Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Development of Schiff bases from Amikacin: Synthesis, Antibacterial, Anti-urease Activities and Molecular Docking Studies

Author(s): Shabana Anwar*, Mohsin Abbas Khan*, Irshad Ahmed, Irfan Pervaiz and Hamid Saeed Shah

Volume 17, Issue 12, 2020

Page: [1579 - 1588] Pages: 10

DOI: 10.2174/1570180817999200921112605

Price: $65

Abstract

Background: The use of antibiotics has compromised due to the appearance of multidrug- resistant strains and decreased susceptibility of strains to antibiotics. Antibiotic resistance has become a worldwide threat as well as Helicobacter pylori induced gastric cancer is a major problem nowadays. Therefore, it is the need of time to synthesize potent anti-urease motifs.

Introduction: Schiff bases represent a large class of biologically active compounds that exhibited a broad spectrum of biological activities. Amikacin is an important drug used against multidrugresistant species of microbes. Therefore, imine derivatives of amikacin may help to reduce the resistance of microbes and to treat the Helicobacter pylori induced stomach problems by inhibiting the Helicobacter Pylori Urease enzyme.

Methods: Schiff bases of amikacin were synthesized and screened for in-vitro antibacterial assay performed by well diffusion method against Bacillus megaterium (Bm), Bacillus subtilis (Bs), Stenotrophomonas maltophilia (Sm), Staphylococcus aureus (Sa), Micrococcus luteus (Ml), Serratia marcescens (S. mar), Escherichia coli (E. coli) and anti-urease activity was performed by Indophenol method. Structures confirmed by IR, 1HNMR and 13CNMR spectroscopy.

Results: Compounds showed varying degrees of antibacterial effects. Schiff bases A2 and A8 exhibited potent urease inhibition activity with Ki values 0.2754 and 0.2908 μM, respectively and their binding affinity was calculated as greater than the standard drug.

Conclusion: Derivatives of amikacin with aromatic rings were more active antibacterials than those with an aliphatic side chain. The potent anti-urease activity has been recorded for compounds A2 and A8. Therefore, they may serve as lead compounds in the discovery of Helicobacter pylori Urease inhibitors.

Keywords: Schiff bases, amikacin, aldehydes, anti-bacterial agents, Helicobacter pylori, enzymes.

Graphical Abstract

[1]
Borgohain, R.; Handique, J.G.; Guha, A.K.; Pratihar, S. A theoretical study of antioxidant activity of some Schiff bases derived from biologically important phenolic aldehydes and phenylenediamines. J. Phys. Org. Chem., 2018, 31(2), 3757.
[http://dx.doi.org/10.1002/poc.3757]
[2]
Guo, Z.; Xing, R.; Liu, S.; Zhong, Z.; Ji, X.; Wang, L.; Li, P. Antifungal properties of Schiff bases of chitosan, N-substituted chitosan and quaternized chitosan. Carbohydr. Res., 2007, 342(10), 1329-1332.
[http://dx.doi.org/10.1016/j.carres.2007.04.006] [PMID: 17485075]
[3]
Abd-Elzaher, M.M.; Labib, A.A.; Mousa, H.A.; Moustafa, S.A.; Ali, M.M.; El-Rashedy, A.A. Synthesis, anticancer activity and molecular docking study of Schiff base complexes containing thiazole moiety. Beni-Suef. Uni. J. Basic. Appl.Sci., 2016, 5(1), 85-96.
[4]
Hussain, Z.; Yousif, E.; Ahmed, A.; Altaie, A. Synthesis and characterization of Schiff’s bases of sulfamethoxazole. Org. Med. Chem. Lett., 2014, 4(1), 1.
[http://dx.doi.org/10.1186/2191-2858-4-1] [PMID: 24576663]
[5]
Berhanu, A.L.; Mohiuddin, I.; Malik, A.K.; Aulakh, J.S.; Kumar, V.; Kim, K-H. A review of the applications of Schiff bases as optical chemical sensors. TrAC Trends Analyt. Chem., 2019, 161, 74-91.
[http://dx.doi.org/10.1016/j.trac.2019.04.025]
[6]
Chaudhry, H. Synthesis, Characterization and Biological Aspects of O-and N-Donor Schiff Base Ligands and their Co (ll), Cu (ll), and Ni (ll) Complexes. Synthesis, 2020, 7(2), 29-33.
[7]
Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff bases: A versatile pharmacophore. J. Catal., 2013.Article ID 893512
[http://dx.doi.org/10.1155/2013/893512]
[8]
Nayak, S.G.; Poojary, B. Synthesis of novel Schiff bases containing arylpyrimidines as promising antibacterial agents. Heliyon, 2019, 5(8)e02318
[http://dx.doi.org/10.1016/j.heliyon.2019.e02318] [PMID: 31463406]
[9]
Govindaraj, V.; Ramanathan, S. Synthesis, spectral characterisation, electrochemical, and fluorescence studies of biologically active novel Schiff base complexes derived from E-4-(2-hydroxy-3-methoxybenzlideneamino)-N-(pyrimidin-2-yl) benzenesulfonamide. Turk. J. Chem., 2014, 38(4), 521-530.
[http://dx.doi.org/10.3906/kim-1301-83]
[10]
Mingeot-Leclercq, M-P.; Tulkens, P.M. Aminoglycosides: Nephrotoxicity. Antimicrob. Agents Chemother., 1999, 43(5), 1003-1012.
[http://dx.doi.org/10.1128/AAC.43.5.1003] [PMID: 10223907]
[11]
Snowden, J.; Stovall, S. Tularemia: Retrospective review of 10 years’ experience in Arkansas. Clin. Pediatr. (Phila.), 2011, 50(1), 64-68.
[http://dx.doi.org/10.1177/0009922810381425] [PMID: 20837613]
[12]
Prescott, W.A., Jr; Nagel, J.L. Extended-interval once-daily dosing of aminoglycosides in adult and pediatric patients with cystic fibrosis. Pharmacotherapy, 2010, 30(1), 95-108.
[http://dx.doi.org/10.1592/phco.30.1.95] [PMID: 20030477]
[13]
Allen, B.W.; Mitchison, D.A.; Chan, Y.C.; Yew, W.W.; Allan, W.G.; Girling, D.J. Amikacin in the treatment of pulmonary tuberculosis. Tubercle, 1983, 64(2), 111-118.
[http://dx.doi.org/10.1016/0041-3879(83)90035-1] [PMID: 6193623]
[14]
Ramirez, M.S.; Tolmasky, M.E. Amikacin: Uses, resistance, and prospects for inhibition. Molecules, 2017, 22(12), 2267.
[http://dx.doi.org/10.3390/molecules22122267] [PMID: 29257114]
[15]
Hamad, A.; Khan, M.A.; Rahman, K.M.; Ahmad, I.; Ul-Haq, Z.; Khan, S.; Shafiq, Z. Development of sulfonamide-based Schiff bases targeting urease inhibition: Synthesis, characterization, inhibitory activity assessment, molecular docking and ADME studies. Bioorg. Chem., 2020.102104057
[http://dx.doi.org/10.1016/j.bioorg.2020.104057] [PMID: 32663667]
[16]
Weatherburn, M. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem., 1967, 39(8), 971-974.
[http://dx.doi.org/10.1021/ac60252a045]
[17]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[18]
Biovia, D.S. Discovery studio modeling environment; Release, 2017.
[19]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[20]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[21]
Laskowski, R.A.; Swindells, M.B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[22]
Abu-Khadra, A.S.; Farag, R.S.; Abdel-Hady, A.E-D.M. Synthesis, characterization and antimicrobial activity of Schiff base (E)-N-(4-(hydroxybenzylideneamino) phenylsulfonyl) acetamide metal complexes. Am. J. Anal. Chem., 2016, 7(03), 233.
[http://dx.doi.org/10.4236/ajac.2016.73020]
[23]
Aslam, M.; Anis, I.; Afza, N.; Iqbal, L.; Iqbal, S.; Hussain, A.; Mehmood, R.; Hussain, M.T.; Khalid, M.; Nawaz, H. Biological evaluation of potent antioxidant, lipoxygenase inhibitor and antibacterial: A comparative study. J. Saudi Chem. Soc., 2016, 20(1), 45-48.
[http://dx.doi.org/10.1016/j.jscs.2012.09.009]
[24]
Shi, L.; Ge, H-M.; Tan, S-H.; Li, H-Q.; Song, Y-C.; Zhu, H-L.; Tan, R-X. Synthesis and antimicrobial activities of Schiff bases derived from 5-chloro-salicylaldehyde. Eur. J. Med. Chem., 2007, 42(4), 558-564.
[http://dx.doi.org/10.1016/j.ejmech.2006.11.010] [PMID: 17194508]
[25]
Saadeh, H.A.; Shaireh, E.A.A.; Mosleh, I.M.; Al-Bakri, A.G.; Mubarak, M.S. Synthesis, characterization and biological activity of Schiff bases derived from metronidazole. Med. Chem. Res., 2012, 21(10), 2969-2974.
[http://dx.doi.org/10.1007/s00044-011-9830-y]
[26]
Narain, Y.; Jhaumeer-Laulloo, S.; Bhowon, M.G. Structure-activity relationship of Schiff base derivatives of bis (aminophenyl) disulfide and p-vanillin as antimicrobial agents. Int. J. Biol. Chem. Sci., 2010, 4(1), 69-74.
[http://dx.doi.org/10.4314/ijbcs.v4i1.54232]
[27]
Husain, A.; Varshney, M.M.; Parcha, V.; Ahmad, A.; Khan, S.A. Nalidixic acid Schiff bases: synthesis and biological evaluation. Lett. Drug Des. Discov., 2018, 15(1), 103-111.
[http://dx.doi.org/10.2174/1570180814666170710160751]
[28]
Amin, R.; Krammer, B.; Abdel-Kader, N.; Verwanger, T.; El-Ansary, A. Antibacterial effect of some benzopyrone derivatives. Eur. J. Med. Chem., 2010, 45(1), 372-378.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.001] [PMID: 19896248]
[29]
Imran, M.; Iqbal, J.; Iqbal, S.; Ijaz, N. In vitro antibacterial studies of ciprofloxacin-imines and their complexes with Cu (II), Ni (II), Co (II), and Zn (II). Turk. J. Biol., 2007, 31(2), 67-72.
[30]
Azam, F.; Singh, S.; Khokhra, S.L.; Prakash, O. Synthesis of Schiff bases of naphtha[1,2-d]thiazol-2-amine and metal complexes of 2-(2′-hydroxy)benzylideneaminonaphthothiazole as potential antimicrobial agents. J. Zhejiang Univ. Sci. B, 2007, 8(6), 446-452.
[http://dx.doi.org/10.1631/jzus.2007.B0446] [PMID: 17565517]

© 2024 Bentham Science Publishers | Privacy Policy