Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Regulation of Electrolyte Permeability by Herbal Monomers in Edematous Disorders

Author(s): Yong Cui, Yapeng Hou, Honglei Zhang, Yanhong Liu, Kejun Mao, Hongguang Nie and Yan Ding*

Volume 27, Issue 6, 2021

Published on: 17 September, 2020

Page: [833 - 839] Pages: 7

DOI: 10.2174/1381612826666200917144655

Price: $65

Abstract

Edema is a gradual accumulation of fluid in the interstitial tissues or luminal cavities, which is regulated by ion transport pathways and reflects dysfunction of fluid and salt homeostasis. Increasing evidence suggests that some herbal monomers significantly reduce organ/tissue edema. In this review, we briefly summarized the electrolyte permeability involved in pathomechanisms of organ edema, and the benefits of herbal monomers on ionic transport machinery, including Na+-K+-ATPase, Na+ and Cl- channels, Na+-K+-2Cl- co-transporter, etc. Pharmaceutical relevance is implicated in developing advanced strategies to mitigate edematous disorders. In conclusion, the natural herbal monomers regulate electrolyte permeability in many edematous disorders, and further basic and clinical studies are needed.

Keywords: Herbal monomers, edema, ion channels, electrolyte permeability, epithelium, ionic transport machinery.

[1]
Assaad S, Kratzert WB, Shelley B, Friedman MB, Perrino A Jr. Assessment of Pulmonary Edema: Principles and Practice. J Cardiothorac Vasc Anesth 2018; 32(2): 901-14.
[http://dx.doi.org/10.1053/j.jvca.2017.08.028] [PMID: 29174750]
[2]
Kahle KT, Simard JM, Staley KJ, Nahed BV, Jones PS, Sun D. Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport. Physiology (Bethesda) 2009; 24: 257-65.
[http://dx.doi.org/10.1152/physiol.00015.2009] [PMID: 19675357]
[3]
Moore-Olufemi SD, Xue H, Attuwaybi BO, et al. Resuscitation-induced gut edema and intestinal dysfunction. J Trauma 2005; 58(2): 264-70.
[http://dx.doi.org/10.1097/01.TA.0000133571.64393.D2] [PMID: 15706186]
[4]
Siddall EC, Radhakrishnan J. The pathophysiology of edema formation in the nephrotic syndrome. Kidney Int 2012; 82(6): 635-42.
[http://dx.doi.org/10.1038/ki.2012.180] [PMID: 22718186]
[5]
Kato K, Daimon M, Ishibashi I, Kobayashi Y. Myocardial Edema in Takotsubo Syndrome- Serial Cardiovascular Magnetic Resonance Imaging of the Natural Course. Circ J 2017; 81(9): 1368-9.
[http://dx.doi.org/10.1253/circj.CJ-17-0065] [PMID: 28344203]
[6]
Lee G, Cho JH, Son CG, Lee N. Successful treatment of refractory edema with traditional herbal medicine: A case report. Medicine (Baltimore) 2019; 98(41)e17551
[http://dx.doi.org/10.1097/MD.0000000000017551] [PMID: 31593137]
[7]
Leung JM, Dzankic S, Manku K, Yuan S. The prevalence and predictors of the use of alternative medicine in presurgical patients in five California hospitals. Anesth Analg 2001; 93(4): 1062-8.
[http://dx.doi.org/10.1097/00000539-200110000-00053] [PMID: 11574384]
[8]
Morimoto N, Kakudo N, Mitsui T, et al. The Effectiveness of Saireito, a Traditional Japanese Herbal Medicine, in Reducing Postoperative Edema after Acquired Ptosis Surgery: A Prospective Controlled Trial. Evid Based Complement Alternat Med 2018; 20184742305
[http://dx.doi.org/10.1155/2018/4742305] [PMID: 30050587]
[9]
Kitaguch K, Sasaoka N, Soeda T, Egawa J. [The Implication of Dietary Supplements and Herbal Medicines in Perioperative Period Masui 2016; 65(11): 1152-9.
[PMID: 30351804]
[10]
Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev 2002; 82(3): 569-600.
[http://dx.doi.org/10.1152/physrev.00003.2002] [PMID: 12087129]
[11]
Hollenhorst MI, Richter K, Fronius M. Ion transport by pulmonary epithelia. J Biomed Biotechnol 2011; 2011174306
[http://dx.doi.org/10.1155/2011/174306] [PMID: 22131798]
[12]
Zajac M, Lewenstam A, Bednarczyk P, Dolowy K. Measurement of Multi Ion Transport through Human Bronchial Epithelial Cell Line Provides an Insight into the Mechanism of Defective Water Transport in Cystic Fibrosis. Membranes (Basel) 2020; 10(3): 10.
[http://dx.doi.org/10.3390/membranes10030043] [PMID: 32178452]
[13]
Speed JS, Fox BM, Johnston JG, Pollock DM. Endothelin and renal ion and water transport. Semin Nephrol 2015; 35(2): 137-44.
[http://dx.doi.org/10.1016/j.semnephrol.2015.02.003] [PMID: 25966345]
[14]
Sitprija V, Sitprija S. Animal toxins and renal ion transport: Another dimension in tropical nephrology. Nephrology (Carlton) 2016; 21(5): 355-62.
[http://dx.doi.org/10.1111/nep.12633] [PMID: 26421422]
[15]
Papadopoulos MC, Verkman AS. Aquaporin-4 and brain edema. Pediatr Nephrol 2007; 22(6): 778-84.
[http://dx.doi.org/10.1007/s00467-006-0411-0] [PMID: 17347837]
[16]
Lu KT, Cheng NC, Wu CY, Yang YL. NKCC1-mediated traumatic brain injury-induced brain edema and neuron death via Raf/MEK/MAPK cascade. Crit Care Med 2008; 36(3): 917-22.
[http://dx.doi.org/10.1097/CCM.0B013E31816590C4] [PMID: 18431281]
[17]
Jayakumar AR, Norenberg MD. The Na-K-Cl Co-transporter in astrocyte swelling. Metab Brain Dis 2010; 25(1): 31-8.
[http://dx.doi.org/10.1007/s11011-010-9180-3] [PMID: 20336356]
[18]
Lu KT, Huang TC, Wang JY, et al. NKCC1 mediates traumatic brain injury-induced hippocampal neurogenesis through CREB phosphorylation and HIF-1α expression. Pflugers Arch 2015; 467(8): 1651-61.
[http://dx.doi.org/10.1007/s00424-014-1588-x] [PMID: 25201604]
[19]
Teng L, Zu Q, Li G, et al. Herbal medicines: challenges in the modern world. Part 3. China and Japan. Expert Rev Clin Pharmacol 2016; 9(9): 1225-33.
[http://dx.doi.org/10.1080/17512433.2016.1195263] [PMID: 27232545]
[20]
Repke KR, Schön R. Role of protein conformation changes and transphosphorylations in the function of Na+/K(+)-transporting adenosine triphosphatase: an attempt at an integration into the Na+/K+ pump mechanism. Biol Rev Camb Philos Soc 1992; 67(1): 31-78.
[http://dx.doi.org/10.1111/j.1469-185X.1992.tb01658.x] [PMID: 1318758]
[21]
Chignell CF. The effect of phenolphthalein and other purgative drugs on rat intestinal (Na+ + K+) adenosine triphosphatase. Biochem Pharmacol 1968; 17(7): 1207-12.
[http://dx.doi.org/10.1016/0006-2952(68)90057-9] [PMID: 4232319]
[22]
Wanitschke R. Influence of rhein on electrolyte and water transfer in the isolated rat colonic mucosa. Pharmacology 1980; 20(Suppl. 1): 21-6.
[http://dx.doi.org/10.1159/000137394] [PMID: 6445568]
[23]
Wanitschke R, Karbach U. Influence of rhein on rat colonic Na+,K+-ATPase and permeability in vitro. Pharmacology 1988; 36(Suppl. 1): 98-103.
[http://dx.doi.org/10.1159/000138427] [PMID: 2835785]
[24]
Li B, Ding YX, Dou DQ, et al. Diuretic Ingredients of Poria coco. Int J Pharmacol 2015; 11: 130-6.
[http://dx.doi.org/10.3923/ijp.2015.130.136]
[25]
Feng YL, Lei P, Tian T, et al. Diuretic activity of some fractions of the epidermis of Poria cocos. J Ethnopharmacol 2013; 150(3): 1114-8.
[http://dx.doi.org/10.1016/j.jep.2013.10.043] [PMID: 24184192]
[26]
Rossier BC, Canessa CM, Schild L, Horisberger JD. Epithelial sodium channels. Curr Opin Nephrol Hypertens 1994; 3(5): 487-96.
[http://dx.doi.org/10.1097/00041552-199409000-00003] [PMID: 7804746]
[27]
Matsushita K, McCray PB Jr, Sigmund RD, Welsh MJ, Stokes JB. Localization of epithelial sodium channel subunit mRNAs in adult rat lung by in situ hybridization. Am J Physiol 1996; 271(2 Pt 1): L332-9.
[PMID: 8770073]
[28]
Mutlu GM, Sznajder JI. Mechanisms of pulmonary edema clearance. Am J Physiol Lung Cell Mol Physiol 2005; 289(5): L685-95.
[http://dx.doi.org/10.1152/ajplung.00247.2005] [PMID: 16214819]
[29]
Phillips RA, Love AH, Mitchell TG, Neptune EM Jr. Cathartics and the sodium pump. Nature 1965; 206(991): 1367-8.
[http://dx.doi.org/10.1038/2061367a0] [PMID: 5838253]
[30]
Tsai JC, Tsai S, Chang WC. Effect of ethanol extracts of three Chinese medicinal plants with anti-diarrheal properties on ion transport of the rat intestinal epithelia. J Pharmacol Sci 2004; 94(1): 60-6.
[http://dx.doi.org/10.1254/jphs.94.60] [PMID: 14745119]
[31]
Ntchapda F, Kakesse M, Fokam MA, Pancha OM, Abakar D, Dimo T. Evaluation of the diuretic effects of crude stem bark extraction of Zanthoxylum heitzii (Rutaceae) in Wistar rats. J Integr Med 2015; 13(5): 326-35.
[http://dx.doi.org/10.1016/S2095-4964(15)60188-1] [PMID: 26343104]
[32]
Kuang Q, Purhonen P, Hebert H. Structure of potassium channels. Cell Mol Life Sci 2015; 72(19): 3677-93.
[http://dx.doi.org/10.1007/s00018-015-1948-5] [PMID: 26070303]
[33]
Bleich M, Briel M, Busch AE, et al. KVLQT channels are inhibited by the K+ channel blocker 293B. Pflugers Arch 1997; 434(4): 499-501.
[http://dx.doi.org/10.1007/s004240050427] [PMID: 9211819]
[34]
Warth R. Potassium channels in epithelial transport. Pflugers Arch 2003; 446(5): 505-13.
[http://dx.doi.org/10.1007/s00424-003-1075-2] [PMID: 12707775]
[35]
Taylor CT, Baird AW. Berberine inhibition of electrogenic ion transport in rat colon. Br J Pharmacol 1995; 116(6): 2667-72.
[http://dx.doi.org/10.1111/j.1476-5381.1995.tb17224.x] [PMID: 8590987]
[36]
Taylor CT, Winter DC, Skelly MM, et al. Berberine inhibits ion transport in human colonic epithelia. Eur J Pharmacol 1999; 368(1): 111-8.
[http://dx.doi.org/10.1016/S0014-2999(99)00023-0] [PMID: 10096776]
[37]
Alzamora R, O’Mahony F, Ko WH, et al. Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels. Front Physiol 2011; 2: 33.
[http://dx.doi.org/10.3389/fphys.2011.00033] [PMID: 21747769]
[38]
Cermak R, Kuhn G, Wolffram S. The flavonol quercetin activates basolateral K(+) channels in rat distal colon epithelium. Br J Pharmacol 2002; 135(5): 1183-90.
[http://dx.doi.org/10.1038/sj.bjp.0704564] [PMID: 11877325]
[39]
Zhao J, Lian Y, Lu C, Jing L, Yuan H, Peng S. Inhibitory effects of a bisbenzylisoquinline alkaloid dauricine on HERG potassium channels. J Ethnopharmacol 2012; 141(2): 685-91.
[http://dx.doi.org/10.1016/j.jep.2011.08.054] [PMID: 21920426]
[40]
Matchkov VV, Aalkjaer C, Nilsson H. Distribution of cGMP-dependent and cGMP-independent Ca(2+)-activated Cl(-) conductances in smooth muscle cells from different vascular beds and colon. Pflugers Arch 2005; 451(2): 371-9.
[http://dx.doi.org/10.1007/s00424-005-1472-9] [PMID: 16075241]
[41]
Schultheiss G, Siefjediers A, Diener M. Muscarinic receptor stimulation activates a Ca(2+)-dependent Cl(-) conductance in rat distal colon. J Membr Biol 2005; 204(3): 117-27.
[http://dx.doi.org/10.1007/s00232-005-0757-4] [PMID: 16245034]
[42]
Tarran R, Button B, Boucher RC. Regulation of normal and cystic fibrosis airway surface liquid volume by phasic shear stress. Annu Rev Physiol 2006; 68: 543-61.
[http://dx.doi.org/10.1146/annurev.physiol.68.072304.112754] [PMID: 16460283]
[43]
Ferrera L, Zegarra-Moran O, Galietta LJ. Ca2+-activated Cl- channels. Compr Physiol 2011; 1(4): 2155-74.
[PMID: 23733701]
[44]
Fung JC, Yue GG, Fung KP, Ma X, Yao XQ, Ko WH. Cordyceps militaris extract stimulates Cl(-) secretion across human bronchial epithelia by both Ca(2+)(-) and cAMP-dependent pathways. J Ethnopharmacol 2011; 138(1): 201-11.
[http://dx.doi.org/10.1016/j.jep.2011.08.081] [PMID: 21939749]
[45]
Yue GG, Lau CB, Fung KP, Leung PC, Ko WH. Effects of Cordyceps sinensis, Cordyceps militaris and their isolated compounds on ion transport in Calu-3 human airway epithelial cells. J Ethnopharmacol 2008; 117(1): 92-101.
[http://dx.doi.org/10.1016/j.jep.2008.01.030] [PMID: 18358654]
[46]
Yue GG, Yip TW, Huang Y, Ko WH. Cellular mechanism for potentiation of Ca2+-mediated Cl- secretion by the flavonoid baicalein in intestinal epithelia. J Biol Chem 2004; 279(38): 39310-6.
[http://dx.doi.org/10.1074/jbc.M406787200] [PMID: 15234961]
[47]
Wu DZ, Yuan JY, Shi HL, Hu ZB. Palmatine, a protoberberine alkaloid, inhibits both Ca(2+)- and cAMP-activated Cl(-) secretion in isolated rat distal colon. Br J Pharmacol 2008; 153(6): 1203-13.
[http://dx.doi.org/10.1038/sj.bjp.0707684] [PMID: 18204477]
[48]
Chen L, Ding Y, Hou Y, Liu Y, Nie H. Regulation of Cl- Electrolyte Permeability in Epithelia by Active Traditional Chinese Medicine Monomers for Diarrhea. Curr Drug Targets 2020; 21(9): 902-9.
[http://dx.doi.org/10.2174/1389450121666200504073635] [PMID: 32364074]
[49]
Yun CH, Tse CM, Nath SK, Levine SA, Brant SR, Donowitz M. Mammalian Na+/H+ exchanger gene family: structure and function studies. Am J Physiol 1995; 269(1 Pt 1): G1-G11.
[PMID: 7631785]
[50]
Shull GE, Miller ML, Schultheis PJ. Lessons from genetically engineered animal models VIII. Absorption and secretion of ions in the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2000; 278(2): G185-90.
[http://dx.doi.org/10.1152/ajpgi.2000.278.2.G185] [PMID: 10666041]
[51]
Clayburgh DR, Musch MW, Leitges M, Fu YX, Turner JR. Coordinated epithelial NHE3 inhibition and barrier dysfunction are required for TNF-mediated diarrhea in vivo. J Clin Invest 2006; 116(10): 2682-94.
[http://dx.doi.org/10.1172/JCI29218] [PMID: 17016558]
[52]
Kiela PR, Xu H, Ghishan FK. Apical NA+/H+ exchangers in the mammalian gastrointestinal tract. J Physiol Pharmacol 2006; 57(Suppl. 7): 51-79.
[PMID: 17228096]
[53]
Zhang Y, Wang X, Sha S, et al. Berberine increases the expression of NHE3 and AQP4 in sennosideA-induced diarrhoea model. Fitoterapia 2012; 83(6): 1014-22.
[http://dx.doi.org/10.1016/j.fitote.2012.05.015] [PMID: 22668974]
[54]
Plotkin MD, Kaplan MR, Peterson LN, Gullans SR, Hebert SC, Delpire E. Expression of the Na(+)-K(+)-2Cl- cotransporter BSC2 in the nervous system. Am J Physiol 1997; 272(1 Pt 1): C173-83.
[http://dx.doi.org/10.1152/ajpcell.1997.272.1.C173] [PMID: 9038823]
[55]
Chen H, Luo J, Kintner DB, Shull GE, Sun D. Na(+)-dependent chloride transporter (NKCC1)-null mice exhibit less gray and white matter damage after focal cerebral ischemia. J Cereb Blood Flow Metab 2005; 25(1): 54-66.
[http://dx.doi.org/10.1038/sj.jcbfm.9600006] [PMID: 15678112]
[56]
Obermüller N, Kunchaparty S, Ellison DH, Bachmann S. Expression of the Na-K-2Cl cotransporter by macula densa and thick ascending limb cells of rat and rabbit nephron. J Clin Invest 1996; 98(3): 635-40.
[http://dx.doi.org/10.1172/JCI118834] [PMID: 8698854]
[57]
Niisato N, Ito Y, Marunaka Y. Activation of Cl- channel and Na+/K+/2Cl- cotransporter in renal epithelial A6 cells by flavonoids: genistein, daidzein, and apigenin. Biochem Biophys Res Commun 1999; 254(2): 368-71.
[http://dx.doi.org/10.1006/bbrc.1998.9952] [PMID: 9918844]
[58]
Xu JD, Liu S, Wang W, et al. Emodin induces chloride secretion in rat distal colon through activation of mast cells and enteric neurons. Br J Pharmacol 2012; 165(1): 197-207.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01573.x] [PMID: 21718311]
[59]
Xu JD, Wang W, Li LS, Chen X, Zhu JX. Involvement of endogenous prostaglandin in emodin-evoked rat colonic anion secretion. Biol Pharm Bull 2007; 30(11): 2058-62.
[http://dx.doi.org/10.1248/bpb.30.2058] [PMID: 17978475]
[60]
Zhu JS, Halpern GM, Jones K. The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis: part I. J Altern Complement Med 1998; 4(3): 289-303.
[http://dx.doi.org/10.1089/acm.1998.4.3-289] [PMID: 9764768]
[61]
Zhu JS, Halpern GM, Jones K. The scientific rediscovery of a precious ancient Chinese herbal regimen: Cordyceps sinensis: part II. J Altern Complement Med 1998; 4(4): 429-57.
[http://dx.doi.org/10.1089/acm.1998.4.429] [PMID: 9884180]
[62]
Shimura S. Signal transduction of mucous secretion by bronchial gland cells. Cell Signal 2000; 12(5): 271-7.
[http://dx.doi.org/10.1016/S0898-6568(00)00066-8] [PMID: 10822167]
[63]
Rogers DF. Mucus hypersecretion in chronic obstructive pulmonary disease. Novartis Found Symp 2001; 234: 65-77.
[PMID: 11199104]
[64]
Liu X, Li SL, Zhou Y, et al. Characterization of protostane triterpenoids in Alisma orientalis by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2010; 24(11): 1514-22.
[http://dx.doi.org/10.1002/rcm.4548] [PMID: 20486247]
[65]
Feng YL, Chen H, Tian T, Chen DQ, Zhao YY, Lin RC. Diuretic and anti-diuretic activities of the ethanol and aqueous extracts of Alismatis rhizoma. J Ethnopharmacol 2014; 154(2): 386-90.
[http://dx.doi.org/10.1016/j.jep.2014.04.017] [PMID: 24746479]
[66]
Chen DQ, Feng YL, Tian T, et al. Diuretic and anti-diuretic activities of fractions of Alismatis rhizoma. J Ethnopharmacol 2014; 157: 114-8.
[http://dx.doi.org/10.1016/j.jep.2014.09.022] [PMID: 25256686]
[67]
Zhang X, Li XY, Lin N, et al. Diuretic Activity of Compatible Triterpene Components of Alismatis rhizoma. Molecules 2017; 22(9): 22.
[http://dx.doi.org/10.3390/molecules22091459] [PMID: 28878160]
[68]
O’Brien JG, Chennubhotla SA, Chennubhotla RV. Treatment of edema. Am Fam Physician 2005; 71(11): 2111-7.
[PMID: 15952439]
[69]
Shah N, Madanieh R, Alkan M, Dogar MU, Kosmas CE, Vittorio TJ. A perspective on diuretic resistance in chronic congestive heart failure. Ther Adv Cardiovasc Dis 2017; 11(10): 271-8.
[http://dx.doi.org/10.1177/1753944717718717] [PMID: 28728476]
[70]
Bowman BN, Nawarskas JJ, Anderson JR. Treating Diuretic Resistance: An Overview. Cardiol Rev 2016; 24(5): 256-60.
[http://dx.doi.org/10.1097/CRD.0000000000000116] [PMID: 27465540]
[71]
Delavar MA, Soheilirad Z. Drug and herbal medicine-induced nephrotoxicity in children; review of the mechanisms. J Renal Inj Prev 2020; 9(3)e21
[http://dx.doi.org/10.34172/jrip.2020.21]
[72]
Ahmed M, Hwang J H, Hasan M A, Han D. Herbal medicine use by pregnant women in Bangladesh: a cross-sectional study 2018; 18: 333.
[http://dx.doi.org/10.1186/s12906-018-2399-y]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy