Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

肿瘤穿透肽功能性腱糖蛋白C抗体靶向胶质母细胞瘤。

卷 21, 期 1, 2021

发表于: 01 October, 2020

页: [70 - 79] 页: 10

弟呕挨: 10.2174/1568009620666201001112749

open access plus

摘要

背景:与临床级肿瘤穿透性iRGD肽结合,是一种广泛应用的改善肿瘤归巢、外渗和肿瘤药物和肿瘤显像剂渗透的策略。实体瘤中细胞外基质分子Tenascin-C(TNC-C)的C结构域被上调,并且代表了基于临床级基于单链抗体的肿瘤递送药物和显像剂的诱人靶标。 目的:研究iRGD肽与重组抗TNC-C单链抗体克隆G11的C端基因融合对系统性肿瘤归巢和外渗的影响。 方法:采用酶联免疫吸附法研究亲本和iRGD融合的抗TNC-C单链抗体与腱糖蛋白C的C结构域和αVβ3整联蛋白的相互作用。为了进行全身归巢研究,在U87-MG胶质母细胞瘤异种移植小鼠中施用了荧光素标记的ScFV G11-iRGD和ScFV G11抗体,并通过共聚焦成像对组织切片进行了共聚焦成像研究其生物分布,所述组织切片被血管标记和腱生蛋白C免疫反应性染色。 结果:在无细胞系统中,iRGD与ScFV G11融合赋予了抗体强大的结合αVβ3整联蛋白的能力。 ScFV G11-iRGD的荧光素标记不影响其靶结合活性。在U87-MG小鼠中,iRGD与ScFV G11抗体的融合改善了其归巢于肿瘤血管,外渗和肿瘤实质的渗透。 结论:iRGD肿瘤穿透肽与非内在亲和力靶向配体的基因融合可改善其肿瘤嗜性和实质渗透,从而将成像和治疗剂更有效地递送至实体瘤病变中。

关键词: 腱生蛋白C,细胞外基质,iRGD,单链抗体,肿瘤穿透肽,胶质母细胞瘤。

图形摘要

[1]
Carter, P.J.; Lazar, G.A. Next generation antibody drugs: pursuit of the ‘high-hanging fruit’. Nat. Rev. Drug Discov., 2018, 17(3), 197-223.
[http://dx.doi.org/10.1038/nrd.2017.227] [PMID: 29192287]
[2]
Chau, C.H.; Steeg, P.S.; Figg, W.D. Antibody-drug conjugates for cancer. Lancet, 2019, 394(10200), 793-804.
[http://dx.doi.org/10.1016/S0140-6736(19)31774-X] [PMID: 31478503]
[3]
List, T.; Neri, D. Immunocytokines: a review of molecules in clinical development for cancer therapy. Clin. Pharmacol., 2013, 5(Suppl. 1), 29-45.
[http://dx.doi.org/10.2147/CPAA.S49231] [PMID: 23990735]
[4]
Hambley, T.W.; Hait, W.N. Is anticancer drug development heading in the right direction? Cancer Res., 2009, 69(4), 1259-1262.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3786] [PMID: 19208831]
[5]
Minchinton, A.I.; Tannock, I.F. Drug penetration in solid tumours. Nat. Rev. Cancer, 2006, 6(8), 583-592.
[http://dx.doi.org/10.1038/nrc1893] [PMID: 16862189]
[6]
Adler, M.J.; Dimitrov, D.S. Therapeutic antibodies against cancer. Hematol. Oncol. Clin. North Am., 2012, 26(3), 447-481, vii. [vii.].
[http://dx.doi.org/10.1016/j.hoc.2012.02.013] [PMID: 22520975]
[7]
Cruz, E.; Kayser, V. Monoclonal antibody therapy of solid tumors: clinical limitations and novel strategies to enhance treatment efficacy. Biologics, 2019, 13, 33-51.
[http://dx.doi.org/10.2147/BTT.S166310] [PMID: 31118560]
[8]
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release, 2000, 65(1-2), 271-284.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5] [PMID: 10699287]
[9]
Kalim, M.; Chen, J.; Wang, S.; Lin, C.; Ullah, S.; Liang, K.; Ding, Q.; Chen, S.; Zhan, J. Intracellular trafficking of new anticancer therapeutics: antibody-drug conjugates. Drug Des. Devel. Ther., 2017, 11, 2265-2276.
[http://dx.doi.org/10.2147/DDDT.S135571] [PMID: 28814834]
[10]
Sugahara, K.N.; Teesalu, T.; Karmali, P.P.; Kotamraju, V.R.; Agemy, L.; Girard, O.M.; Hanahan, D.; Mattrey, R.F.; Ruoslahti, E. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell, 2009, 16(6), 510-520.
[http://dx.doi.org/10.1016/j.ccr.2009.10.013] [PMID: 19962669]
[11]
Ruoslahti, E. Tumor penetrating peptides for improved drug delivery. Adv. Drug Deliv. Rev., 2017, 110-111, 3-12.
[http://dx.doi.org/10.1016/j.addr.2016.03.008] [PMID: 27040947]
[12]
Teesalu, T.; Sugahara, K.N.; Ruoslahti, E. Tumor-penetrating peptides. Front. Oncol., 2013, 3, 216.
[http://dx.doi.org/10.3389/fonc.2013.00216] [PMID: 23986882]
[13]
Sugahara, K.N.; Teesalu, T.; Karmali, P.P.; Kotamraju, V.R.; Agemy, L.; Greenwald, D.R.; Ruoslahti, E.; Prakash Karmali, P.; Ramana Kotamraju, V.; Agemy, L.; Greenwald, D.R.; Ruoslahti, E. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science, 2010, 328(5981), 1031-1035.
[http://dx.doi.org/10.1126/science.1183057] [PMID: 20378772]
[14]
Sha, H.; Zou, Z.; Xin, K.; Bian, X.; Cai, X.; Lu, W.; Chen, J.; Chen, G.; Huang, L.; Blair, A.M.; Cao, P.; Liu, B. Tumor-penetrating peptide fused EGFR single-domain antibody enhances cancer drug penetration into 3D multicellular spheroids and facilitates effective gastric cancer therapy. J. Control. Release, 2015, 200, 188-200.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.039] [PMID: 25553823]
[15]
Zhu, A.; Sha, H.; Su, S.; Chen, F.; Wei, J.; Meng, F.; Yang, Y.; Du, J.; Shao, J.; Ji, F.; Zhou, C.; Zou, Z.; Qian, X.; Liu, B. Bispecific tumor-penetrating protein anti-EGFR-iRGD efficiently enhances the infiltration of lymphocytes in gastric cancer. Am. J. Cancer Res., 2018, 8(1), 91-105.
[PMID: 29416923]
[16]
Järveläinen, H.; Sainio, A.; Koulu, M.; Wight, T.N.; Penttinen, R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol. Rev., 2009, 61(2), 198-223.
[http://dx.doi.org/10.1124/pr.109.001289] [PMID: 19549927]
[17]
Lingasamy, P.; Tobi, A.; Haugas, M.; Hunt, H.; Paiste, P.; Asser, T.; Rätsep, T.; Kotamraju, V.R.; Bjerkvig, R.; Teesalu, T. Bi-specific tenascin-C and fibronectin targeted peptide for solid tumor delivery. Biomaterials, 2019, 219, 119373.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119373] [PMID: 31374479]
[18]
Silacci, M.; Brack, S.S.; Späth, N.; Buck, A.; Hillinger, S.; Arni, S.; Weder, W.; Zardi, L.; Neri, D. Human monoclonal antibodies to domain C of tenascin-C selectively target solid tumors in vivo. Protein Eng. Des. Sel., 2006, 19(10), 471-478.
[http://dx.doi.org/10.1093/protein/gzl033] [PMID: 16928692]
[19]
Spenlé, C.; Saupe, F.; Midwood, K.; Burckel, H.; Noel, G.; Orend, G. Tenascin-C: Exploitation and collateral damage in cancer management. Cell Adhes. Migr., 2015, 9(1-2), 141-153.
[http://dx.doi.org/10.1080/19336918.2014.1000074] [PMID: 25569113]
[20]
von Lukowicz, T.; Silacci, M.; Wyss, M.T.; Trachsel, E.; Lohmann, C.; Buck, A.; Lüscher, T.F.; Neri, D.; Matter, C.M.; Luscher, T.F.; Neri, D.; Matter, C.M. Human antibody against C domain of tenascin-C visualizes murine atherosclerotic plaques ex vivo. J. Nucl. Med., 2007, 48(4), 582-587.
[http://dx.doi.org/10.2967/jnumed.106.036046] [PMID: 17401095]
[21]
Agemy, L.; Friedmann-Morvinski, D.; Kotamraju, V.R.; Roth, L.; Sugahara, K.N.; Girard, O.M.; Mattrey, R.F.; Verma, I.M.; Ruoslahti, E. Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc. Natl. Acad. Sci. USA, 2011, 108(42), 17450-17455.
[http://dx.doi.org/10.1073/pnas.1114518108] [PMID: 21969599]
[22]
Agemy, L.; Kotamraju, V.R.; Friedmann-Morvinski, D.; Sharma, S.; Sugahara, K.N.; Ruoslahti, E. Proapoptotic peptide-mediated cancer therapy targeted to cell surface p32. Mol. Ther., 2013, 21(12), 2195-2204.
[http://dx.doi.org/10.1038/mt.2013.191] [PMID: 23959073]
[23]
Wang, K.; Zhang, X.; Liu, Y.; Liu, C.; Jiang, B.; Jiang, Y. Tumor penetrability and anti-angiogenesis using iRGD-mediated delivery of doxorubicin-polymer conjugates. Biomaterials, 2014, 35(30), 8735-8747.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.042] [PMID: 25023394]
[24]
Lampson, L. A monoclonal antibodies in neuro-oncology: Getting past the blood-brain barrier mAbs. Landes Bioscience, 2011, 153-160.
[25]
Säälik, P.; Lingasamy, P.; Toome, K.; Mastandrea, I.; Rousso-Noori, L.; Tobi, A.; Simón-Gracia, L.; Hunt, H.; Paiste, P.; Kotamraju, V.R.; Bergers, G.; Asser, T.; Rätsep, T.; Ruoslahti, E.; Bjerkvig, R.; Friedmann-Morvinski, D.; Teesalu, T. Peptide-guided nanoparticles for glioblastoma targeting. J. Control. Release, 2019, 308, 109-118.
[http://dx.doi.org/10.1016/j.jconrel.2019.06.018] [PMID: 31255690]
[26]
Gambarota, G.; Leenders, W.; Maass, C.; Wesseling, P.; van der Kogel, B.; van Tellingen, O.; Heerschap, A. Characterisation of tumour vasculature in mouse brain by USPIO contrast-enhanced MRI. Br. J. Cancer, 2008, 98(11), 1784-1789.
[http://dx.doi.org/10.1038/sj.bjc.6604389] [PMID: 18506183]
[27]
Wang, R.; Shen, Q.; Li, X.; Xie, C.; Lu, W.; Wang, S.; Wang, J.; Wang, D.; Liu, M. Efficacy of inverso isomer of CendR peptide on tumor tissue penetration. Acta Pharm. Sin. B, 2018, 8(5), 825-832.
[http://dx.doi.org/10.1016/j.apsb.2018.06.006] [PMID: 30245969]
[28]
Lingasamy, P.; Tobi, A.; Kurm, K.; Kopanchuk, S.; Sudakov, A.; Salumäe, M.; Rätsep, T.; Asser, T.; Bjerkvig, R.; Teesalu, T. Tumor-penetrating peptide for systemic targeting of Tenascin-C. Sci. Rep., 2020, 10(1), 5809.
[http://dx.doi.org/10.1038/s41598-020-62760-y] [PMID: 32242067]
[29]
Jacobs, V.L.; Valdes, P.A.; Hickey, W.F.; De Leo, J.A. Current review of in vivo GBM rodent models: emphasis on the CNS-1 tumour model. ASN Neuro, 2011, 3(3), e00063.
[http://dx.doi.org/10.1042/AN20110014] [PMID: 21740400]
[30]
Mink, J.G.; Radl, J.; van den Berg, P.; Haaijman, J.J.; van Zwieten, M.J.; Benner, R. Serum immunoglobulins in nude mice and their heterozygous littermates during ageing. Immunology, 1980, 40(4), 539-545.
[PMID: 7429542]
[31]
Painter, R.H. IgG.Encyclopedia of Immunology. Elsevier; , 1998, pp. pp. 1208-1211.
[http://dx.doi.org/10.1006/rwei.1999.0313]
[32]
Chen, R.; Braun, G.B.; Luo, X.; Sugahara, K.N.; Teesalu, T.; Ruoslahti, E. Application of a proapoptotic peptide to intratumorally spreading cancer therapy. Cancer Res., 2013, 73(4), 1352-1361.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1979] [PMID: 23248118]
[33]
Lao, X.; Liu, M.; Chen, J.; Zheng, H. A tumor-penetrating peptide modification enhances the antitumor activity of thymosin alpha 1. PLoS One, 2013, 8(8), e72242.
[http://dx.doi.org/10.1371/journal.pone.0072242] [PMID: 23977262]
[34]
Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol., 2014, 15(12), 786-801.
[http://dx.doi.org/10.1038/nrm3904] [PMID: 25415508]
[35]
Raavé, R.; van Kuppevelt, T.H.; Daamen, W.F. Chemotherapeutic drug delivery by tumoral extracellular matrix targeting. J. Control. Release, 2018, 274, 1-8.
[http://dx.doi.org/10.1016/j.jconrel.2018.01.029] [PMID: 29382546]
[36]
Kumra, H.; Reinhardt, D.P. Fibronectin-targeted drug delivery in cancer. Adv. Drug Deliv. Rev., 2016, 97, 101-110.
[http://dx.doi.org/10.1016/j.addr.2015.11.014] [PMID: 26639577]
[37]
Hussain, S.; Rodriguez-Fernandez, M.; Braun, G.B.; Doyle, F.J., III; Ruoslahti, E. Quantity and accessibility for specific targeting of receptors in tumours. Sci. Rep., 2014, 4(1), 5232.
[http://dx.doi.org/10.1038/srep05232] [PMID: 24912981]
[38]
Braun, G.B.; Sugahara, K.N.; Yu, O.M.; Kotamraju, V.R.; Mölder, T.; Lowy, A.M.; Ruoslahti, E.; Teesalu, T. Urokinase-controlled tumor penetrating peptide. J. Control. Release, 2016, 232, 188-195.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.027] [PMID: 27106816]
[39]
Sharma, S.; Kotamraju, V.R.; Mölder, T.; Tobi, A.; Teesalu, T.; Ruoslahti, E. Tumor-penetrating nanosystem strongly suppresses breast tumor growth. Nano Lett., 2017, 17(3), 1356-1364.
[http://dx.doi.org/10.1021/acs.nanolett.6b03815] [PMID: 28178415]
[40]
Alberici, L.; Roth, L.; Sugahara, K.N.; Agemy, L.; Kotamraju, V.R.; Teesalu, T.; Bordignon, C.; Traversari, C.; Rizzardi, G.P.; Ruoslahti, E. De novo design of a tumor-penetrating peptide. Cancer Res., 2013, 73(2), 804-812.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1668] [PMID: 23151901]
[41]
Roth, L.; Agemy, L.; Kotamraju, V.R.; Braun, G.; Teesalu, T.; Sugahara, K.N.; Hamzah, J.; Ruoslahti, E. Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene, 2012, 31(33), 3754-3763.
[http://dx.doi.org/10.1038/onc.2011.537] [PMID: 22179825]
[42]
Laakkonen, P.; Porkka, K.; Hoffman, J.A.; Ruoslahti, E. A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat. Med., 2002, 8(7), 751-755.
[http://dx.doi.org/10.1038/nm720] [PMID: 12053175]
[43]
Daniels, D.A.; Chen, H.; Hicke, B.J.; Swiderek, K.M.; Gold, L. A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc. Natl. Acad. Sci. USA, 2003, 100(26), 15416-15421.
[http://dx.doi.org/10.1073/pnas.2136683100] [PMID: 14676325]
[44]
Kim, M.Y.; Kim, O.R.; Choi, Y.S.; Lee, H.; Park, K.; Lee, C.T.; Kang, K.W.; Jeong, S. Selection and characterization of tenascin C targeting peptide. Mol. Cells, 2012, 33(1), 71-77.
[http://dx.doi.org/10.1007/s10059-012-2214-4] [PMID: 22138765]
[45]
Akashi, Y.; Oda, T.; Ohara, Y.; Miyamoto, R.; Kurokawa, T.; Hashimoto, S.; Enomoto, T.; Yamada, K.; Satake, M.; Ohkohchi, N. Anticancer effects of gemcitabine are enhanced by co-administered iRGD peptide in murine pancreatic cancer models that overexpressed neuropilin-1. Br. J. Cancer, 2014, 110(6), 1481-1487.
[http://dx.doi.org/10.1038/bjc.2014.49] [PMID: 24556620]
[46]
Schmithals, C.; Köberle, V.; Korkusuz, H.; Pleli, T.; Kakoschky, B.; Augusto, E.A.; Ibrahim, A.A.; Arencibia, J.M.; Vafaizadeh, V.; Groner, B.; Korf, H.W.; Kronenberger, B.; Zeuzem, S.; Vogl, T.J.; Waidmann, O.; Piiper, A. Improving drug penetrability with iRGD leverages the therapeutic response to sorafenib and doxorubicin in hepatocellular carcinoma. Cancer Res., 2015, 75(15), 3147-3154.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0395] [PMID: 26239478]
[47]
Liu, X.; Lin, P.; Perrett, I.; Lin, J.; Liao, Y.P.; Chang, C.H.; Jiang, J.; Wu, N.; Donahue, T.; Wainberg, Z.; Nel, A.E.; Meng, H. Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer. J. Clin. Invest., 2017, 127(5), 2007-2018.
[http://dx.doi.org/10.1172/JCI92284] [PMID: 28414297]
[48]
Hudson, P.J. Recombinant antibody constructs in cancer therapy. Curr. Opin. Immunol., 1999, 11(5), 548-557.
[http://dx.doi.org/10.1016/S0952-7915(99)00013-8] [PMID: 10508712]
[49]
Avignolo, C.; Bagnasco, L.; Biasotti, B.; Melchiori, A.; Tomati, V.; Bauer, I.; Salis, A.; Chiossone, L.; Mingari, M.C.; Orecchia, P.; Carnemolla, B.; Neri, D.; Zardi, L.; Parodi, S. Internalization via Antennapedia protein transduction domain of an scFv antibody toward c-Myc protein. FASEB J., 2008, 22(4), 1237-1245.
[http://dx.doi.org/10.1096/fj.07-8865com] [PMID: 18048579]
[50]
Müller, D.; Karle, A.; Meissburger, B.; Höfig, I.; Stork, R.; Kontermann, R.E. Improved pharmacokinetics of recombinant bispecific antibody molecules by fusion to human serum albumin. J. Biol. Chem., 2007, 282(17), 12650-12660.
[http://dx.doi.org/10.1074/jbc.M700820200] [PMID: 17347147]
[51]
Andersen, J.T.; Cameron, J.; Plumridge, A.; Evans, L.; Sleep, D.; Sandlie, I. Single-chain variable fragment albumin fusions bind the neonatal Fc receptor (FcRn) in a species-dependent manner: implications for in vivo half-life evaluation of albumin fusion therapeutics. J. Biol. Chem., 2013, 288(33), 24277-24285.
[http://dx.doi.org/10.1074/jbc.M113.463000] [PMID: 23818524]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy