[1]
Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowling, B.J.; Yang, B.; Leung, G.M.; Feng, Z. Early transmission dynamics in wuhan, china, of novel coronavirus-infected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207.
[2]
Schäfer, H.; Wink, M. Medicinally important secondary metabolites in recombinant microorganisms or plants: progress in alkaloid biosynthesis. Biotechnol. J., 2009, 4(12), 1684-1703.
[3]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[4]
Chen, H.; Du, Q. Potential natural compounds for preventing SARS-CoV-2 (2019-nCoV) infection. Preprints, 2020 ., 2020010358 (In press)
[5]
ul Qamar, M., Alqahtani, S., Alamri, M., Chen, L-L. Structural basis of SARS-CoV-2 3CL(pro) and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal., 2020. . (In Press)
[6]
Basu, A.; Sarkar, A.; Maulik, U. Computational approach for the design of potential spike protein binding natural compounds in SARS-CoV2. Pharmacodynamics, 2020. . (In Press)
[7]
Farshi, P.; Kaya, E.; Hashempour-Baltork, F.; Khosravi-Darani, K. A comprehensive review on the effect of plant metabolites on coronaviruses: focusing on their molecular docking score and IC50 values. Preprints, 2020, . 2020050295 (In Press)
[8]
Aanouz, I.; Belhassan, A.; El-Khatabi, K.; Lakhlifi, T.; El-Ldrissi, M.; Bouachrine, M. Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. J. Biomol. Struct. Dyn., 2020, 1-9. (In Press)
[9]
Ahmad, S.; Abbasi, H.; Shahid, S.; Gul, S.; Abbasi, S. Molecular docking, simulation and mm-pbsa studies of nigella sativa compounds: a computational quest to identify potential natural antiviral for covid-19 treatment. J. Biomol. Struct. Dyn., 2020. . (In Press)
[10]
Sommer, A.; Försterling, H.; Naber, K. Thymoquinone: shield and sword against SARS-CoV-2. Precision Nanomedicine, 2020, 3, 541-548.
[11]
Owis, A.; El-Hawary, M.; El Amir, D.; Aly, O.; Abdelmohsen, U.; Kamel, M. Molecular docking reveals the potential of Salvadora persica flavonoids to inhibit COVID-19 virus main protease. RSC Advances, 2020, 10, 19570-19575.
[12]
Alamri, M.; Altharawi, A.; Alabbas, A.; Alossaimi, M.; Alqahtani, S. Structure-based virtual screening and molecular dynamics of phytochemicals derived from Saudi medicinal plants to identify potential COVID-19 therapeutics. ChemRxiv, 2020. . (In Press)
[13]
Abdelli, I.; Hassani, F.; Bekkel Brikci, S.; Ghalem, S. In silico study the inhibition of Angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from western Algeria. J. Biomol. Struct. Dyn., 2020. . (In Press)
[14]
Kumar, V.; Dhanjal, J.; Bhargava, P.; Kaul, A.; Wang, J.; Zhang, H.; Kaul, S.; Wadhwa, R.; Sundar, D. Withanone and withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. J. Biomol. Struct. Dyn., 2020. . (In Press)
[15]
Borkotoky, S.; Banerjee, M. A computational prediction of SARS-CoV-2 structural protein inhibitors from Azadirachta indica (Neem). J. Biomol. Struct. Dyn., 2020. . (In Press)
[16]
Kumar, A. Molecular docking of natural compounds from tulsi (Ocimum sanctum) and neem (Azadirachta indica) against SARS-CoV-2 protein targets. BEMS Reports, 2020, 6, 11-13.
[17]
Kumar, A.; Kage, U.; Mosa, K.; Dhokane, D. Metabolomics: a novel tool to bridge phenome to genome under changing climate to ensure food security. Med. Aromat. Plants, 2014, 3, e154
[18]
Kumar, A.; Mosa, K.A.; Ji, L.; Kage, U.; Dhokane, D.; Karre, S.; Madalageri, D.; Pathania, N. Metabolomics-assisted biotechnological interventions for developing plant-based functional foods and nutraceuticals. Crit. Rev. Food Sci. Nutr., 2018, 58(11), 1791-1807.
[19]
Borges, C.; Minatel, I.; Gomez-Gomez, H.; Lima, G. Medicinal plants: Influence of environmental factors on the content of secondary metabolites. In: . Medicinal Plants and Environmental Challenges; Ghorbanpour, M.; Varma, A., Eds.; Springer: Berlin, 2017.
[20]
Mahajan, M.; Kuiry, R.; Pal, P. Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. Appl. Res. Med. Aromat. Plants, 2020, .100255 (In Press)
[21]
Soliman, S.; Mohammad, M.G.; El-Keblawy, A.A.; Omar, H.; Abouleish, M.; Madkour, M.; Elnaggar, A.; Hosni, R.M. Mechanical and phytochemical protection mechanisms of Calligonum comosum in arid deserts. PLoS One, 2018, 13(2), e0192576
[22]
Soliman, S.S.M.; Abouleish, M.; Abou-Hashem, M.M.M.; Hamoda, A.M.; El-Keblawy, A.A. Lipophilic metabolites and anatomical acclimatization of cleome amblyocarpa in the drought and extra-water areas of the arid desert of UAE. Plants (Basel), 2019, 8(5), 132.
[23]
Soliman, S.; Hamoda, A.M.; El-Shorbagi, A.A.; El-Keblawy, A.A. Novel betulin derivative is responsible for the anticancer folk use of Ziziphus spina-christi from the hot environmental habitat of UAE. J. Ethnopharmacol., 2019, 231, 403-408. b
[24]
Soliman, S.; Abouleish, M.; Khoder, G.; Khalid, B.; Husam, H.; Ameen, K. The scientific basis of the antibacterial traditional use of Calligonum comosum in UAE. J. Herb. Med., 2020, .100361. (In Press)
[25]
Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules, 2018, 23(4), 762.
[26]
Jochum, G.M.; Mudge, K.W.; Thomas, R.B. Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax quinquefolius (Araliaceae). Am. J. Bot., 2007, 94(5), 819-826.
[27]
Satish, L.; Shamili, S.; Yolcu, S.; Lavanya, G.; Alavilli, H.; Swamy, M. Biosynthesis of secondary metabolites in plants as influenced by different factors. In: . Plant-derived Bioactives; Swamy, M., Ed.; Springer: Singapore, 2020.
[28]
Sehlakgwe, P.F.; Lall, N.; Prinsloo, G. 1H-NMR metabolomics and lc-ms analysis to determine seasonal variation in a cosmeceutical plant leucosidea sericea. Front. Pharmacol., 2020, 11, 219.
[29]
Zhang, L.; Cao, B.; Bai, C.; Li, G.; Mao, M. Predicting suitable cultivation regions of medicinal plants with Maxent modeling and fuzzy logics: a case study of Scutellaria baicalensis in China. Environ. Earth Sci., 2016, 75, 361.
[30]
Yu-xin, C. Effects of altitude on the contents of total flavonoids and enzymatic activity of erigeron breviscapus. Anhui Nongye Kexue, 2013.. (In Press)
[31]
Owuor, P.; Obaga, S.; Othieno, C. The effects of altitude on the chemical composition of black tea. J. Sci. Food Agric., 1990, 50, 9-17.
[32]
Gresta, F.; Avola, G.; Lombardo, G.; Siracusa, L.; Ruberto, G. Analysis of flowering, stigmas yield and qualitative traits of saffron (Crocus sativus L.) as affected by environmental conditions. Sci. Hortic. (Amsterdam), 2009, 119, 320-324.
[33]
Rehman, S.; Keefover-Ring, K.; Haq, I.U.; Dilshad, E.; Khan, M.I.; Akhtar, N.; Mirza, B. Drier climatic conditions increase withanolide content of withania coagulans enhancing its inhibitory potential against human prostate cancer cells. Appl. Biochem. Biotechnol., 2019, 188(2), 460-480.
[34]
Kaushik, N.; Singh, B.; Tomar, U.; Naik, S.; Vir, S.; Bisla, S. Regional and habitat variability in azadirachtin content of Indian neem (Azadirachta indica A. Jusieu). Curr. Sci., 2007, 92, 1400-1406.
[35]
Maulidiani, M.; Sheikh, B.; Mediani, A.; Wei, L.; Ismail, I.; Abas, F.; Lajis, N. Differentiation of Nigella sativa seeds from four different origins and their bioactivity correlations based on NMR-metabolomics approach. Phytochem. Lett., 2015, 13, 308-318.
[36]
Mazaheri, Y.; Torbati, M.; Azadmard-Damirchi, S.; Savage, G. A comprehensive review of the physicochemical, quality and nutritional properties of Nigella sativa oil. Food Rev. Int., 2019, 35, 342-362.
[37]
Sudhir, S.; Deshmukh, P.; Verma, H. Comparative study of antimicrobial effect of Nigella sativa seed extracts from different geographies. Int. J. Pharmacogn, 2016, 3, 257-264.
[38]
Abouleish, M.; Abdo, N. Assessment of nitrate and nitrite contamination in herbal tea products. J. Med. Plants Res., 2012, 6, 3555-3560.
[39]
Abouleish, M.; Abdo, N. Assessment of fluoride, chloride and sulfate contamination of herbal teas, and possible interference with the medicinal properties. J. Med. Plants Res., 2012, 6, 4436-4442. b
[40]
Kemper, K.J.; Vohra, S.; Walls, R. Task force on complementary and alternative medicine; provisional section on complementary, holistic, and integrative medicine. american academy of pediatrics. the use of complementary and alternative medicine in pediatrics. Pediatrics, 2008, 122(6), 1374-1386.
[41]
Woolf, A.D. Herbal remedies and children: do they work? Are they harmful? Pediatrics, 2003, 112(1 Pt 2), 240-246.
[42]
Todorov, D.; Hinkov, A.; Shishkova, K.; Shishkov, S. Antiviral potential of Bulgarian medicinal plants. Phytochem. Rev., 2014, 13, 525-538.
[43]
Hussain, M.S.; Fareed, S.; Ansari, S.; Rahman, M.A.; Ahmad, I.Z.; Saeed, M. Current approaches toward production of secondary plant metabolites. J. Pharm. Bioallied Sci., 2012, 4(1), 10-20.
[44]
Ayodeji, O.; Stanley, C.; Stanley, P. Overview of the management of covid-19 efficacy and doubts. J. Adv. Med. Res., 2020, 32(7), 47-53.
[45]
El Sayed, S.; Almaramhy, H.; Aljehani, Y.; Okashah, A.; El-Anzi, M.; AlHarbi, M. The Evidence-Based TaibUVID Nutritional Treatment for Minimizing COVID-19 Fatalities and Morbidity and eradicating COVID-19 pandemic: A novel Approach for Better Outcomes (A Treatment Protocol). Am. J. Public Health Res., 2020, 8(2), 54-60.