Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

NiFe2O4@SiO2 n Pr@glucose Catalyzed Synthesis of Novel 5-pyrazolin-1,2,4- triazazolidine-3-ones (thiones)

Author(s): Mohammad Nikpassand* and Zahra Pourkarim

Volume 18, Issue 1, 2021

Published on: 24 September, 2020

Page: [91 - 99] Pages: 9

DOI: 10.2174/1570179417666200924150004

Price: $65

Abstract

Introduction: NiFe2O4@SiO2nPr@glucose catalyzed synthesis of novel 5-pyrazolin-1,2,4-triazazolidine- 3-ones (thiones).

Materials and Methods: Amino glucose-functionalized silica-coated NiFe2O4 nanoparticles (NiFe2O4@SiO2 nPr@glucose amine or NiFe2O4@SiP@GA) were synthesized and characterized by X-ray powder diffraction (XRD), X-ray spectroscopy (EDX), transmission electron microscope (TEM), field emission scanning electron microscope (FE-SEM), vibrating sample magnetometry (VSM) and fourier transform infrared spectroscopy (FTIR).

Results and Discussion: NiFe2O4@SiP@GA supply an eco-friendly procedure for the synthesis of some novel 5- pyrazolin-1,2,4-triazazolidine-3-ones or thiones through one-pot reaction of thiosemicarbazide (hydrazinecarbothioamide) and synthetized pyrazole carbaldehydes. These compounds were obtained in high yields in short reaction times. The catalyst could be easily recovered and reused for six cycles with almost consistent activity. The structures of the synthesized 5-pyrazolin-1,2,4-triazazolidine-3-ones or thiones were confirmed by 1H NMR, 13C NMR and FTIR spectral data and elemental analyses.

Conclusion: In conclusion, we have investigated NiFe2O4@SiO2nPr@amino glucose as a new, eco-friendly, inexpensive, mild and reusable catalyst for the synthesis of 5-pyrazolin-1,2,4-triazazolidine-3-ones or thiones. High yield, a simple workup procedure, adherence to the basics of green chemistry, environmental friendly and based on natural ingredients, ease of separation and recyclability of the magnetic catalyst and waste reduction are some advantages of this method.

Keywords: Nanocatalyst, 5-pyrazolin-1, 2, 4-triazazolidine-3-ones, NiFe2O4, thiosemicarbazide, aldehyde, triazazolidine-3-thiones.

« Previous
Graphical Abstract

[1]
Baumann, M.; Baxendale, I.R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem., 2013, 9, 2265-2319.
[http://dx.doi.org/10.3762/bjoc.9.265 PMID: 24204439]
[2]
Devi, N.; Singh, D.; Rawal, R.K.; Bariwal, J.; Singh, V. Medicinal attributes of imidazo[1,2-a]pyridine derivatives: An update. Curr. Top. Med. Chem., 2016, 16(26), 2963-2994.
[http://dx.doi.org/10.2174/1568026616666160506145539 PMID: 27150367]
[3]
Dheer, D.; Reddy, K.R.; Rath, S.K.; Sangwan, P.L.; Das, P.; Shankar, R. Cu(i)-catalyzed double C–H amination: Synthesis of 2-iodo-imidazo[1,2-a]pyridines. RSC Advances, 2016, 6, 38033-38036.
[http://dx.doi.org/10.1039/C6RA02953A]
[4]
Yeung, K.S.; Farkas, M.E. A base-catalyzed, direct synthesis of 3,5-disubstituted 1,2,4-triazoles from nitriles and hydrazides. Tetrahedron Lett., 2005, 46, 3429-3432.
[http://dx.doi.org/10.1016/j.tetlet.2005.02.167]
[5]
Huntsman, E.; Balsells, J. New method for the general synthesis of [1,2,4]triazolo[1,5‐a]pyridines. Eur. J. Org. Chem., 2005, 17, 3761-3765.
[http://dx.doi.org/10.1002/ejoc.200500247]
[6]
Dolzhenko, D.V.; Beal, D.M. Brown. B. T.; Ellis, D.; Gordon, D. W.; S. P. Johnson, S. P.; Mason, H. J.; Ralph, M. J.; Underwood, T. J.; Wheeler, S. A Convenient Synthesis of Highly Substituted 3-N,N-Dialkylamino-1,2,4-triazoles. Synlett, 2008, 16, 2421-2424.
[7]
Ueda, S.; Nagasawa, H. Facile synthesis of 1,2,4-triazoles via a copper-catalyzed tandem addition-oxidative cyclization. J. Am. Chem. Soc., 2009, 131(42), 15080-15081.
[http://dx.doi.org/10.1021/ja905056z PMID: 19799379]
[8]
Yin, P.; Ma, W.B.; Chen, Y.; Huang, W.C.; Deng, Y.; He, L. Highly efficient cyanoimidation of aldehydes. Org. Lett., 2009, 11(23), 5482-5485.
[http://dx.doi.org/10.1021/ol902207h PMID: 19943701]
[9]
Liu, S.; Qian, X.; Song, G.; Chen, J.; Chen, W. Fluorine containing heterocyclic compounds: synthesis of 6-substituted-2-substituted-aryl-1,2,4-triazolo[5,1-b] 1,3,5-thiadiazin-7-one derivative. J. Fluor. Chem., 2000, 105, 111-115.
[http://dx.doi.org/10.1016/S0022-1139(00)00287-6]
[10]
Golovlyova, S.M.; Moskvichev, Y.A.; Alov, E.M.; Kobylinsky, D.B.; Ermolaeva, V.V. Synthesis of novel five-membered nitrogen-containing heterocyclic compounds from derivatives of arylsulfonyl- and arylthioacetic and -propionic acids. Chem. Heterocycl. Compd., 2001, 37, 1102-1106.
[http://dx.doi.org/10.1023/A:1013275515682]
[11]
Labanauskas, L.; Udrenaite, E.; Gaidelis, P.; Brukstus, A. Synthesis of 5-(2-,3- and 4-methoxyphenyl)-4H-1,2,4-triazole-3-thiol derivatives exhibiting anti-inflammatory activity. Farmaco, 2004, 59(4), 255-259.
[http://dx.doi.org/10.1016/j.farmac.2003.11.002 PMID: 15081342]
[12]
Siegfried, A.; Ernst, S. Ger. (East). Chem. Abstr., 1985, 106, 5048.
[13]
Goswami, B.N.; Kataky, J.C.S.; Baruah, J.N. Synthesis and antibacterial activity of 1‐(2,4‐dichlorobenzoyl)‐4‐substituted thiosemicarbazides, 1,2,4‐triazoles and their methyl derivatives. J. Heterocycl. Chem., 1984, 21, 1225-1229.
[http://dx.doi.org/10.1002/jhet.5570210460]
[14]
Moustafa, O.S. Synthesis and Some Reactions of Quinoxalinecarboazides. Chin. J. Chem Soc., 2000, 47, 351-357.
[http://dx.doi.org/10.1002/jccs.200000046]
[15]
Mekuskiene, G.; Gaidelis, P.; Vainilavicius, P. Synthesis and properties of 5(4,6-diphenyl-2-pyrimidin-2-yl)-1,2,4-triazolin-3-thione and derivatives Pharmazie, 1998, 53(2), 94-98.
[PMID: 9540106]
[16]
Cansiz, A.; Koparir, M.; Demirdağ, A. Synthesis of some new 4,5-substituted-4H-1,2,4-triazole-3-thiol derivatives. Molecules, 2004, 9(4), 204-212.
[http://dx.doi.org/10.3390/90400204 PMID: 18007424]
[17]
Frederique, M.; Reve, M.; Geo, B. Derivatives of dihydro-2,4 triazole-1,2,4 thione-3 and amino-2 thiadiazole-1,3,4 from new esters thiosemicarbazones. J. Heterocycl. Chem., 1984, 21, 1689.
[http://dx.doi.org/10.1002/jhet.5570210624]
[18]
Schenone, S.; Bruno, O.; Ranise, A.; Bondavalli, F.; Filippelli, W.; Rossi, F.; Falcone, G. Synthesis and anti-inflammatory activity of esters derived from 5-aryl-1,2-dihydro-2-(2-hydroxyethyl)-3H-1,2,4-triazole-3-thiones. Farmaco, 1998, 53(8-9), 590-593.
[http://dx.doi.org/10.1016/S0014-827X(98)00074-3 PMID: 10081823]
[19]
Foroumadi, A.; Mansouri, S.; Kiani, Z.; Rahmani, A. Synthesis and in vitro antibacterial evaluation of N-[5-(5-nitro-2-thienyl)-1,3,4-thiadiazole-2-yl] piperazinyl quinolones. Eur. J. Med. Chem., 2003, 38(9), 851-854.
[http://dx.doi.org/10.1016/S0223-5234(03)00148-X PMID: 14561484]
[20]
Noto, R.; Meo, P.L.; Gruttadauria, M.; Werber, G. A quantitative study of substituent effects on oxidative cyclization of some 2‐aryl‐substituted aldehyde thiosemicarbazones induced by ferric chloride and cupric perchlorate. J. Heterocycl. Chem., 1999, 36, 667-674.
[http://dx.doi.org/10.1002/jhet.5570360315]
[21]
Rezaei, A.; Ramazani, A.; Gouranlou, F.; Sang, W.J. Silica Nanoparticles/nanosilica sulfuric acid as a reusable catalyst for fast, highly efficient and green synthesis of 2-(heteroaryl)acetamide derivatives. Lett. Org. Chem., 2017, 14, 86-92.
[http://dx.doi.org/10.2174/1570178614666170126154256]
[22]
Fardood, S.T.; Ramazani, A.; Moradi, S.J. Green synthesis of Ni–Cu–Mg ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. Sol-Gel Sci., 2017, 82, 432-439.
[http://dx.doi.org/10.1007/s10971-017-4310-6]
[23]
Polshettiwar, V.; Varma, R.S. Green chemistry by nano-catalysis. Green Chem., 2010, 12, 743-754.
[http://dx.doi.org/10.1039/b921171c]
[24]
Fihri, A.; Bouhrara, M.; Nekoueishahraki, B.; Basset, J.M.; Polshettiwar, V. Nanocatalysts for Suzuki cross-coupling reactions. Chem. Soc. Rev., 2011, 40(10), 5181-5203.
[http://dx.doi.org/10.1039/c1cs15079k PMID: 21804997]
[25]
Zare Fekri, L.; Nikpassand, M.; Pourmirzajani, S.; Aghazadeh, B. Synthesis and characterization of amino glucose-functionalized silica-coated NiFe2O4 nanoparticles: a heterogeneous, new and magnetically separable catalyst for the solvent-free synthesis of pyrano[3,2-c]chromen-5(4H)-ones. RSC Advances, 2018, 8, 22313-22320.
[http://dx.doi.org/10.1039/C8RA02572J]
[26]
Nikpassand, M.; Zare Fekri, L.; Sanagou, S. Green synthesis of 2-hydrazonyl-4-phenylthiazoles using KIT-6 mesoporous silica coated magnetite nanoparticles. Dyes Pigm., 2017, 136, 140-144.
[27]
Nikpassand, M. One-pot Synthesis of new azo-linked 4H-benzo [d][1, 3] oxazine-2, 4-diones from carbon dioxide using CuO@ RHA/MCM-41 nanocomposite in green media J. CO2 Util., 2018, 27, 320-325.
[28]
Nikpassand, M. NiFe2O4@ SiO2@ glucose amine nanoparticle catalyzed reaction of azo-linked thiosalicylic acid with CO2: Access to azo-linked benzo [d] oxathiine-2, 4-diones. Dyes Pigm., 2020, 173, 107936.
[http://dx.doi.org/10.1016/j.dyepig.2019.107936]
[29]
Nikpassand, M.; Zare Fekri, L.; Karimian, L.; Rassa, M. Synthesis of biscoumarin derivatives using nanoparticle Fe3O4 as an efficient reusable heterogeneous catalyst in aqueous media and their antimicrobial activity. Curr. Org. Synth., 2015, 12, 358-362.
[http://dx.doi.org/10.2174/1570179411666141101001949]
[30]
Nikpassand, M.; Fekri, L.Z.; Nabatzadeh, M. Fe3O4@SiO2@KIT-6 as an Efficient and Reusable Catalyst for the Synthesis of Novel Derivatives of 3,3′-((Aryl-1-phenyl-1H-pyrazol-4- yl)methylene)bis (1H-indole). Comb. Chem. High Throughput Screen., 2017, 20(6), 533-538.
[http://dx.doi.org/10.2174/1386207320666170425123248 PMID: 28443502]
[31]
Kerru, N.; Bhaskaruni, S.V.H.S.; Gummidi, L.; Maddila, S.N.; Rana, S.; Singh, P.; Jonnalagadda, S.B. Synthesis of novel pyrazolebased triazolidin 3onederivatives by using ZnO/ZrO2 as a reusable catalyst undergreen conditions. Appl. Organometal. Chem., 2019.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy