlock T. Approaches to peripheral nerve repair: Generations of biomaterial conduits yielding to replacing autologous nerve grafts in craniomaxillofacial surgery. BioMed Res Int 2016; 2016: 3856262.
[http://dx.doi.org/10.1155/2016/3856262] [PMID: 27556032]
[260]
Cunha C, Panseri S, Antonini S. Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration. Nanomedicine (Lond) 2011; 7(1): 50-9.
[http://dx.doi.org/10.1016/j.nano.2010.07.004] [PMID: 20692373]
[261]
Schmidt CE, Leach JB. Neural tissue engineering: Strategies for repair and regeneration. Annu Rev Biomed Eng 2003; 5: 293-347.
[http://dx.doi.org/10.1146/annurev.bioeng.5.011303.120731] [PMID: 14527315]
[262]
Zhu W, Masood F, O’Brien J, Zhang LG. Highly aligned nanocomposite scaffolds by electrospinning and electrospraying for neural tissue regeneration. Nanomedicine (Lond) 2015; 11(3): 693-704.
[http://dx.doi.org/10.1016/j.nano.2014.12.001] [PMID: 25596341]
[263]
Chew SY, Mi R, Hoke A, Leong KW. The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials 2008; 29(6): 653-61.
[http://dx.doi.org/10.1016/j.biomaterials.2007.10.025] [PMID: 17983651]
[264]
Hu J, Tian L, Prabhakaran MP, Ding X, Ramakrishna S. Fabrication of nerve growth factor encapsulated aligned poly(ε-Caprolactone) nanofibers and their assessment as a potential neural tissue engineering scaffold. Polymers (Basel) 2016; 8(2): E54.
[http://dx.doi.org/10.3390/polym8020054] [PMID: 30979150]
[265]
Xie J, Willerth SM, Li X, et al. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 2009; 30(3): 354-62.
[http://dx.doi.org/10.1016/j.biomaterials.2008.09.046] [PMID: 18930315]
[266]
Cho M, Kim SH, Jin G, Park KI, Jang JH. Salt-induced electrospun patterned bundled fibers for spatially regulating cellular responses. ACS Appl Mater Interfaces 2016; 8(21): 13320-31.
[http://dx.doi.org/10.1021/acsami.6b03848] [PMID: 27167566]
[267]
Panseri S, Cunha C, Lowery J, et al. Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol 2008; 8: 39.
[http://dx.doi.org/10.1186/1472-6750-8-39] [PMID: 18405347]
[268]
Cho YI, Choi JS, Jeong SY, Yoo HS. Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells. Acta Biomater 2010; 6(12): 4725-33.
[http://dx.doi.org/10.1016/j.actbio.2010.06.019] [PMID: 20601229]
[269]
Yu W, Jiang X, Cai M, et al. A novel electrospun nerve conduit enhanced by carbon nanotubes for peripheral nerve regeneration. Nanotechnology 2014; 25(16): 165102.
[http://dx.doi.org/10.1088/0957-4484/25/16/165102] [PMID: 24670610]
[270]
Schnell E, Klinkhammer K, Balzer S, et al. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Biomaterials 2007; 28(19): 3012-25.
[http://dx.doi.org/10.1016/j.biomaterials.2007.03.009] [PMID: 17408736]
[271]
Gerardo-Nava J, Führmann T, Klinkhammer K, et al. Human neural cell interactions with orientated electrospun nanofibers in vitro. Nanomedicine (Lond) 2009; 4(1): 11-30.
[http://dx.doi.org/10.2217/17435889.4.1.11] [PMID: 19093893]
[272]
Cirillo V, Guarino V, Alvarez-Perez MA, Marrese M, Ambrosio L. Optimization of fully aligned bioactive electrospun fibers for “in vitro” nerve guidance. J Mater Sci Mater Med 2014; 25(10): 2323-32.
[http://dx.doi.org/10.1007/s10856-014-5214-4] [PMID: 24737088]
[273]
Wang L, Wu Y, Hu T, Ma PX, Guo B. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation. Acta Biomater 2019; 96: 175-87.
[http://dx.doi.org/10.1016/j.actbio.2019.06.035] [PMID: 31260823]
[274]
Sarhane KA, Ibrahim Z, Martin R, et al. Macroporous nanofiber wraps promote axonal regeneration and functional recovery in nerve repair by limiting fibrosis. Acta Biomater 2019; 88: 332-45.
[http://dx.doi.org/10.1016/j.actbio.2019.02.034] [PMID: 30807875]
[275]
Farzamfar S, Salehi M, Tavangar SM, et al. A novel polycaprolactone/carbon nanofiber composite as a conductive neural guidance channel: An in vitro and in vivo study. Prog Biomater 2019; 8(4): 239-48.
[http://dx.doi.org/10.1007/s40204-019-00121-3] [PMID: 31833033]
[276]
Shafei S, Foroughi J, Stevens L, Wong CS, Zabihi O, Naebe M. Electroactive nanostructured scaffold produced by controlled deposition of PPy on electrospun PCL fibres. Res Chem Intermed 2016; 43(2): 1235-51.
[http://dx.doi.org/10.1007/s11164-016-2695-4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy