Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Peripheral Arterial Disease in Persons with Diabetic Foot Ulceration: a Current Comprehensive Overview

Author(s): Meloni Marco*, Izzo Valentina, Morosetti Daniele, Da Ros Valerio, Panunzi Andrea, Gandini Roberto, Giurato Laura and Uccioli Luigi

Volume 17, Issue 4, 2021

Published on: 01 October, 2020

Page: [474 - 485] Pages: 12

DOI: 10.2174/1573399816999201001203111

Price: $65

Abstract

In developed countries, the prevalence of persons with diabetes and peripheral arterial disease (PAD) is approximately 50%. The presence of PAD is associated with non-healing ulcers, major amputation, cardiovascular morbidity, and mortality. It is estimated that persons with diabetes, foot ulceration and PAD have 50% of 5-years mortality rate. Therefore, subjects with ischemic diabetic foot ulcers (DFUs) should be considered a special group of patients with specific clinical characteristics, general health status and prognosis. In persons with ischemic DFUs, an early diagnosis and treatment are mandatory to reduce the risk of worse outcomes such as major amputation. Revascularization of occluded lower extremity arteries is the main treatment to restore blood flow in the foot and promote wound healing. Nonetheless, there are several unmet needs in the management of diabetic subjects with PAD and foot ulceration as medical therapy, diagnostic criteria and indications for revascularization, revascularization strategy and technical approach as well as the management of no-option critical limb ischemia patients. It is a common opinion that there is an evolution of PAD features in diabetic persons, which seems to present a more aggressive pattern. This may be related to the frequent presence of concomitant comorbidities such as renal failure which could influence the characteristics of atherosclerotic plaques and their distribution. The aim of this review is to commence a complete overview and state of the art in the treatment of patients with diabetes, PAD, and foot ulceration and to describe the current challenges and future perspectives.

Keywords: Diabetes, diabetic foot ulceration, peripheral arterial disease, revascularization, cell therapy, amputation.

[1]
Prompers L, Huijberts M, Apelqvist J, et al. High prevalence of ischaemia, infection and serious comorbidity in patients with diabetic foot disease in Europe. Baseline results from the Eurodiale study. Diabetologia 2007; 50(1): 18-25.
[http://dx.doi.org/10.1007/s00125-006-0491-1]
[2]
Morbach S, Furchert H, Groeblinghoff U, et al. Long-term prognosis of diabetic foot patients and their limbs. Dia Care 2012; 35(10): 2021-7.
[http://dx.doi.org/10.2337/dc12-0200]
[3]
Rigato M, Pizzol D, Tiago A, Putoto G, Avogaro A, Fadini GP. Characteristics, prevalence, and outcomes of diabetic foot ulcers in Africa. A systemic review and meta-analysis. Diabetes Res Clin Pract 2018; 142: 63-73.
[http://dx.doi.org/10.1016/j.diabres.2018.05.016]
[4]
Younis BB, Shahid A, Arshad R, Khurshid S, Ahmad M, Yousaf H. Frequency of foot ulcers in people with type 2 diabetes, presenting to specialist diabetes clinic at a Tertiary Care Hospital, Lahore, Pakistan BMC Endocr Disord
[5]
Spreen MI, Gremmels H, Teraa M, et al. Diabetes is associated with decreased limb survival in patients with critical limb ischemia: Pooled data from two randomized controlled trials. Dia Care 2016; 39(11): 2058-64.
[http://dx.doi.org/10.2337/dc16-0850]
[6]
Richter L, Freisinger E, Lueders F, Gebauer K, Meyborg M, Malyar NM. Impact of diabetes type on treatment and outcome of patients with peripheral artery disease. Diab Vasc Dis Res 2018; 15(6): 504-10.
[http://dx.doi.org/10.1177/1479164118793986]
[7]
Blinc A, Kozak M, Šabovič M, et al. Survival and event-free survival of patients with peripheral artery disease undergoing prevention of cardiovascular disease. Int Angiol 2017; 36(3): 216-27.
[http://dx.doi.org/10.23736/S0392-9590.16.03731-7]
[8]
Meloni M, Izzo V, Giurato L, Lázaro-Martínez JL, Uccioli L. Prevalence, clinical aspects and outcomes in a large cohort of persons with diabetic foot disease: Comparison between neuropathic and ischemic ulcers. J Clin Med 2020; 9(6): E1780.
[http://dx.doi.org/10.3390/jcm9061780]
[9]
Armstrong DG, Swerdlow MA, Armstrong AA, Conte MS, Padula WV, Bus SA. Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer. J Foot Ankle Res 2020; 13(1): 16.
[http://dx.doi.org/10.1186/s13047-020-00383-2]
[10]
Fowkes FG, Rudan D, Rudan I, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet 2013; 382: 1329-40.
[http://dx.doi.org/10.1016/S0140-6736(13)61249-0]
[11]
Joosten MM, Pai JK, Bertoia ML, et al. Associations between conventional cardiovascular risk factors and risk of peripheral artery disease in men. JAMA 2012; 308: 1660-7.
[http://dx.doi.org/10.1001/jama.2012.13415]
[12]
Criqui MH, Aboyans V. Epidemiology of peripheral artery disease. Circ Res 2015; 116: 1509-26.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303849]
[13]
Meijer WT, Grobbee DE, Hunink MG, Hofman A, Hoes AW. Determinants of peripheral arterial disease in the elderly: the Rotterdam study. Arch Intern Med 2000; 160: 2934-8.
[http://dx.doi.org/10.1001/archinte.160.19.2934]
[14]
Murabito JM, D’Agostino RB, Silbershatz H, Wilson WF. Intermittent claudication. A risk profile from The Framingham Heart Study. Circulation 1997; 96: 44-9.
[http://dx.doi.org/10.1161/01.CIR.96.1.44]
[15]
Hooi JD, Kester AD, Stoffers HE, Overdijk MM, van Ree JW, Knottnerus JA. Incidence of and risk factors for asymptomatic peripheral arterial occlusive disease: a longitudinal study. Am J Epidemiol 2001; 153: 666-72.
[http://dx.doi.org/10.1093/aje/153.7.666]
[16]
Martinez-Aguilar E, Orbe J, Fernandez-Montero A. Reduced high-density lipoprotein cholesterol: a valuable, independent prognostic marker in peripheral arterial disease. J Vasc Surg 2017; 66: 1527-33.e1.
[http://dx.doi.org/10.1016/j.jvs.2017.04.056]
[17]
Ridker PM, Stampfer MJ, Rifai N. Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA 2001; 285: 2481-5.
[http://dx.doi.org/10.1001/jama.285.19.2481]
[18]
Peng J, Luo F, Ruan G, Peng R, Li X. Hypertriglyceridemia and atherosclerosis. Lipids Health Dis 2017; 16: 233.
[http://dx.doi.org/10.1186/s12944-017-0625-0]
[19]
Curb JD, Masaki K, Rodriguez BL, et al. Peripheral artery disease and cardiovascular risk factors in the elderly. The Honolulu Heart Program. Arterioscler Thromb Vasc Biol 1996; 16: 1495-500.
[http://dx.doi.org/10.1161/01.ATV.16.12.1495]
[20]
Taylor LM Jr, Moneta GL, Sexton GJ, Schuff RA, Porter JM. Prospective blinded study of the relationship between plasma homocysteine and progression of symptomatic peripheral arterial disease. J Vasc Surg 1999; 29: 8-19.
[http://dx.doi.org/10.1016/S0741-5214(99)70345-9]
[21]
Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. JAMA 1995; 274: 1049-57.
[http://dx.doi.org/10.1001/jama.1995.03530130055028]
[22]
Khandanpour N, Loke YK, Meyer FJ, Jennings B, Armon MP. Homocysteine and peripheral arterial disease: systematic review and meta-analysis. Eur J Vasc Endovasc Surg 2009; 38: 316-22.
[http://dx.doi.org/10.1016/j.ejvs.2009.05.007]
[23]
Newman AB, Siscovick DS, Manolio TA, et al. Ankle-arm index as a marker of atherosclerosis in the Cardiovascular Health Study. Cardiovascular Heart Study (CHS) Collaborative Research Group. Circulation 1993; 88: 837-45.
[http://dx.doi.org/10.1161/01.CIR.88.3.837]
[24]
Ix JH, Allison MA, Denenberg JO, Cushman M, Criqui MH. Novel cardiovascular risk factors do not completely explain the higher prevalence of peripheral arterial disease among African Americans. The San Diego Population Study. J Am Coll Cardiol 2008; 51: 2347-54.
[http://dx.doi.org/10.1016/j.jacc.2008.03.022]
[25]
Hobbs SD, Wilmink AB, Bradbury AW. Ethnicity and peripheral arterial disease. Eur J Vasc Endovasc Surg 2003; 25: 505-12.
[http://dx.doi.org/10.1053/ejvs.2002.1884]
[26]
Murabito JM, Evans JC, Nieto K, Larson MG, Levy D, Wilson PW. Prevalence and clinical correlates of peripheral arterial disease in the Framingham Offspring Study. Am Heart J 2002; 143: 961-5.
[http://dx.doi.org/10.1067/mhj.2002.122871]
[27]
Camargo CA Jr, Stampfer MJ, Glynn RJ, et al. Prospective study of moderate alcohol consumption and risk of peripheral arterial disease in US male physicians. Circulation 1997; 95: 577-80.
[http://dx.doi.org/10.1161/01.CIR.95.3.577]
[28]
Kaufman JD, Adar SD, Barr RG, Budoff M, Burke GL, Curl CL, et al. Association between air pollution and coronary artery calcification within six metropolitan areas in the USA (the Multi-Ethnic Study of Atherosclerosis and Air Pollution): a longitudinal cohort study. Lancet 2016; 388: 696-704.
[http://dx.doi.org/10.1016/S0140-6736(16)00378-0]
[29]
Dybdahl H, Ledet T. Diabetic macroangiopathy. Quantitative histopathological studies of the extramural coronary arteries from type 2 diabetic patients. Diabetologia 1987; 30: 882e6.
[30]
Andresen JL, Rasmussen LM, Ledet T. Diabetic macroangiopathy and atherosclerosis. Diabetes 1996; 45(3): S91e4.
[http://dx.doi.org/10.2337/diab.45.3.S91]
[31]
American Diabetes Association. Peripheral arterial disease in people with diabetes Diabetes Car. 2003; 26. 3333e41.
[32]
Niccoli G, Giubilato S, Di Vito L, et al. Severity of coronary atherosclerosis in patients with a first acute coronary event: a diabetes paradox. Eur Heart J 2013; 34: 729e41.
[http://dx.doi.org/10.1093/eurheartj/ehs393]
[33]
Jude EB, Oyibo SO, Chalmers N, Boulton AJM. Peripheral arterial disease in diabetic and nondiabetic patient A comparison of severity and outcome Diabetes Care 2001; 24: 1433e7.
[34]
Ciavarella A, Silletti A, Mustacchio A, et al. Angiographic evaluation of the anatomic pattern of arterial obstructions in diabetic patients with critical limb ischemia. Diabet Med 1993; 19: 586e9.
[35]
Graziani L, Silvestro A, Bertone V, et al. Vascular involvement in diabetic subjects with ischemic foot ulcer: a new morphologic categorization of disease severity. Eur J Vasc Endovasc Surg 2007; 33: 453e60.
[36]
Faglia E, Favales F, Quarantiello A, et al. Angiographic evaluation of peripheral arterial occlusive disease and its role as a prognostic determinant for major amputation in diabetic subjects with foot ulcers. Diabetes Care 1998; 21: 625e30.
[http://dx.doi.org/10.2337/diacare.21.4.625]
[37]
Conrad MC. Large and small artery occlusion in diabetic and non diabetics with severe vascular disease. Circulation 1967; 36: 83-91.
[http://dx.doi.org/10.1161/01.CIR.36.1.83]
[38]
Ferraresi R, Palena LM, Mauri G, Manzi M. Interventional treatment of the below the ankle peripheral artery disease. PanVascular Med 2015; Part XV:3205-.
[http://dx.doi.org/10.1007/978-3-642-37078-6_135]
[39]
Meloni M, Izzo V, Giurato L, Gandini R, Uccioli L. Below-the-ankle arterial disease severely impairs the outcomes of diabetic patients with ischemic foot ulcers. Diabetes Res Clin Pract 2019; 152: 9-15.
[http://dx.doi.org/10.1016/j.diabres.2019.04.031]
[40]
Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FGR. TASC II Working Group. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg 2007; 45: S5-S67.
[http://dx.doi.org/10.1016/j.jvs.2006.12.037]
[41]
Prompers L, Schaper N, Apelqvist J, et al. Prediction of outcome in individuals with diabetic foot ulcers: focus on the differences between individuals with and without peripheral arterial disease. The EURODIALE Study. Diabetologia 2008; 51(5): 747-55.
[http://dx.doi.org/10.1007/s00125-008-0940-0]
[42]
Criqui MH, Fronek A, Klauber MR, Barret-Connor E, Gabriel S. The sensitivity, specificity, and predictive value of traditional clinical evaluation of peripheral arterial disease: results from noninvasive testing in a defined population. Circulation 1985; 71: 516-22.
[http://dx.doi.org/10.1161/01.CIR.71.3.516]
[43]
Bakker K, Apelqvist J, Lipsky BA, Van Netten JJ. The 2015 IWGDF guidance documents on prevention and management of foot problems in diabetes: development of an evidence-based global consensus. Diabetes Metab Res Rev 2016; 32(Suppl. 1): 2-6.
[http://dx.doi.org/10.1002/dmrr.2694]
[44]
Orchard J, Strandness DE Jr. Assessment of peripheral vascular disease in diabetes. Report and recommendations of an international workshop sponsored by the American Heart association and the American Diabetes Association. Diabetes Care 1993; 16: 1119-209.
[http://dx.doi.org/10.2337/diacare.16.8.1199]
[45]
Young MJ, Adams JE. Anderson Gf, Boulton AJ, Cavanagh PR. Medial arterial calcification in the feet of diabetic patients and matched non-diabetic control subjects. Diabetologia 1993; 36: 615-21.
[http://dx.doi.org/10.1007/BF00404070]
[46]
Park SC, Choi CY, Ha YI, Yang HE. Utility of toe-brachial index for diagnosis of peripheral artery disease. Arch Plast Surg 2012; 39(3): 227-31.
[http://dx.doi.org/10.5999/aps.2012.39.3.227]
[47]
Aiello A, Anichini R, Brocco E, et al. Treatment of peripheral arterial disease in diabetes: A consensus of the italian societies of diabetes (SID, AMD), radiology (SIRM) and vascular endovascular surgery (SICVE). Nutr Metab Cardiovasc Dis 2014; 24(4): 355-69.
[http://dx.doi.org/10.1016/j.numecd.2013.12.007]
[48]
Izzo V, Meloni M, Fabiano S, et al. Rearfoot transcutaneous oximetry is a useful tool to highlight ischemia of the heel. Cardiovasc Intervent Radiol 2017; 40(1): 120-4.
[http://dx.doi.org/10.1007/s00270-016-1434-y]
[49]
Collins R, Burch J, Cranny G, et al. Duplex ultrasonography, magnetic resonance angiography, and computed tomography angiography for diagnosis and assessment of symptomatic, lower limb peripheral arterial dis- ease: systematic review BMJ 2007; 334: 1257e66.
[50]
Bradbury AW, Adam DJ. Diagnosis of peripheral arterial disease of the lower limb. BMJ 2007; 334: 1229-30.
[http://dx.doi.org/10.1136/bmj.39244.344664.80]
[51]
Wukich DK, Shen W, Raspovic KM, Suder NC, Baril DT, Avgerinos E. Noninvasive Arterial Testing in Patients With Diabetes: A Guide for Foot and Ankle Surgeons. Foot Ankle Int 2015; 36(12): 1391-9.
[http://dx.doi.org/10.1177/1071100715593888]
[52]
Barshes NR, Flores E, Belkin M, Kougias P, Armstrong DG, Mills JLS. The accuracy and cost-effectiveness of strategies used to identify peripheral artery disease among patients with diabetic foot ulcers. YMVA 2016; 64(6): 1682.
[http://dx.doi.org/10.1016/j.jvs.2016.04.056]
[53]
Visser K, Hunink MG. Peripheral arterial disease: gadolinium-enhanced MR angiography versus color color-guided duplex: a meta analysis. Radiology 2000; 216: 67.: e77.
[http://dx.doi.org/10.1148/radiology.216.1.r00jl0367]
[54]
Hingorani A, Ascher E, Marks N. Preprocedural imaging: new options to reduce need for contrast angiography. Semin Vasc Surg 2007; 20: 15-28.
[http://dx.doi.org/10.1053/j.semvascsurg.2007.02.005]
[55]
Rydahl C, Thomsen HS, Marckmann P. High prevalence of nephrogenic systemic fibrosis in chronic renal failure patients exposed to gadodiamide, a gadolinium-containing magnetic resonance contrast agent. Invest Radiol 2008; 43(2): 141-4.
[http://dx.doi.org/10.1097/RLI.0b013e31815a3407]
[56]
Wertman R, Altun E, Martin DR, et al. Risk of nephrogenic systemic fibrosis: evaluation of gadolinium chelate contrast agents at four American universities. Radiology 2008; 248(3): 799-806.
[http://dx.doi.org/10.1148/radiol.2483072093]
[57]
Met R, Bipat S, Legemate DA, Reekers JA, Koelemay MJW. Diagnostic performance of computed tomography angiography in peripheral arterial disease: a systematic review and meta-analysis. JAMA 2009; 301: 415-24.
[http://dx.doi.org/10.1001/jama.301.4.415]
[58]
Standards of medical care in diabetes—2014. Diabetes Care 2014; 37(Suppl. 1): S14-80.
[http://dx.doi.org/10.2337/dc14-S014]
[59]
Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS). Group Lancet 1998; 352(9131): 837-53.
[http://dx.doi.org/10.1016/S0140-6736(98)07019-6]
[60]
Dormandy JA, Charbonnel B, Eckland DJA, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005; 366(9493): 1279-89.
[http://dx.doi.org/10.1016/S0140-6736(05)67528-9]
[61]
Owen RJ, Hiremath S, Myers A, Fraser-Hill M, Barrett BJ. Canadian Association of Radiologists consensus guidelines for the prevention of contrast-induced nephropathy: update 2012. Can Assoc Radiol J 2014; 65: 96-105.
[http://dx.doi.org/10.1016/j.carj.2012.11.002]
[62]
Giurato L, Vainieri E, Meloni M, et al. Limb salvage in patients with diabetes is not a temporary solution but a life-changing procedure. Diabetes Care 205(38): 156-7.
[http://dx.doi.org/10.2337/dc15-0989]
[63]
Meloni M, Izzo V, Giurato L, et al. Recurrence of Critical Limb Ischemia After Endovascular Intervention in Patients with Diabetic Foot Ulcers. Adv Wound Care (New Rochelle) 2018; 7(6): 171-6.
[http://dx.doi.org/10.1089/wound.2017.0778]
[64]
Willigendael M, Teijink JA, Bartelink ML, Peters RJ, Buller HR, Prins MH. Smoking and the patency of lower extremity bypass grafts: a meta-analysis. J Vasc Surg 2005; 42(1): 67-74.
[http://dx.doi.org/10.1016/j.jvs.2005.03.024]
[65]
Armstrong EJ, Wu J, Singh GD, et al. Smoking cessation is associated with decreased mortality and improved amputation-free survival among patients with symptomatic peripheral artery disease. J Vasc Surg 2014; 60(6): 1565-71.
[http://dx.doi.org/10.1016/j.jvs.2014.08.064]
[66]
HPSCG MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002; 360(9326): 7-22.
[http://dx.doi.org/10.1016/S0140-6736(02)09327-3]
[67]
Hirsch AT, Haskal ZJ, Hertzer NR, et al. ACC/AHA 2005 guidelines for the management of patients with peripheral arterial disease (lower extermity, renal, mesenteric, and abdominal aortic): executive summary a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interverntions, Society for Vascular Medicine and Biology, Society of Interventional Raidology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease) endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. J Am Coll Cardiol 2006; 47: 1239-312.
[http://dx.doi.org/10.1016/j.jacc.2005.10.009]
[68]
Bloomfield Rubins H, Robins SJ, Collins D, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 1999; 341(6): 410-8.
[http://dx.doi.org/10.1056/NEJM199908053410604]
[69]
ESH/ESC 2003 European Society of Hypertension-European Society of Cardiology guidelines for the management of arterial hypertension. J Hypertens 2003; 21(6): 1011-53.
[http://dx.doi.org/10.1097/00004872-200306000-00001]
[70]
Faglia E, Clerici G, Scatena A, et al. Effectiveness of combined therapy with angiotensin-converting enzyme inhibitors and statins in reducing mortality in diabetic patients with critical limb ischemia: an observational study. Diabetes Res Clin Pract 2014; 103(2): 292-7.
[http://dx.doi.org/10.1016/j.diabres.2013.12.060]
[71]
ATC Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 2002; 324(7329): 71-86.
[http://dx.doi.org/10.1136/bmj.324.7329.71]
[72]
Schaper NC, Van Netten JJ, Apelqvist J, Bus SA, Hinchliffe RJ, Lipsky BA. IWGDF Practical Guidelines on the prevention and management of diabetic foot disease. Diabetes Metab Res Rev in press
[73]
Lipsky BA, Aragón-Sánchez J, Diggle M, et al. IWGDF Guideline on the Diagnosis and Treatment of Foot Infection in People with Diabetes. Diabetes Metab Res Rev in press
[74]
Fisher TK, Scimeca CL, Bharara M, Mills JLS, Armstrong DG. A Stepwise Approach for Surgical Management of Diabetic Foot Infections. J Am Podiatr Med Assoc 2010; 100(5): 401-5.
[http://dx.doi.org/10.7547/1000401]
[75]
Faglia E, Clerici G, Caminiti M, Quarantiello A, Gino M, Morabito A. The role of early surgical debridement and revascularization in patients with diabetes and deep foot space abscess: retrospective review of 106 patients with diabetes. J Foot Ankle Surg 2006; 45(4): 220-6.
[http://dx.doi.org/10.1053/j.jfas.2006.04.002]
[76]
Edmonds M, Lázaro-Martínez JL, Alfayate-García JM, et al. Sucrose octasulfate dressing versus control dressing in patients with neuroischaemic diabetic foot ulcers (Explorer): an international, multicentre, double-blind, randomised, controlled trial. Lancet Diabetes Endocrinol 2018; 6(3): 186-96. [published correction appears in Lancet Diabetes Endocrinol. 2018 Mar 6;].
[http://dx.doi.org/10.1016/S2213-8587(17)30438-2]
[77]
Butt T, Lilja E, Orneholm H, et al. Amputation-free survival in patients with diabetes mellitus and peripheral arterial disease with heel ulcer: open versus endovascular surgery. Vasc Endovascular Surg 2019; 53(2): 118-25.
[http://dx.doi.org/10.1177/1538574418813746]
[78]
Butt T, Lilja E, Elgzyri T, et al. Amputation-free Survival in Patients With Diabetic Foot Ulcer and Peripheral Arterial Disease: Endovascular Versus Open Surgery in a Propensity Score Adjusted Analysis. J Diabetes Complications 2020; 34(5): 107551.
[http://dx.doi.org/10.1016/j.jdiacomp.2020.107551]
[79]
Popplewell MA, Davies H, Jarrett H, Bate G, Grant M, Patel S, et al. Bypass versus angioplasty in severe ischaemia of the leg -2 (BASIL-2) trial: study protocol for a randomised controlled trial. Trials 2016; 17: 11.
[http://dx.doi.org/10.1186/s13063-015-1114-2]
[80]
Menard MT, Farber A. The BEST-CLI trial: a multidisciplinary effort to assess whether surgical or endovascular therapy is better for patients with critical limb ischemia. Semin Vasc Surg 2014; 27: 82-4.
[http://dx.doi.org/10.1053/j.semvascsurg.2015.01.003]
[81]
Manzi M. Recent developments in the management of the diabetic foot. J Cardiovasc Surg (Torino) 2018; 59(5): 653-4.
[http://dx.doi.org/10.23736/S0021-9509.18.10662-8]
[82]
Manzi M, Palena LM. Treating calf and pedal vessel disease: the extremes of intervention. Semin Intervent Radiol 2014; 31(4): 313-9.
[http://dx.doi.org/10.1055/s-0034-1393967]
[83]
Del Giudice C, Van Den Heuvel D, Wille J, et al. Percutaneous Deep Venous Arterialization for Severe Critical Limb Ischemia in Patients With No Option of Revascularization: Early Experience From Two European Centers. Cardiovasc Intervent Radiol 2018; 41(10): 1474-80.
[http://dx.doi.org/10.1007/s00270-018-2020-2]
[84]
Huizing E, Schreve MA, de Vries JPM, Ferraresi R, Kum S, Ünlü Ç. Below-the-Ankle Angioplasty in Patients With Critical Limb Ischemia: A Systematic Review and Meta-Analysis. J Vasc Interv Radiol 2019; 30(9): 1361-1368.e2.
[http://dx.doi.org/10.1016/j.jvir.2019.05.001]
[85]
Silvestro M, Palena LM, Manzi M, et al. Anterolateral retrograde access to the distal popliteal artery and to the tibioperoneal trunk for recanalization of femoropopliteal chronic total occlusions. J Vasc Surg 2018; 68(6): 1824-32.
[http://dx.doi.org/10.1016/j.jvs.2018.05.231]
[86]
Gandini R, Del Giudice C, Merolla S, Morosetti D, Pampana E, Simonetti G. Treatment of chronic sfa in-stent occlusion with combined laser atherectomy and drug-eluting balloon angioplasty in patients with critical limb ischemia: A single-center, prospective, randomized study. J Endovasc Ther 2013; 20(6): 805-14.
[http://dx.doi.org/10.1583/13-4308MR.1]
[87]
Van den Berg J. Angiosome perfusion of the foot: An old theory or a new issue? Semin Vasc Surg 2018; 31(2-4): 56-65.
[http://dx.doi.org/10.1053/j.semvascsurg.2018.12.002]
[88]
Alexandrescu VA, Brochier S, Limgba A, et al. Healing of diabetic neuroischemic foot wounds with vs without wound-targeted revascularization: Preliminary observations from an 8-year prospective dual-center registry. J Endovasc Ther 2020; 27(1): 20-30.
[http://dx.doi.org/10.1177/1526602819885131]
[89]
Rashid H, Slim H, Zayed H, Huang DY, Wilkins CJ, Evans DR, et al. The impact of arterial pedal arch quality and angiosome revascularization on foot tissue loss healing and infrapopliteal bypass outcome. J Vasc Surg 2013; 57(5): 1219-26.
[http://dx.doi.org/10.1016/j.jvs.2012.10.129]
[90]
Nakama T, Watanabe N, Haraguchi T, et al. Clinical outcomes of pedal artery angioplasty for patients with ischemic wounds: results from the multicenter RENDEZVOUS registry. JACC Cardiovasc Interv 2017; 10: 79-90.
[http://dx.doi.org/10.1016/j.jcin.2016.10.025]
[91]
Palena LM, Brocco E, Manzi M. The clinical utility of below-the-ankle angioplasty using “transmetatarsal artery access” in complex cases of CLI. Catheter Cardiovasc Interv 2014; 83: 123-9.
[http://dx.doi.org/10.1002/ccd.24992]
[92]
Schmidt A, Schreve MA, Huizing E, et al. Midterm Outcomes of Percutaneous Deep Venous Arterialization With a Dedicated System for Patients With No-Option Chronic Limb-Threatening Ischemia: The ALPS Multicenter Study. J Endovasc Ther 2020.
[http://dx.doi.org/10.1177/1526602820922179]
[93]
Kum S, Huizing E, Schreve MA, et al. Percutaneous deep venous arterialization in patients with critical limb ischemia. J Cardiovasc Surg (Torino) 2018; 59(5): 665-9.
[http://dx.doi.org/10.23736/S0021-9509.18.10569-6]
[94]
Lengua F, La Madrid A, Acosta C, Barriga H, Maliqui C, Arauco R, et al. Arterialization of the distal veins of the foot for limb salvage in arteritis: techniques and results. Ann Chir 2001; 126: 629-38.
[95]
Uccioli L, Gandini R, Giurato L, et al. Long-term outcomes of diabetic patients with critical limb ischemia followed in a tertiary referral diabetic foot clinic. Diabetes Care 2010; 33(5): 977-82.
[http://dx.doi.org/10.2337/dc09-0831]
[96]
Faglia E, Clerici G, Clerissi J, et al. Long-term prognosis of diabetic patients with critical limb ischemia: a population-based cohort study [published correction appears in Diabetes Care. 2009 Jul;32(7):1355. Luppattelli, Tommaso [corrected to Lupattelli, Tommaso]]. Diabetes Care 2009; 32(5): 822-7.
[http://dx.doi.org/10.2337/dc08-1223]
[97]
Pan T, Liu H, Fang Y, et al. Predictors of responders to mononuclear stem cell-based therapeutic angiogenesis for no-option critical limb ischemia. Stem Cell Res Ther 2019; 10: 15.
[http://dx.doi.org/10.1186/s13287-018-1117-5]
[98]
Iba O, Matsubara H, Nozawa Y, et al. Angiogenesis by implantation of peripheral blood mononuclear cells and platelets into ischemic limbs. Circulation 2002; 106: 2019-25.
[http://dx.doi.org/10.1161/01.CIR.0000031332.45480.79]
[99]
Buschmann I, Schaper W. Arteriogenesis versus angiogenesis: two mechanisms of vessels growth. News Physiol Sci 1999; 14: 121-5.
[http://dx.doi.org/10.1152/physiologyonline.1999.14.3.121]
[100]
Persiani F, Paolini A, Camilli D, et al. Peripheral Blood Mononuclear Cells Therapy for Treatment of Lower Limb Ischemia in Diabetic Patients: A Single-Center Experience Ann Vasc Surg 2018; 1-7.
[http://dx.doi.org/10.1016/j.avsg.2018.05.036]
[101]
Zhang M, Huang B. The multi-differentiation potential of peripheral blood mononuclear cells. Stem Cell Res Ther 2012; 3: 48.
[http://dx.doi.org/10.1186/scrt139]
[102]
Uccioli L, Meloni M, Izzo V, Giurato L, Merolla S, Gandini R. Critical limb ischemia: current challenges and future prospects. Vasc Health Risk Manag 2018; 14: 63-74.
[http://dx.doi.org/10.2147/VHRM.S125065]
[103]
Ogle ME, Segar CE, Sridhar S, Botchwey EA, Coulter WH. Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design. Exp Biol Med (Maywood) 2016; 241: 1084-97.
[http://dx.doi.org/10.1177/1535370216650293]
[104]
Riboldi E, Porta C, Morlacchi S, Viola A, Mantovani A, Sica A. Hipoxia-mediated regulation of macrophage functions in pathophysiology. Int Immunol 25(2): 67-75.
[http://dx.doi.org/10.1093/intimm/dxs110]
[105]
Pajarinen J, Lin T, Gibon E, et al. Mesenchymal stem cell- macrophage crosstalk and bone healing. Biomaterials 2018.
[http://dx.doi.org/10.1016/j.biomaterials.2017.12.025]]
[106]
Italiani P, Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol 2014; 5: 514.
[http://dx.doi.org/10.3389/fimmu.2014.00514]
[107]
Catrina Sb, Okamoto K, Pereira T, Brismar K, Poellinger L. Hyperglycemia regulates hypoxia-inducible factor 1-alpha protein stability and function. Diabetes 2004; 53: 3226-32.
[http://dx.doi.org/10.2337/diabetes.53.12.3226]
[108]
Gao W, Chen D, Liu G, et al. Autologous stem cell therapy for peripheral arterial disease: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther 2019; 10(1): 140.
[http://dx.doi.org/10.1186/s13287-019-1254-5]
[109]
Dubsky M, Jirkovska A, Fejfarova V, et al. Both autologous bone marrow mononuclear cell and peripheral blood progenitor cell therapies similarly improve ischaemia in patients with diabetic foot in comparison with control treatment. Diabetes Metab Res Rev 2013; 29: 369-76.
[http://dx.doi.org/10.1002/dmrr.2399]
[110]
Teraa M, Sprengers RW, van der Graaf Y, Peters CE, Moll FL, Verhaar MC. Autologous bone marrow-derived cell therapy in patients with critical limb ischemia: a meta-analysis of randomized controlled clinical trials. Ann Surg 2013; 258: 922-9.
[http://dx.doi.org/10.1097/SLA.0b013e3182854cf1]
[111]
Bonaca MP, Bauersachs RM, Anand SS, et al. Rivaroxaban in Peripheral Artery Disease after Revascularization. N Engl J Med 2020; 382(21): 1994-2004.
[http://dx.doi.org/10.1056/NEJMoa2000052]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy