Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Topical Ocular Delivery of Nanocarriers: A Feasible Choice for Glaucoma Management

Author(s): Karthikeyan Kesavan*, Parasuraman Mohan, Nivedita Gautam and Val C. Sheffield

Volume 26, Issue 42, 2020

Page: [5518 - 5532] Pages: 15

DOI: 10.2174/1381612826666200916145609

Price: $65

Abstract

Topical ocular delivery is an acceptable and familiar approach for the treatment of common ocular diseases. Novel strategies for the treatment of inherited eye diseases include new pharmacologic agents, gene therapy and genome editing, which lead to the expansion of new management options for eye disorders. The topical ocular delivery of nanocarriers is a technique, which has the potential to facilitate novel treatments. Nanocarrier- based strategies have proven effective for site-targeted delivery. This review summarizes recent development in the area of topical delivery of different nanocarriers (Polymer, Vesicular and dispersed systems) for the management of glaucoma, a group of ocular disorders characterized by progressive and accelerated degeneration of the axons of retinal ganglion cells, which make up the optic nerve. Unique cellular targets for glaucoma treatment, primarily the trabecular meshwork of the anterior segment of the eye, make glaucoma facilitated by the use of nanocarriers an ideal disorder for novel molecular therapies.

Keywords: Glaucoma, topical ocular delivery, positively charged, nanocarriers, mucoadhesive, ganglion cells.

[1]
Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006; 90(3): 262-7.
[http://dx.doi.org/10.1136/bjo.2005.081224] [PMID: 16488940]
[2]
Cholkar K, Trinh HM, Pal D, Mitra AK. Discovery of novel inhibitors for the treatment of glaucoma. Expert Opin Drug Discov 2015; 10(3): 293-313.
[http://dx.doi.org/10.1517/17460441.2015.1000857] [PMID: 25575654]
[3]
Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm 2008; 68(3): 513-25.
[PMID: 17983737]
[4]
Alonso MJ. Nanomedicines for overcoming biological barriers. Biomed Pharmacother 2004; 58(3): 168-72.
[http://dx.doi.org/10.1016/j.biopha.2004.01.007] [PMID: 15082339]
[5]
Bourlais CL, Acar L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems--recent advances. Prog Retin Eye Res 1998; 17(1): 33-58.
[http://dx.doi.org/10.1016/S1350-9462(97)00002-5] [PMID: 9537794]
[6]
Kesavan K, Nath G, Pandit J. Preparation and in vitro antibacterial evaluation of gatifloxacin mucoadhesive gellan system. Daru 2010; 18(4): 237-46.
[PMID: 22615622]
[7]
Mansour M, Mansour S, Mortada ND, Abd Elhady SS. Ocular poloxamer-based ciprofloxacin hydrochloride in situ forming gels. Drug Dev Ind Pharm 2008; 34(7): 744-52.
[http://dx.doi.org/10.1080/03639040801926030] [PMID: 18612913]
[8]
Kesavan K, Kant S, Singh PN, Pandit JK. Effect of hydroxypropyl-β-cyclodextrin on the ocular bioavailability of dexamethasone from a pH-induced mucoadhesive hydrogel. Curr Eye Res 2011; 36(10): 918-29.
[http://dx.doi.org/10.3109/02713683.2011.593728] [PMID: 21950697]
[9]
Champalal KD, Sushilkumar P. Current status of ophthalmic in-situ forming hydrogel. Int J Pharma Bio Sci 2012; 3: 372-88.
[10]
Almeida H, Amaral MH, Lobão P, Sousa Lobo JM. Applications of poloxamers in ophthalmic pharmaceutical formulations: an overview. Expert Opin Drug Deliv 2013; 10(9): 1223-37.
[http://dx.doi.org/10.1517/17425247.2013.796360] [PMID: 23688342]
[11]
Barar J, Asadi M, Mortazavi-Tabatabaei SA, Omidi Y. Ocular drug delivery; impact of in vitro cell culture models. J Ophthalmic Vis Res 2009; 4(4): 238-52.
[PMID: 23198080]
[12]
Yi X, Wang Y, Yu FS. Corneal epithelial tight junctions and their response to lipopolysaccharide challenge. Invest Ophthalmol Vis Sci 2000; 41(13): 4093-100.
[PMID: 11095601]
[13]
Ahmed I. The non corneal route in ocular drug delivery Ophthalmic drug delivery systems. New York: Marcel Dekker 1993; pp. 356-85.
[14]
Hämäläinen KM, Kananen K, Auriola S, Kontturi K, Urtti A. Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest Ophthalmol Vis Sci 1997; 38(3): 627-34.
[PMID: 9071216]
[15]
Kim SH, Lutz RJ, Wang NS, Robinson MR. Transport barriers in transscleral drug delivery for retinal diseases. Ophthalmic Res 2007; 39(5): 244-54.
[http://dx.doi.org/10.1159/000108117] [PMID: 17851264]
[16]
Lara F, Bernal-Molina P, Fernández-Sánchez V, López-Gil N. Changes in the objective amplitude of accommodation with pupil size. Optom Vis Sci 2014; 91(10): 1215-20.
[http://dx.doi.org/10.1097/OPX.0000000000000383] [PMID: 25207484]
[17]
Adhi M, Brewer E, Waheed NK, Duker JS. Analysis of morphological features and vascular layers of choroid in diabetic retinopathy using spectral-domain optical coherence tomography. JAMA Ophthalmol 2013; 131(10): 1267-74.
[http://dx.doi.org/10.1001/jamaophthalmol.2013.4321] [PMID: 23907153]
[18]
Achouri D, Alhanout K, Piccerelle P, Andrieu V. Recent advances in ocular drug delivery. Drug Dev Ind Pharm 2013; 39(11): 1599-617.
[http://dx.doi.org/10.3109/03639045.2012.736515] [PMID: 23153114]
[19]
Stewart PA, Tuor UI. Blood-eye barriers in the rat: correlation of ultrastructure with function. J Comp Neurol 1994; 340(4): 566-76.
[http://dx.doi.org/10.1002/cne.903400409] [PMID: 8006217]
[20]
Shell JW. Pharmacokinetics of topically applied ophthalmic drugs. Surv Ophthalmol 1982; 26(4): 207-18.
[http://dx.doi.org/10.1016/0039-6257(82)90081-9] [PMID: 7041308]
[21]
King-Smith PE, Fink BA, Nichols JJ, Nichols KK, Braun RJ, McFadden GB. The contribution of lipid layer movement to tear film thinning and breakup. Invest Ophthalmol Vis Sci 2009; 50(6): 2747-56.
[http://dx.doi.org/10.1167/iovs.08-2459] [PMID: 19218611]
[22]
Garreis F, Gottschalt M, Schlorf T, et al. Expression and regulation of antimicrobial peptide psoriasin (S100A7) at the ocular surface and in the lacrimal apparatus. Invest Ophthalmol Vis Sci 2011; 52(7): 4914-22.
[http://dx.doi.org/10.1167/iovs.10-6598] [PMID: 21551409]
[23]
Wilson CG, Zhu YP, Kurmala P, Rao LS, Dhillon B. Ophthalmic drug delivery Drug delivery and targeting for pharmacists and pharmaceutical scientists. Boca Raton, Florida: CRC press 2001; pp. 329-54.
[24]
Maïssa C, Guillon M. Tear film dynamics and lipid layer characteristics--effect of age and gender. Cont Lens Anterior Eye 2010; 33(4): 176-82.
[http://dx.doi.org/10.1016/j.clae.2010.02.003] [PMID: 20202891]
[25]
Agrahari V, Mandal A, Agrahari V, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res 2016; 6(6): 735-54.
[http://dx.doi.org/10.1007/s13346-016-0339-2] [PMID: 27798766]
[26]
Edward A, Prausnitz MR. Predicted permeability of the cornea to topical drugs. Pharm Res 2001; 18(11): 1497-508.
[http://dx.doi.org/10.1023/A:1013061926851] [PMID: 11758755]
[27]
Huang AJ, Tseng SC, Kenyon KR. Paracellular permeability of corneal and conjunctival epithelia. Invest Ophthalmol Vis Sci 1989; 30(4): 684-9.
[PMID: 2703309]
[28]
Freddo TF. Shifting the paradigm of the blood-aqueous barrier. Exp Eye Res 2001; 73(5): 581-92.
[http://dx.doi.org/10.1006/exer.2001.1056] [PMID: 11747359]
[29]
Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv 2008; 5(5): 567-81.
[http://dx.doi.org/10.1517/17425247.5.5.567] [PMID: 18491982]
[30]
Kamei M, Misono K, Lewis H. A study of the ability of tissue plasminogen activator to diffuse into the subretinal space after intravitreal injection in rabbits. Am J Ophthalmol 1999; 128(6): 739-46.
[http://dx.doi.org/10.1016/S0002-9394(99)00239-1] [PMID: 10612511]
[31]
Chen MS, Hou PK, Tai TY, et al. Blood-ocular barriers. Tzu-Chi Med J 2008; 20: 25-34.
[http://dx.doi.org/10.1016/S1016-3190(08)60004-X]
[32]
Runkle EA, Antonetti DA. The blood-retinal barrier: structure and functional significance. Methods Mol Biol 2011; 686: 133-48.
[http://dx.doi.org/10.1007/978-1-60761-938-3_5] [PMID: 21082369]
[33]
Bouhenni RA, Dunmire J, Sewell A, Edward DP. Animal models of glaucoma. J Biomed Biotechnol 2012; 2012692609
[http://dx.doi.org/10.1155/2012/692609] [PMID: 22665989]
[34]
Salomão SR, Mitsuhiro MR, Belfort R Jr. Visual impairment and blindness: an overview of prevalence and causes in Brazil. An Acad Bras Cienc 2009; 81(3): 539-49.
[http://dx.doi.org/10.1590/S0001-37652009000300017] [PMID: 19722022]
[35]
Franca JR, Foureaux G, Fuscaldi LL, et al. Bimatoprost-loaded ocular inserts as sustained release drug delivery systems for glaucoma treatment: in vitro and in vivo evaluation. PLoS One 2014; 9(4)e95461
[http://dx.doi.org/10.1371/journal.pone.0095461] [PMID: 24788066]
[36]
Jay JL, Allan D. The benefit of early trabeculectomy versus conventional management in primary open angle glaucoma relative to severity of disease. Eye (Lond) 1989; 3(Pt 5): 528-35.
[http://dx.doi.org/10.1038/eye.1989.84] [PMID: 2698360]
[37]
Flammer J, Orgül S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 2002; 21(4): 359-93.
[http://dx.doi.org/10.1016/S1350-9462(02)00008-3] [PMID: 12150988]
[38]
Satilmis M, Orgül S, Doubler B, Flammer J. Rate of progression of glaucoma correlates with retrobulbar circulation and intraocular pressure. Am J Ophthalmol 2003; 135(5): 664-9.
[http://dx.doi.org/10.1016/S0002-9394(02)02156-6] [PMID: 12719074]
[39]
McAlinden C. Selective laser trabeculoplasty (SLT) vs other treatment modalities for glaucoma: systematic review. Eye (Lond) 2014; 28(3): 249-58.
[http://dx.doi.org/10.1038/eye.2013.267] [PMID: 24310236]
[40]
Yadav KS, Rajpurohit R, Sharma S. Glaucoma: Current treatment and impact of advanced drug delivery systems. Life Sci 2019; 221: 362-76.
[http://dx.doi.org/10.1016/j.lfs.2019.02.029] [PMID: 30797820]
[41]
Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA 2014; 311(18): 1901-11.
[http://dx.doi.org/10.1001/jama.2014.3192] [PMID: 24825645]
[42]
Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol 2002; 86(2): 238-42.
[http://dx.doi.org/10.1136/bjo.86.2.238] [PMID: 11815354]
[43]
Geyer O, Loewenstein A, Shalmon B, Neudorfer M, Lazar M. The additive miotic effects of dapiprazole and pilocarpine. Graefes Arch Clin Exp Ophthalmol 1995; 233(7): 448-51.
[http://dx.doi.org/10.1007/BF00180951] [PMID: 7557512]
[44]
De S, Robinson D. Polymer relationships during preparation of chitosan-alginate and poly-l-lysine-alginate nanospheres. J Control Release 2003; 89(1): 101-12.
[http://dx.doi.org/10.1016/S0168-3659(03)00098-1] [PMID: 12695066]
[45]
Chaurasia SS, Lim RR, Lakshminarayanan R, Mohan RR. Nanomedicine approaches for corneal diseases. J Funct Biomater 2015; 6(2): 277-98.
[http://dx.doi.org/10.3390/jfb6020277] [PMID: 25941990]
[46]
Kreuter J. Nanoparticles as bioadhesive ocular drug delivery systems Bioadhesive drug delivery systems. Boca Raton, Florida: CRC Press 1990; pp. 203-12.
[47]
Mainardes RM, Silva LP. Drug delivery systems: past, present, and future. Curr Drug Targets 2004; 5(5): 449-55.
[http://dx.doi.org/10.2174/1389450043345407] [PMID: 15216911]
[48]
Ding S. Recent developments in ophthalmic drug delivery. Pharm Sci Technol Today 1998; 8: 328-35.
[http://dx.doi.org/10.1016/S1461-5347(98)00087-X]
[49]
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloid surf B 2010; 75: 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001]
[50]
Siafaka PI, Titopoulou A, Koukaras EN, et al. Chitosan derivatives as effective nanocarriers for ocular release of timolol drug. Int J Pharm 2015; 495(1): 249-64.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.100] [PMID: 26341322]
[51]
Ameeduzzafar Ali J, Bhatnagar A, Kumar N, Ali A. Chitosan nanoparticles amplify the ocular hypotensive effect of cateolol in rabbits. Int J Biol Macromol 2014; 65: 479-91.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.02.002] [PMID: 24530326]
[52]
Katiyar S, Pandit J, Mondal RS, et al. In situ gelling dorzolamide loaded chitosan nanoparticles for the treatment of glaucoma. Carbohydr Polym 2014; 102: 117-24.
[http://dx.doi.org/10.1016/j.carbpol.2013.10.079] [PMID: 24507263]
[53]
Ilka R, Mohseni M, Kianirad M, Naseripour M, Ashtari K, Mehravi B. Nanogel-based natural polymers as smart carriers for the controlled delivery of Timolol Maleate through the cornea for glaucoma. Int J Biol Macromol 2018; 109: 955-62.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.090] [PMID: 29154878]
[54]
Warsi MH, Anwar M, Garg V, et al. Dorzolamide-loaded PLGA/vitamin E TPGS nanoparticles for glaucoma therapy: Pharmacoscintigraphy study and evaluation of extended ocular hypotensive effect in rabbits. Colloids Surf B Biointerfaces 2014; 122: 423-31.
[http://dx.doi.org/10.1016/j.colsurfb.2014.07.004] [PMID: 25159319]
[55]
Muller RH. Solid lipid nanoparticles (SLN) - an alternative colloidal carrier system for controlled drug delivery. Eur J Biopharm 1995; 41: 62-9.
[56]
El-Salamouni NS, Farid RM, El-Kamel AH, El-Gamal SS. Effect of sterilization on the physical stability of brimonidine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Int J Pharm 2015; 496(2): 976-83.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.043] [PMID: 26498372]
[57]
Li R, Jiang S, Liu D, et al. A potential new therapeutic system for glaucoma: solid lipid nanoparticles containing methazolamide. J Microencapsul 2011; 28(2): 134-41.
[http://dx.doi.org/10.3109/02652048.2010.539304] [PMID: 21142697]
[58]
Attama AA, Reichl S, Müller-Goymann CC. Sustained release and permeation of timolol from surface-modified solid lipid nanoparticles through bioengineered human cornea. Curr Eye Res 2009; 34(8): 698-705.
[http://dx.doi.org/10.1080/02713680903017500] [PMID: 19899997]
[59]
Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm 2013; 453(1): 198-214.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.042] [PMID: 22944304]
[60]
Li J, Tian S, Tao Q, et al. Montmorillonite/chitosan nanoparticles as a novel controlled-release topical ophthalmic delivery system for the treatment of glaucoma. Int J Nanomedicine 2018; 13: 3975-87.
[http://dx.doi.org/10.2147/IJN.S162306] [PMID: 30022821]
[61]
Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J Control Release 2017; 248: 96-116.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.012] [PMID: 28087407]
[62]
Pepić I, Jalsenjak N, Jalsenjak I. Micellar solutions of triblock copolymer surfactants with pilocarpine. Int J Pharm 2004; 272(1-2): 57-64.
[http://dx.doi.org/10.1016/j.ijpharm.2003.11.032] [PMID: 15019069]
[63]
Ribeiro A, Sosnik A, Chiappetta DA, Veiga F, Concheiro A, Alvarez-Lorenzo C. Single and mixed poloxamine micelles as nanocarriers for solubilization and sustained release of ethoxzolamide for topical glaucoma therapy. J R Soc Interface 2012; 9(74): 2059-69.
[http://dx.doi.org/10.1098/rsif.2012.0102] [PMID: 22491977]
[64]
Lin HR, Chang PC. Novel pluronic-chitosan micelle as an ocular delivery system. J Biomed Mater Res B Appl Biomater 2013; 101(5): 689-99.
[http://dx.doi.org/10.1002/jbm.b.32871] [PMID: 23359519]
[65]
Elmowafy E, Gad H, Biondo F, Casettari L, Soliman ME. Exploring optimized methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) crystalline cored micelles in anti-glaucoma pharmacotherapy. Int J Pharm 2019; 566: 573-84.
[http://dx.doi.org/10.1016/j.ijpharm.2019.06.011] [PMID: 31176850]
[66]
Vandamme TF, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 2005; 102(1): 23-38.
[http://dx.doi.org/10.1016/j.jconrel.2004.09.015] [PMID: 15653131]
[67]
Xu Q, Kambhampati SP, Kannan RM. Nanotechnology approaches for ocular drug delivery. Middle East Afr J Ophthalmol 2013; 20(1): 26-37.
[http://dx.doi.org/10.4103/0974-9233.106384] [PMID: 23580849]
[68]
Kompella UB, Amrite AC, Pacha Ravi R, Durazo SA. Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res 2013; 36: 172-98.
[http://dx.doi.org/10.1016/j.preteyeres.2013.04.001] [PMID: 23603534]
[69]
Honda M, Asai T, Oku N, Araki Y, Tanaka M, Ebihara N. Liposomes and nanotechnology in drug development: focus on ocular targets. Int J Nanomedicine 2013; 8: 495-503.
[http://dx.doi.org/10.2147/IJN.S30725] [PMID: 23439842]
[70]
Chaplot SP, Rupenthal ID. Dendrimers for gene delivery--a potential approach for ocular therapy? J Pharm Pharmacol 2014; 66(4): 542-56.
[http://dx.doi.org/10.1111/jphp.12104] [PMID: 24635556]
[71]
Rodríguez Villanueva J, Navarro MG, Rodríguez Villanueva L. Dendrimers as a promising tool in ocular therapeutics: Latest advances and perspectives. Int J Pharm 2016; 511(1): 359-66.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.031] [PMID: 27436708]
[72]
Bravo-Osuna I, Vicario-de-la-Torre M, Andrés-Guerrero V, et al. Novel water-soluble mucoadhesive carbosilane dendrimers for ocular administration. Mol Pharm 2016; 13(9): 2966-76.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00182] [PMID: 27149661]
[73]
Lancina MG III, Wang J, Williamson GS, Yang H. DenTimol as a dendrimeric timolol analogue for glaucoma therapy: Synthesis and preliminary efficacy and safety assessment. Mol Pharm 2018; 15(7): 2883-9.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00401] [PMID: 29767982]
[74]
Lancina MG III, Singh S, Kompella UB, Husain S, Yang H. Fast dissolving dendrimer nanofiber mats as alternative to eye drops for more efficient antiglaucoma drug delivery. ACS Biomater Sci Eng 2017; 3(8): 1861-8.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00319] [PMID: 29152562]
[75]
Mishra V, Jain NK. Acetazolamide encapsulated dendritic nano-architectures for effective glaucoma management in rabbits. Int J Pharm 2014; 461(1-2): 380-90.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.043] [PMID: 24291772]
[76]
Spataro G, Malecaze F, Turrin CO, et al. Designing dendrimers for ocular drug delivery. Eur J Med Chem 2010; 45(1): 326-34.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.017] [PMID: 19889480]
[77]
Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev 2015; 115(19): 10938-66.
[http://dx.doi.org/10.1021/acs.chemrev.5b00046] [PMID: 26010257]
[78]
Li H, Liu Y, Zhang Y, et al. Liposomes as a novel ocular delivery system for brinzolamide: in vitro and in vivo studies. AAPS PharmSciTech 2016; 17(3): 710-7.
[http://dx.doi.org/10.1208/s12249-015-0382-1] [PMID: 26335415]
[79]
Hathout RM, Mansour S, Mortada ND, Guinedi AS. Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies. AAPS PharmSciTech 2007; 8(1): 1-12.
[http://dx.doi.org/10.1208/pt0801001] [PMID: 17408209]
[80]
Jin Q, Li H, Jin Z, et al. TPGS modified nanoliposomes as an effective ocular delivery system to treat glaucoma. Int J Pharm 2018; 553(1-2): 21-8.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.033] [PMID: 30316795]
[81]
Carafa M, Santucci E, Alhaique F, et al. Preparation and properties of new unilamellar non-ionic/ionic surfactant vesicles. Int J Pharm 1998; 160: 51-9.
[http://dx.doi.org/10.1016/S0378-5173(97)00294-9]
[82]
Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: an overview. Int J Pharm 2004; 269(1): 1-14.
[http://dx.doi.org/10.1016/j.ijpharm.2003.09.016] [PMID: 14698571]
[83]
Saettone MF, Perini G, Carafa M, et al. Non-ionic surfactant vesicles as ophthalmic carriers for cyclopentolate. A preliminary evaluation. STP Pharma Sci 1996; 6: 94-8.
[84]
Uchegbu IF, Vyas SP. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 1998; 172: 33-70.
[http://dx.doi.org/10.1016/S0378-5173(98)00169-0]
[85]
Kaur IP, Aggarwal D, Singh H, Kakkar S. Improved ocular absorption kinetics of timolol maleate loaded into a bioadhesive niosomal delivery system. Graefes Arch Clin Exp Ophthalmol 2010; 248(10): 1467-72.
[http://dx.doi.org/10.1007/s00417-010-1383-0] [PMID: 20437246]
[86]
El-Menshawe SF. A novel approach to topical acetazolamide/PEG 400 ocular niosomes. J Drug Deliv Sci Technol 2012; 22: 295-9.
[http://dx.doi.org/10.1016/S1773-2247(12)50049-3]
[87]
Abu Hashim II, El-Dahan MS, Yusif RM, Abd-Elgawad AE, Arima H. Potential use of niosomal hydrogel as an ocular delivery system for atenolol. Biol Pharm Bull 2014; 37(4): 541-51.
[http://dx.doi.org/10.1248/bpb.b13-00724] [PMID: 24694602]
[88]
Rizwan SB, McBurney WT, Young K, et al. Cubosomes containing the adjuvants imiquimod and monophosphoryl lipid A stimulate robust cellular and humoral immune responses. J Control Release 2013; 165(1): 16-21.
[http://dx.doi.org/10.1016/j.jconrel.2012.10.020] [PMID: 23142776]
[89]
Zhang J, Wang S. Topical use of coenzyme Q10-loaded liposomes coated with trimethyl chitosan: tolerance, precorneal retention and anti-cataract effect. Int J Pharm 2009; 372(1-2): 66-75.
[http://dx.doi.org/10.1016/j.ijpharm.2009.01.001] [PMID: 19437594]
[90]
Salonen A, Moitzi C, Salentinig S, Glatter O. Material transfer in cubosome-emulsion mixtures: effect of alkane chain length. Langmuir 2010; 26(13): 10670-6.
[http://dx.doi.org/10.1021/la100955z] [PMID: 20443641]
[91]
Nguyen TH, Hanley T, Porter CJ, Boyd BJ. Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration. J Control Release 2011; 153(2): 180-6.
[http://dx.doi.org/10.1016/j.jconrel.2011.03.033] [PMID: 21497623]
[92]
Gordon S, Young K, Wilson R, et al. Chitosan hydrogels containing liposomes and cubosomes as particulate sustained release vaccine delivery systems. J Liposome Res 2012; 22(3): 193-204.
[http://dx.doi.org/10.3109/08982104.2011.637502] [PMID: 22188610]
[93]
Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov Today 2016; 21(5): 789-801.
[http://dx.doi.org/10.1016/j.drudis.2016.01.004] [PMID: 26780385]
[94]
Huang J, Peng T, Li Y, et al. Ocular cubosomes drug delivery system for timolol maleate: preparation, characterization, cytotoxicity, ex vivo, and in vivo evaluation. AAPS PharmSciTech 2017; 18(8): 2919-26.
[http://dx.doi.org/10.1208/s12249-017-0763-8] [PMID: 28429294]
[95]
Wu W, Li J, Wu L, et al. Ophthalmic delivery of brinzolamide by liquid crystalline nanoparticles: in vitro and in vivo evaluation. AAPS PharmSciTech 2013; 14(3): 1063-71.
[http://dx.doi.org/10.1208/s12249-013-9997-2] [PMID: 23813437]
[96]
Schmalfuss U, Neubert R, Wohlrab W. Modification of drug penetration into human skin using microemulsions. J Control Release 1997; 46: 279-85.
[http://dx.doi.org/10.1016/S0168-3659(96)01609-4]
[97]
Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv drug deliv 2000; 45: 89-102.
[http://dx.doi.org/10.1016/S0169-409X(00)00103-4]
[98]
Chan J, Maghraby GM, Craig JP, Alany RG. Phase transition water-in-oil microemulsions as ocular drug delivery systems: in vitro and in vivo evaluation. Int J Pharm 2007; 328(1): 65-71.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.004] [PMID: 17092668]
[99]
Li CC, Abrahamson M, Kapoor Y, Chauhan A. Timolol transport from microemulsions trapped in HEMA gels. J Colloid Interface Sci 2007; 315(1): 297-306.
[http://dx.doi.org/10.1016/j.jcis.2007.06.054] [PMID: 17673246]
[100]
Hegde RR, Bhattacharya SS, Verma A, Ghosh A. Physicochemical and pharmacological investigation of water/oil microemulsion of non-selective beta blocker for treatment of glaucoma. Curr Eye Res 2014; 39(2): 155-63.
[http://dx.doi.org/10.3109/02713683.2013.833630] [PMID: 24073659]
[101]
Ince I, Karasulu E, Ates H, et al. A novel Pilocarpine microemulsion as an ocular delivery system: in vitro and in vivo studies. J Clin Exp Ophthalmol 2015; 6: 408.
[102]
Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today 2011; 16(7-8): 354-60.
[http://dx.doi.org/10.1016/j.drudis.2010.02.009] [PMID: 20206289]
[103]
Delmas T, Piraux H, Couffin AC, et al. How to prepare and stabilize very small nanoemulsions. Langmuir 2011; 27(5): 1683-92.
[http://dx.doi.org/10.1021/la104221q] [PMID: 21226496]
[104]
Sharma B, Sharma A. Future prospect of nanotechnology in development of anti-ageing formulations. Int J Pharm Pharm Sci 2012; 4: 57-66.
[105]
Mahboobian MM, Foroutan SM, Aboofazeli R. Brinzolamide-loaded nanoemulsions: in vitro release evaluation. Iran J Pharm 2016; 12: 75-93.
[106]
Morsi N, Ibrahim M, Refai H, El Sorogy H. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur J Pharm Sci 2017; 104: 302-14.
[http://dx.doi.org/10.1016/j.ejps.2017.04.013] [PMID: 28433750]
[107]
Gallarate M, Chirio D, Bussano R, et al. Development of O/W nanoemulsions for ophthalmic administration of timolol. Int J Pharm 2013; 440(2): 126-34.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.015] [PMID: 23078859]
[108]
Morsi NM, Mohamed MI, Refai H, et al. Nanoemulsion as a novel ophthalmic delivery system for acetazolamide. Int J Pharma Sci 2014; 6: 227-36.
[109]
Ammar HO, Salama HA, Ghorab M, Mahmoud AA. Development of dorzolamide hydrochloride in situ gel nanoemulsion for ocular delivery. Drug Dev Ind Pharm 2010; 36(11): 1330-9.
[http://dx.doi.org/10.3109/03639041003801885] [PMID: 20545523]
[110]
Law SL, Huang KJ, Chiang CH. Acyclovir-containing liposomes for potential ocular delivery. Corneal penetration and absorption. J Control Release 2000; 63(1-2): 135-40.
[http://dx.doi.org/10.1016/S0168-3659(99)00192-3] [PMID: 10640587]
[111]
Peira E, Carlotti ME, Trotta C, Cavalli R, Trotta M. Positively charged microemulsions for topical application. Int J Pharm 2008; 346(1-2): 119-23.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.065] [PMID: 17618070]
[112]
Wadhwa S, Paliwal R, Paliwal SR, Vyas SP. Nanocarriers in ocular drug delivery: an update review. Curr Pharm Des 2009; 15(23): 2724-50.
[http://dx.doi.org/10.2174/138161209788923886] [PMID: 19689343]
[113]
Diebold Y, Calonge M. Applications of nanoparticles in ophthalmology. Prog Retin Eye Res 2010; 29(6): 596-609.
[http://dx.doi.org/10.1016/j.preteyeres.2010.08.002] [PMID: 20826225]
[114]
Luo Y, Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 2014; 64: 353-67.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.12.017] [PMID: 24360899]
[115]
Abdelbary G. Ocular ciprofloxacin hydrochloride mucoadhesive chitosan-coated liposomes. Pharm Dev Technol 2011; 16(1): 44-56.
[http://dx.doi.org/10.3109/10837450903479988] [PMID: 20025433]
[116]
Kutty RV, Chia SL, Setyawati MI, Muthu MS, Feng SS, Leong DT. In vivo and ex vivo proofs of concept that cetuximab conjugated vitamin E TPGS micelles increases efficacy of delivered docetaxel against triple negative breast cancer. Biomaterials 2015; 63: 58-69.
[http://dx.doi.org/10.1016/j.biomaterials.2015.06.005] [PMID: 26081868]
[117]
Guo Y, Chu M, Tan S, et al. Chitosan-g-TPGS nanoparticles for anticancer drug delivery and overcoming multidrug resistance. Mol Pharm 2014; 11(1): 59-70.
[http://dx.doi.org/10.1021/mp400514t] [PMID: 24229050]
[118]
Agrawal P. Sonali, Singh RP, et al. Bioadhesive micelles of d-α-tocopherol polyethylene glycol succinate 1000: Synergism of chitosan and transferrin in targeted drug delivery. Colloids Surf B Biointerfaces 2017; 152: 277-88.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.021] [PMID: 28122295]
[119]
Leonardi A, Bucolo C, Drago F, Salomone S, Pignatello R. Cationic solid lipid nanoparticles enhance ocular hypotensive effect of melatonin in rabbit. Int J Pharm 2015; 478(1): 180-6.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.032] [PMID: 25448580]
[120]
Wang F, Chen L, Zhang D, et al. Methazolamide-loaded solid lipid nanoparticles modified with low-molecular weight chitosan for the treatment of glaucoma: vitro and vivo study. J Drug Target 2014; 22(9): 849-58.
[http://dx.doi.org/10.3109/1061186X.2014.939983] [PMID: 25045926]
[121]
Lütfi G, Müzeyyen D. Preparation and characterization of polymeric and lipid nanoparticles of pilocarpine HCl for ocular application. Pharm Dev Technol 2013; 18(3): 701-9.
[http://dx.doi.org/10.3109/10837450.2012.705298] [PMID: 22813238]
[122]
Dubey V, Mohan P, Dangi JS, Kesavan K. Brinzolamide loaded chitosan-pectin mucoadhesive nanocapsules for management of glaucoma: Formulation, characterization and pharmacodynamic study. Int J Biol Macromol 2020; 152: 1224-32.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.219] [PMID: 31751741]
[123]
Oliveira AV, Rosa da Costa AM, Silva GA. Non-viral strategies for ocular gene delivery. Mater Sci Eng C 2017; 77: 1275-89.
[http://dx.doi.org/10.1016/j.msec.2017.04.068] [PMID: 28532005]
[124]
Jain A, Zode G, Kasetti RB, et al. CRISPR-Cas9-based treatment of myocilin-associated glaucoma. Proc Natl Acad Sci USA 2017; 114(42): 11199-204.
[http://dx.doi.org/10.1073/pnas.1706193114] [PMID: 28973933]
[125]
Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials 2018; 171: 207-18.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.031] [PMID: 29704747]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy